常见岩石的强度性质
常见岩石的强度性质
之迟辟智美创作以后位置:课程学习/第四章岩块的变形与强度性质/第三节岩块的强度性质第三节岩块的强度性质岩块的强度是指岩块抵当外力破坏的能力.根据受力状态分歧,岩块的强度可分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等.一、单轴抗压强度σc1、界说在单向压缩条件下,岩块能接受的最年夜压应力,简称抗压强度(MPa).2、研究意义(1)衡量岩块基本力学性质的重要指标.(2)岩体工程分类、建立岩体破坏判据的重要指标.(3)用来估算其他强度参数.3、测定方法抗压强度试验点荷载试验4、罕见岩石的抗压强度罕见岩石的抗压强度1、界说单向拉伸条件下,岩块能接受的最年夜拉应力,简称抗拉强度.2、研究意义(1)衡量岩体力学性质的重要指标(2)用来建立岩石强度判据,确定强度包络线(3)选择建筑石材不成缺少的参数3、测定方法直接拉伸法间接法(劈裂法、点荷载法)4、罕见岩石的抗拉强度罕见岩石的抗拉强度5岩石中包括有年夜量的微裂隙和孔隙,岩块抗拉强度受其影响很年夜,直接削弱了岩块的抗拉强度.相对而言,空隙对岩块抗压强度的影响就小很多,因此,岩块的抗拉强度一般远小于其抗压强度.通常把抗压强度与抗拉强度的比值称为脆性度,用以表征岩石的脆性水平.岩块的几种强度与抗压强度比值1、界说在剪切荷载作用下,岩块抵当剪切破坏的最年夜剪应力,称为剪切强度.2、类型(1)抗剪断强度:指试件在一定的法向应力作用下,沿预定剪切面剪断时的最年夜剪应力.(2)抗切强度:指试件上的法向应力为零时,沿预定剪切面剪断时的最年夜剪应力.(3)摩擦强度:指试件在一定的法向应力作用下,沿已有破裂面(层面、节理等)再次剪切破坏时的最年夜剪应力.3、研究意义反映岩块的力学性质的重要指标.用来估算岩体力学参数及建立强度判据.4、抗剪断强度的测试方法直剪试验变角板剪切试验三轴试验5、罕见岩石的剪切强度罕见岩石的剪切强度1、界说试件在三向压应力作用下能抵当的最年夜的轴向应力.2、测定方法三轴试验3、利用三轴试验确定抗剪强度根据一组试件(4个以上)试验获得的三轴压缩强度σ1m和相应的σ3以及单轴抗拉强度σt.在σ-τ坐标系中可绘制出岩块的强度包络线.除极点外,包络线上所有点的切线与σ轴的夹角及其在τ轴上的截距分别代表相应破坏面的内摩擦角(φ)和内聚力(C).4、几种强度之间的换算根据应力摩尔圆可以进行几种强度之间的换算,已知其中某些强度,可以计算其他的强度值.假设强度包络线为直线(在σ3<10MPa的情况下,往往这样.),如下图,可以获得下面的公式:由此可以根据岩石的内摩擦角、内聚力和σ3计算岩石的三轴强度.同样,也可以获得下式:由此可以计算岩石的抗压强度、抗拉强度、内聚力、内摩擦角.。
3岩石力学性质及强度
四、岩石变形特性参数的测定
1、弹性模量E的确定 a、线弹性类岩石――σ ~ε 曲线呈线性关系,曲线上任 一点P的弹性模量E:
E
b
σ ~ε 曲线呈非线性关系
d 初始模量 : E 初= d
切线模量(直线段):
0
a 2 a1 E 切= a 2 a1
割线模量:
际受力状态而测定岩石在围压作用下的抗压强度、
变形模量、弹性模量及泊松比。
岩石的三轴抗压强度、变形模量、弹性模量、 泊松比及剪切模量分别为:
P ( 2) 3 A
50 3 Ee ( 4 ) 50 i
Ee G 6) ( 2(1 u )
50 3 E0 50 0
2、间接拉伸试验
A 劈裂法(巴西试验法)
圆盘试件:
2P t d t
方形试件:
2P t ah
式中:P—破坏时的荷载,N;
d— 试件直径;cm;
t—试件厚度,cm; a,h—方形试件边长和厚度,cm。
不规则试件(加压方向应满足h/a≤1.5 ):
t
P V 2/3
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
围压对岩石强度的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
岩石力学的弹性变形
E K 3 1 2
弹性模量, E 泊松比, v 体积模量, K 剪切模量, G
3岩石力学性质及强度解析
一些典型的破坏形态
岩石的变形特性,根据其破坏特征,可以分为弹 性、弹塑性、塑性、粘性等(粘性又可分为粘弹性 和粘塑性)等。
§3-2 岩石的变形特性
弹性:指物体在外力作用下发生变形,当外力撤出后变形
能够恢复的性质。
塑性:指物体在外力作用下发生变形,当外力撤出后变形 不能恢复的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 延性:物体能够承受较大的塑性变形而不丧失其承载能力
瓦威尔西克(Wawer Sik,1968)对岩石开始宏观破坏 后的性态做了仔细研究,所得结果如图所示。
类型1:试件仍有一定的强度。要使试件进一步破坏,试验机必须进 一步作功,这种类型为稳定破坏型。应力-应变曲线的破坏后区斜率 为负。这种类型为稳定破坏型;(孔隙率大的沉积岩和部分结晶岩) 类型2:试件受力达到其极限强度以前储存的弹性变形能就足以使试 件完全破坏,不但不需要试验机进一步作功,还要逐步卸载,才能作 出破坏后区应力-应变曲线。应力-应变曲线的破坏后区斜率为正。 这种类型为非稳定破坏型;(细粒结晶岩)
小 结:
1.无论岩石在什么状态的应力条件下( 压、拉、剪、弯、扭),其破坏形式基本上只 有两种:拉伸和剪切。 2. 三向等压>三向不等压>双向压>单向 压>剪切(包括扭转)>弯曲>单向拉伸;
3.从试验数量来看,单向压缩试验、 圆盘劈裂试验最多。
岩石的破坏形式
就其破坏本质而言,岩石破坏有以下三种类型: 1、拉破坏 2、剪切破坏 3、塑性流动破坏
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
岩体的强度特性
2CJ +2 fJ σ3 σ1m =σ3 + Байду номын сангаас1− fJctgβ) sin2β
12
岩石力学
三、单结构面强度效应
对岩体强度有影响的节理方位角: 对岩体强度有影响的节理方位角: β1≤β≤ β2 可以直接在图上量取, β1、β2可以直接在图上量取,也可以由 正弦定律推求: 正弦定律推求:
2 n c
28
岩石力学
五、岩体强度估算
Hoek曾指出, 与库伦— Hoek曾指出,m与库伦—莫尔判据中的内 曾指出 摩擦角Φ非常类似, 则相当于内聚力C 摩擦角Φ非常类似,而s则相当于内聚力C 值。如果这样,根据Hoek—Brown提供的常 如果这样,根据Hoek—Brown提供的常 Hoek 最大为25 25, 数,m最大为25,显然这时估算的岩体强度 偏低, 偏低,特别是在低围压下及较坚硬完整的 岩体条件下,估算的三轴强度明显偏低。 岩体条件下,估算的三轴强度明显偏低。 但对于受构造扰动及结构面较发育的裂隙 化岩体,Hoek(1987)认为用这一方法估算 化岩体,Hoek(1987)认为用这一方法估算 是合理的。 是合理的。
(σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β1 = + arc sin[ ] σ1 − σ 3 2 2 (σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β2 = + − arc sin[ ] σ1 − σ 3 2 2 2
ϕJ π
ϕJ
13
岩石力学
三、单结构面强度效应 岩石(岩块) (2)、岩石(岩块)破坏:
常用土层和岩石物理力学性质
(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodm a n,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的Kf 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙 度n ,渗透系数k 以及Kf 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数来决νC 定改变Kf 的结果。
岩石天然强度与饱和强度
岩石天然强度与饱和强度岩石天然强度与饱和强度是岩石力学性质的两个重要指标。
岩石天然强度是指岩石在未受到外力作用下的强度,而饱和强度则是指岩石在饱和状态下的强度。
这两个指标对于岩石的工程应用具有重要意义。
岩石天然强度是岩石的基本力学性质之一,它是指岩石在未受到外力作用下的强度。
岩石天然强度的大小与岩石的成分、结构、质地等因素有关。
一般来说,岩石的天然强度越高,其抗压、抗拉、抗剪等力学性能就越好,其在工程应用中的可靠性也就越高。
因此,在进行岩石工程设计时,需要对岩石的天然强度进行充分的了解和评估。
饱和强度是指岩石在饱和状态下的强度。
饱和状态是指岩石中的孔隙被水或其他液体充满的状态。
在饱和状态下,岩石的强度会受到一定程度的影响。
一方面,水分子会填充岩石中的孔隙,使得岩石的体积增大,从而导致岩石的强度降低。
另一方面,水分子会对岩石中的矿物质产生化学反应,从而导致岩石的强度发生变化。
因此,在进行岩石工程设计时,需要对岩石的饱和强度进行充分的了解和评估。
在岩石工程设计中,岩石天然强度和饱和强度都是非常重要的指标。
在进行岩石工程设计时,需要对岩石的天然强度和饱和强度进行充分的了解和评估,以确保工程的可靠性和安全性。
同时,在进行岩石工程设计时,还需要考虑岩石的其他力学性质,如岩石的弹性模量、泊松比、破坏模式等,以综合评估岩石的力学性能。
总之,岩石天然强度和饱和强度是岩石力学性质的两个重要指标,对于岩石的工程应用具有重要意义。
在进行岩石工程设计时,需要对岩石的天然强度和饱和强度进行充分的了解和评估,以确保工程的可靠性和安全性。
同时,还需要考虑岩石的其他力学性质,以综合评估岩石的力学性能。
第四章 岩石的强度
第四章岩石的强度岩石强度是岩石的一种重要的力学特性。
是指岩石抵抗载荷(外力)而不受屈服或破裂的能力,是岩石承受外力的极限应力值。
岩石受力后会发生变形,一旦应力达到岩石的极限应力值,岩石就会发生破坏。
在岩石强度应力值之前,存在屈服点(应变明显增大,而应力不再需要明显增大时的应力),超过屈服点和达到极限强度(岩石破裂要达到的最大应力值)前,一般仍有一些抵抗应变而恢复原形的能力,但达到极限强度后岩石破裂,就完全失去恢复能力。
通常所讲的岩石强度,一般是指岩石样件的测量强度,它仅代表岩体内岩块的强度,不能代表整个岩体的强度。
但在涉及岩石强度的工程问题中,一般是针对岩体的强度,而岩体往往包含一些软弱的结构面。
几组软弱结构面可以将岩体分割成各种形状和大小不同的岩块。
因此,岩体的强度取决于这些岩块强度和结构面的强度,岩块内微结构面的作用将直接反映到岩石的力学性质上。
岩石受力方式的不同,表现出的强度特性不尽相同。
如在张力、压力和剪切力的作用下,同种岩石会呈现出不同的强度特性。
因此岩石具有抗张、抗压和抗剪切强度等之分。
岩石受力条件的不同,可表现出变形、破裂、蠕变等现象,这些现象有着一定的规律性。
岩石的强度是衡量岩石基本力学性质的重要指标,是建立岩石破坏判据的重要指标,还可估计其他力学参数。
岩石的这些力学特性广泛用于建筑行业、水利水电工程、地质灾害研究与预防、断裂构造研究等方面。
4.1影响岩石强度的主要因素1)岩石成分和结构组成岩石的矿物种类及含量、矿物颗粒大小、固结程度、胶结物种类、矿物形态与分布等均影响到岩石的各种强度。
固结程度高、硅质胶结、细粒、交错结构的强度大。
2)岩石中不连续面和间断面岩石中微裂缝、微小断裂、节理层理等的发育程度和分布情况直接影响到岩石的强度,这些不连续或间断面会降低岩石在不同方向上的强度。
3)岩石孔隙度及流体性状岩石的孔隙度以及其中所含流体种类、饱和度、渗透率等因素以较复杂的关系影响着岩石强度。
常见岩石特性
花岗岩属火成岩,由地下岩浆喷出和侵入冷却结晶,以及花岗质的变质岩等形成。
具有可见的晶体结构和纹理。
它由长石(通常是钾长石和奥长石)和石英组成,搀杂少量的云母(黑云母或白云母)和微量矿物质,譬如:锆石、磷灰石、磁铁矿、钛铁矿和榍石等等。
花岗石主要成分是二氧化硅,其含量约为65%—85%。
花岗石的化学性质呈弱酸性。
通常情况下,花岗岩略带白色或灰色,由于混有深色的水晶,外观带有斑点,钾长石的加入使得其呈红色或肉色。
花岗岩由岩浆慢慢冷却结晶形成,深埋于地表以下,当冷却速度异常缓慢时,它就形成一种纹理非常粗糙的花岗岩,人们称之为结晶花岗岩。
花岗岩以及其它的结晶岩构成了大陆板块的基础,它也是暴露在地球表面最为常见的侵入岩。
尽管花岗岩被认为是由融化的物质或者岩浆形成的火成岩,但是有大量证据表明某些花岗岩的形成是局部变形或者先前岩石的产物,它们未经过液态或者融化过程而重新排列和重结晶花岗岩的比重在到之间,其抗压强度为1,050~14,000千克/平方厘米(15,000~20,000磅/平方英寸)。
因为花岗岩的强度比沙岩、石灰石和大理石大,因此比较难于开采。
由于花岗石形成的特殊条件和坚定的结构特点,使其具有如下独特性能:(1)具有良好的装饰性能,可适用公共场所及室外的装饰。
(2)具有优良的加工性能:锯、切、磨光、钻孔、雕刻等。
其加工精度可达Um以下,光度达1600以上。
(3)耐磨性能好,比铸铁高5-10倍。
(4)热膨胀系数小,不易变形,与铟钢相仿,受温度影响极微。
(5)弹性模量大,高于铸铁。
(6)刚性好,内阻尼系数大,比钢铁大15倍。
能防震,减震。
(7)花岗石具有脆性,受损后只是局部脱落,不影响整体的平直性。
(8)花岗石的化学性质稳定,不易风化,能耐酸、碱及腐蚀气体的侵蚀,其化学性与二氧化硅的含量成正比,使用寿命可达200年左右。
(9)花岗石具有不导电、不导磁,场位稳定。
通常,花岗岩分成三个不同的类别:1.细粒花岗岩:长石晶体的平均直径为1/16~1/8英寸。
岩石的力学特性及强度准则
岩石的力学特性及强度准则岩石力学性质主要是指岩石的变形特征及岩石的强度。
由于在石油工程中,并壁稳定、出砂分析、水力压裂、储层物性变化等都与岩石力学性质亲密相关,因此有必要讨论岩石的力学性质及其在物理环境下应力场中的反映。
影响岩石力学性质的因素许多,例如岩石的类型、组构、围压、温度、应变率、含水量、载荷时间以及载荷性质等。
要讨论这些简单因素对岩石力学性质的影响,只能在试验艾博希室内严格掌握某些因素的状况下进行。
岩石的变形特性,最直观的表达方法是通过应力一应变关系曲线及应变随时间变化的曲线来表示。
通常首先讨论在常温、常压(即室温与通常大气压)条件下岩石的力学性质,然后再考虑其他影响因素下岩石的力学性质。
这样才能渐渐弄清在地质条件下,综合因素对岩石力学性质的影响。
岩石在常温、常压下一般产生脆性破坏,但深埋地下的岩石却表现为明显的延性。
,岩石这一性质的变化是由于所处物理环境的转变造成的。
所谓脆性与延性至今尚无非常明确的定义。
一'般所谓脆性破坏是指由弹性变形发生急剧破坏,破坏后塑性变形较小。
延性是指弹性变形之后产生较大的塑性变形而导致破坏,或直接进展为延性流淌。
所谓延性流淌IC现货商是指有大量的永久变形而不至于破坏的性质* 对于岩石而言,破坏前的应变或永久应变在3%以下可作为脆性破坏,5%以上作为延性破坏,3% 一5%为过渡状况。
由于地下的岩体和井壁围岩均处于三向应力状态,所以对岩石力学性态的测定不能靠简单的单轴压缩试验方法,而必需在肯定的围压作用厂(必要时还要考虑温度的作用)进行试验测定。
真三轴试验(岩石上三个主方向的作用力均不等)非常简单,一般均不采纳。
普退采纳的是常规三轴压缩试验方法,一般用圆柱形岩样,在其横向施加液体围压,即在水平的两个主方向上的应力相等且等于围压久,如图1—1所示。
假如上下垫块是带孔可渗透的,亦可通入孔隙流体压力以讨论孔隙压力的影响。
在试验过程中把岩样放在高压室中先对岩样四周用围压油加压至所需的值9c(需要时亦可加孔隙压至所需的夕。
常见岩石力学参数
常见岩石力学参数岩石力学参数是指描述岩石在外力作用下的力学行为的物理性质,包括弹性模量、剪切模量、泊松比、抗压强度、抗拉强度、抗剪强度等。
这些参数对于岩石的力学性质和工程应用具有重要意义。
本文将详细介绍这些常见的岩石力学参数。
1. 弹性模量(Young's modulus):弹性模量是衡量岩石弹性性质的一个重要参数,表示岩石在外力作用下产生弹性变形的能力。
弹性模量越大,岩石的刚度越大,抗弯和抗变形能力越强。
2. 剪切模量(Shear modulus):剪切模量是衡量岩石抗剪切性质的参数,表示岩石在剪切应力作用下产生剪切变形的能力。
剪切模量越大,岩石的抗剪强度越高,稳定性越好。
3. 泊松比(Poisson's ratio):泊松比是衡量岩石体积变形性质的参数,表示岩石在受到压缩应力时,横向收缩的程度。
泊松比一般介于0.1到0.4之间,数值越大,岩石的蠕变性越强。
5. 抗拉强度(Tensile strength):抗拉强度是衡量岩石抗拉性质的参数,表示岩石在受到拉伸应力时的最大承载能力。
抗拉强度一般比抗压强度要小,岩石在受到拉伸时易发生断裂。
6. 抗剪强度(Shear strength):抗剪强度是衡量岩石抗剪切性质的参数,表示岩石在受到剪切应力时的最大承载能力。
抗剪强度主要与岩石内部的粘聚力和内摩擦角有关。
除了上述常见的岩石力学参数外,还有一些与岩石稳定性有关的参数:7. 断裂韧性(Fracture toughness):断裂韧性是衡量岩石抗断裂性质的参数,表示岩石在受到裂纹扩展时的抵抗能力,能够反映岩石的破坏扩展能力。
8. 孔隙度(Porosity):孔隙度是衡量岩石孔隙结构的参数,表示岩石内部的孔隙空间占总体积的比例。
孔隙度能够影响岩石的密实程度和渗透性,对工程建筑的渗流和稳定性有重要影响。
9. 饱和度(Saturation):饱和度是衡量岩石孔隙中被水、气体或其他流体填充的程度。
岩石抗压强度分类
岩石抗压强度分类岩石抗压强度是指岩石在承受垂直于其表面的压力时所能承受的最大力量。
岩石的抗压强度是评价其物理性质和力学性能的重要指标之一,也是岩石工程设计与施工中必须考虑的关键参数。
根据岩石的抗压强度不同,可以将岩石分为几个不同的等级。
一、高抗压强度岩石高抗压强度岩石是指抗压强度大于300MPa的岩石,如花岗岩、玄武岩等。
这类岩石由于具有较高的抗压强度,具备了较好的承载能力和稳定性,常用于大型水利、交通、能源等工程中的基础和支护结构。
二、中等抗压强度岩石中等抗压强度岩石是指抗压强度在100MPa至300MPa之间的岩石,如砂岩、灰岩等。
这类岩石的抗压强度较高,但相对于高抗压强度岩石来说稍低一些。
在工程中,中等抗压强度岩石常用于建筑物的墙体、护坡、路基等。
三、低抗压强度岩石低抗压强度岩石是指抗压强度小于100MPa的岩石,如页岩、泥岩等。
这类岩石的抗压强度相对较低,具有较强的可塑性和易变形性。
在工程中,低抗压强度岩石常用于土木工程的填方土和路基。
不同抗压强度的岩石在工程设计中需要采取不同的措施。
对于高抗压强度岩石,可以直接利用其承载能力进行设计;对于中等抗压强度岩石,需要考虑其稳定性和变形性;对于低抗压强度岩石,则需要考虑其可塑性和变形性以及施工时的加固措施。
不同抗压强度的岩石还对爆破施工有不同的影响。
高抗压强度岩石在爆破施工中需要采用较大的药量和更高的爆破参数才能达到预期效果;中等抗压强度岩石则需要根据具体情况进行合理的药量和参数选择;低抗压强度岩石则需要采用较小的药量和较低的爆破参数,以免造成过度破碎和破坏。
岩石抗压强度的分类对于工程设计和施工具有重要意义。
根据不同岩石的抗压强度,可以选择合适的岩石材料和施工方法,确保工程的安全和稳定。
在实际工程中,还需要根据具体情况进行综合考虑,结合其他地质力学参数,进行合理的设计和施工。
岩石抗压强度是岩石力学研究的重要内容之一,其深入研究对于提高岩石工程设计和施工的效果具有重要意义。
最新一般岩石的抗压强度
最新一般岩石的抗压强度一般岩石的抗压强度1、岩浆岩类(1)坚硬—软弱块—层状基性喷出岩。
火山熔岩为块状,较坚硬—坚硬,干抗压强度48.0—193.0兆帕,软化系数0.64—0.99,岩体稳定性较好;火山碎屑岩为似层状或层状,软弱—较坚硬,干抗压强度10.9—56.0兆帕,软化系数0.43—0.54,岩体稳定性差。
力学强度的高低与岩石的节理裂隙发育和风化程度有关。
中等风化玄武岩强度为微风化—新鲜的20—50%;火山碎屑岩易受风化,中等风化的锤击易碎。
(2)坚硬—较坚硬层状中—酸性喷出岩。
岩石干抗压强度多大于108兆帕。
流纹岩垂直和水平方向上的力学强度变化较大,在一定条件下可成为岩组中相对软弱的夹层。
使岩体稳定性变差。
(3) 坚硬块状侵入岩。
岩石以中—粗粒或斑状结构为主,块状构造,新鲜者致密坚硬,裂隙不发育,力学强度普遍较高,尤其是新鲜花岗岩,抗压强度一般大于98兆帕。
2.变质岩类(1)软硬相间薄—中厚层状变质砂页岩。
岩层厚薄不等,软硬相间,岩石的完整性和抗风化能力差异很大,力学强度各向异性。
片岩、千枚岩、板岩等软弱岩石,节理裂隙较发育,垂直干抗压强度12.0—113兆帕;石英岩、变质砂岩、硅质岩等硬质岩石,较坚硬—坚硬,垂直干抗压强度43.0—260兆帕,最高达338兆帕。
风化岩石干抗压强仅40—90兆帕。
(2)坚硬块状混合岩类。
岩石呈块状,完整性好,坚硬,干抗压强度59—196兆帕,强风化者为22兆帕。
(3)软弱碎裂状构造岩。
岩石破碎,透水性强,压碎花岗岩垂直饱和抗压强度为73兆帕,部分小于20兆帕。
3.碎屑岩类(1)软弱—较坚硬,中—厚层状红色砂泥岩。
岩石呈不等厚互层状。
力学强度因岩性不同而异。
砂岩,砾岩等岩石较坚硬,干抗压强度多大于50兆帕,风化岩干抗压强度一般小于50兆帕。
泥岩、粘土岩等垂直干抗压强度为11.8—17.0兆帕。
(2)软硬相间薄—中层状砂页岩。
页岩常夹砂岩或与砂岩互层产出。
砂岩干抗压强度为100—169兆帕,比片岩高几倍至十几倍,而砂岩强度又容易受风化影响,风化者为3.8—27兆帕,半风化者60—70.3兆帕。
第二节岩石的强度特性
3.单向压缩试件的破坏形态
破坏形态是表现破坏机理的重要特征;
其主要影响因素:①应力状态 ②试验条件 破坏形态有两类: (1)圆锥形破坏
原因:压板两端存在摩擦力,箍作用(又称端部效应), 在工程中也会出现。 (2)柱状劈裂破坏
张拉破坏(岩石的抗拉强度远小于抗压强度) 是岩石单向压缩破坏的真实反映(消除了端部效应) 消除试件端部约束的方法 润滑试件端部(如垫云母片;涂黄油在端部) 加长试件
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;h/d≥(2-3)较合理 (3)加载速度 加载速度越大,表现强度越高(见图2-5) 我国规定加载速度为0.5 -1.0MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 见表2-2 温度度:180℃以下部明显:大于180℃,湿度越高强 度越小。
一 岩石的单轴抗压强度
1.定义:指岩石试件在无侧限的条件下,受轴向压力作
用破坏时单位面积上承受的荷载。
Rc P / A
式中:P——无侧限的条件下的轴向破坏荷载 A——试件界面积
2.试件方法: (1)试件标准:
圆柱形试件:φ4.8-5.2cm ,高H=(2-2.5)φ 长方体试件:边长L= 4.8-5.2cm , 高H=(2-2.5)L
试件:实心圆柱φ50mm;δ 25mm 试验:径向压缩破坏(张开) 计算公式:由弹性力学Boursinesq公式
常用的岩土和岩石物理力学参数
(E, ν) 与(K, G )的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7。
2)当ν值接近0。
5的时候不能盲目的使用公式3。
5,因为计算的K 值将会非常的高,偏离实际值很多.最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值.表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7。
1土的弹性特性值(实验室值)(Das ,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23.这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3。
7给出了各向异性岩石的一些典型的特性值.横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性—-用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa.其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减.这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7。
3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν (7。
3岩石的工程地质性质_204807711
化学岩的工程地质性质 石灰岩 力学强度大多较高,抗水性弱(具溶解性),地 下水的溶蚀形成喀斯特(Karst)空洞。是地下水的集中渗 流通道,地基中的不稳定区。 白云岩 力学强度较高,具有微弱的溶蚀性。 硅质岩 强度高,抗水性好,抗风化能力强。 沉积岩中分布最广的是石灰岩,其次是泥质岩(页岩和 粘土岩)和砂岩。
石林(石灰岩溶蚀地貌)
图片来自 /
石灰岩溶蚀地貌(Malham Cove, UK)
图片来自 /
石灰岩溶洞
石 灰 岩 溶 蚀 地 貌 ---
3. 岩石的抗风化能力 抗化学风化的能力,主要取决于其成分。 造岩矿物在地表风化条件下的化学稳定性 相对稳定性 很稳定的 较稳定的 1 较稳定的 2 较稳定的 3 不太稳定的 很不稳定的 造岩矿物 石英 白云母、正长石、酸性斜长石 白云石 (弱溶解性) 粘土矿物 (不易分解,但易软化) 方解石(易被溶蚀) 角闪石、辉石、黑云母、橄榄石、基性斜长 石 (易被分解)
5.岩石的风化带
风化作用使地表附近的岩石发生化学破坏和机械破碎,矿 物成份和完整性发生不同程度的改变,形成与原岩性质不 同的风化产物。 在垂直剖面上,从地表向下,岩石风化程度由深变浅,过 渡到新鲜岩石。
《岩土工程勘查规范》GB50021-2001划分出4种风化程 度的岩石:全风化、强风化、中等风化和微风化。
沉积岩的两种主要成分:石英和粘土矿物。 石英的化学稳定性最强; 粘土矿物在化学风化的条件下稳定性也较好,但是容易 受地下水的作用而软化,易发生物理风化。 沉积岩的组成成分,为地表风化产物,大部分具有较好 的抗化学风化能力。 岩浆岩,大部分为不稳定的硅酸盐矿物。在化学风化条 件下,易于被分解破坏。
4. 三大岩类的工程地质性质 (1) 岩浆岩的工程地质性质 绝大部分岩浆岩,力学强度高,透水性弱,抗水性强 (不软化,不溶解)。但同沉积岩相比抗风化能力较弱。 不同产状的岩浆岩略有差异: 深成岩浆岩: 矿物颗粒间结晶联结,力学强度高; 孔隙率小,透水性弱、抗水性强;岩体大、整体稳定性 好;良好的建筑地基和天然建筑石材。总体抗化学风化 能力较差。
岩石物理力学性质指标经验数据
岩石物理力学性质指标经验数据在岩石物理学中,岩石的物理力学性质指标是评估岩石力学行为的重要参数,包括岩石的强度、变形性质、破裂特性等。
这些指标的经验数据非常重要,能够为岩石物理学的研究和实际工程应用提供有效的参考。
下面将介绍一些常见的岩石物理力学性质指标的经验数据。
岩石的抗压强度是指在垂直于施加力的方向上,岩石能够抵抗的最大压缩应力。
不同类型的岩石具有不同的抗压强度。
常见的岩石抗压强度经验数据如下:-砂岩:5-25MPa-灰岩:25-100MPa-花岗岩:100-250MPa-片麻岩:50-150MPa-麻岩:50-200MPa2. 抗张强度(Tensile strength):岩石在拉伸条件下能够承受的最大应力称为抗张强度。
由于岩石的抗拉强度较低,因此常常使用岩石抗压强度的一半作为岩石的抗拉强度估计值。
常见的岩石抗张强度经验数据如下:-砂岩:1-5MPa-灰岩:5-20MPa-花岗岩:20-100MPa-片麻岩:10-50MPa-麻岩:10-50MPa3. 剪切强度(Shear strength):岩石的剪切强度是指岩石在剪切应力作用下能够抵抗剪切破坏的最大强度。
常见的岩石剪切强度经验数据如下:-砂岩:3-15MPa-灰岩:15-30MPa-花岗岩:30-100MPa-片麻岩:15-50MPa-麻岩:20-60MPa4. 弹性模量(Young modulus):弹性模量是岩石在弹性变形范围内的刚度指标,表示岩石在受力时变形程度的大小。
常见的岩石弹性模量经验数据如下:-砂岩:1-30GPa-灰岩:10-100GPa-花岗岩:50-200GPa-片麻岩:10-50GPa-麻岩:5-50GPa5. 泊松比(Poisson's ratio):泊松比表示材料体积收缩时的径向收缩与轴向延伸之比,常用来表征岩石的变形特性。
-砂岩:0.1-0.4-灰岩:0.1-0.35-花岗岩:0.2-0.35-片麻岩:0.1-0.4-麻岩:0.2-0.4需要注意的是,以上数据仅为经验值,实际岩石的物理力学性质受多种因素的影响,包括岩石类型、成分、结构、孔隙度等。
岩石的强度指标
岩石的强度指标
岩石的强度指标主要包括以下几种:
单轴抗压强度:岩石在单向压力作用下抵抗压碎破坏的能力,是岩石最基本最常用的力学指标。
在数值上等于岩石受压达到破坏时的极限应力,也表示岩石抵抗压缩破坏的能力。
抗拉强度:表示岩石抵抗拉伸破坏的能力。
当施加拉力直到岩石开裂的瞬间,所承受的最大拉力即为抗拉强度,也称抗拉极限强度。
抗剪强度:岩石抵抗剪切破坏的能力。
包括直剪强度、双轴抗剪强度和三轴抗剪强度。
其中,抗剪强度和抗压强度往往是确定岩石工程稳定性的主要因素。
直剪强度:直剪试验中岩石抵抗剪切破坏的能力,表示为剪切面上的正应力。
双轴抗剪强度:双轴抗剪强度通常是指在两个相互垂直的方向上施加剪切力,直到岩石破裂时的最大剪切力。
三轴抗剪强度:三轴抗剪强度是指岩石在三个相互垂直的方向上受到压力和剪切力的作用,直到岩石破裂时的最大剪切力。
抗弯强度:岩石抵抗弯曲破坏的能力,通常表示为在弯曲试验中岩石破坏时的最大正应力。
抗冲击强度:表示岩石抵抗冲击破坏的能力,通常通过落锤试验等方法测定。
疲劳强度:岩石在循环载荷作用下抵抗疲劳破坏的能力,通常通
过疲劳试验测定。
这些强度指标是岩石工程设计和稳定性分析的重要依据,根据不同的工程需求和实际情况选择相应的强度指标进行测试和评估。
岩石天然强度与饱和强度
岩石天然强度与饱和强度岩石是地壳中的常见构成物质,它们在地球漫长的演化过程中承受着巨大的压力和温度变化。
这些条件使得岩石具备了一定的天然强度,它们能够抵御外界的力量和变化。
然而,岩石的饱和强度也是一个重要的指标,它与岩石的孔隙结构和含水量有关。
下面将详细介绍岩石的天然强度和饱和强度,并探讨它们对地质工程和环境保护的意义。
一、岩石的天然强度岩石的天然强度是指岩石在没有外力作用下的抗压能力。
它与岩石的成分、结构、纹理和岩石形成过程有关。
一般来说,岩石的天然强度较高,能够承受较大的压力。
例如,花岗岩由于具有坚硬的矿物颗粒和致密的结构,其天然强度较高,适合用于建筑材料和路基工程等领域。
而泥岩由于含有较多的粘土矿物和孔隙,其天然强度较低,易于发生破坏。
岩石的天然强度对地质工程具有重要意义。
在隧道、地下开采和水利工程等施工中,需要对岩石进行钻探和爆破。
岩石的天然强度可以帮助工程师选择合适的施工方法和工具,确保施工的顺利进行。
此外,岩石的天然强度也对地下水资源的开发和保护起着重要作用。
如果岩石的天然强度较低,地下水可能会通过裂缝和孔隙进入地下水层,导致水质污染和地质灾害。
二、岩石的饱和强度岩石的饱和强度是指岩石在含水状态下的抗压能力。
它与岩石的孔隙结构、含水量和水分分布有关。
在自然界中,岩石往往存在着一定的孔隙和裂缝,这些孔隙可以储存水分。
当岩石中的孔隙充满水分时,岩石的饱和强度会下降,易于发生破坏。
例如,在地下水位上升或降低的地区,岩石的饱和强度可能会发生明显的变化。
岩石的饱和强度对地质工程和环境保护同样具有重要意义。
在岩土工程中,岩石的饱和强度是设计和施工的重要参数。
工程师需要根据岩石的饱和强度来选择合适的施工方法和材料,以确保工程的稳定和安全。
此外,岩石的饱和强度对地下水资源的保护也非常重要。
如果岩石的饱和强度较低,地下水可能会通过岩石中的孔隙和裂缝流失,导致地下水资源的浪费和水土流失。
岩石的天然强度和饱和强度是岩石力学性质的重要指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当前位置:课程学习/第四章岩块的变形与强度性质/第三节岩块的强度性质
第三节岩块的强度性质
岩块的强度是指岩块抵抗外力破坏的能力。
根据受力状态不同,岩块的强度可分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等。
一、单轴抗压强度σ
c
1、定义
在单向压缩条件下,岩块能承受的最大压应力,简称抗压强度(MPa)。
2、研究意义
(1)衡量岩块基本力学性质的重要指标。
(2)岩体工程分类、建立岩体破坏判据的重要指标。
(3)用来估算其他强度参数。
3、测定方法
抗压强度试验
点荷载试验
4、常见岩石的抗压强度
常见岩石的抗压强度
二、单轴抗拉强度σt
1、定义
单向拉伸条件下,岩块能承受的最大拉应力,简称抗拉强度。
2、研究意义
(1)衡量岩体力学性质的重要指标
(2)用来建立岩石强度判据,确定强度包络线
(3)选择建筑石材不可缺少的参数
3、测定方法
直接拉伸法
间接法(劈裂法、点荷载法)
4、常见岩石的抗拉强度
常见岩石的抗拉强度
5、抗拉强度与抗压强度的比较
岩石中包含有大量的微裂隙和孔隙,岩块抗拉强度受其影响很大,直接削弱了岩块的抗拉强度。
相对而言,空隙对岩块抗压强度的影响就小得多,因此,岩块的抗拉强度一般远小于其抗压强度。
通常把抗压强度与抗拉强度的比值称为脆性度,用以表征岩石的脆性程度。
岩块的几种强度与抗压强度比值
三、剪切强度
1、定义
在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力,称为剪切强度。
2、类型
(1)抗剪断强度:指试件在一定的法向应力作用下,沿预定剪切面剪断时的最大剪应力。
(2)抗切强度:指试件上的法向应力为零时,沿预定剪切面剪断时的最大剪应力。
(3)摩擦强度:指试件在一定的法向应力作用下,沿已有破裂面(层面、节理等)再次剪切破坏时的最大剪应力。
3、研究意义
反映岩块的力学性质的重要指标。
用来估算岩体力学参数及建立强度判据。
4、抗剪断强度的测试方法
直剪试验
变角板剪切试验
三轴试验
5、常见岩石的剪切强度
常见岩石的剪切强度
四、三轴压缩强度
1、定义
试件在三向压应力作用下能抵抗的最大的轴向应力。
2、测定方法
三轴试验
3、利用三轴试验确定抗剪强度
根据一组试件(4个以上)试验得到的三轴压缩强度σ1m和相应的σ3以及单轴抗拉强度σ。
在σ-τ坐标系
t
中可绘制出岩块的强度包络线。
除顶点外,包络线上所有点的切线与σ轴的夹角及其在τ轴上的截距分别代表相应破坏面的内摩擦角(φ)和内聚力(C)。
4、几种强度之间的换算
根据应力摩尔圆可以进行几种强度之间的换算,已知其中某些强度,可以计算其他的强度值。
<10MPa的情况下,往往这样。
),如下图,可以得到下面的公式:假设强度包络线为直线(在σ
3
由此可以根据岩石的内摩擦角、内聚力和σ
计算岩石的三轴强度。
3
同样,也可以得到下式:
由此可以计算岩石的抗压强度、抗拉强度、内聚力、内摩擦角。