人教版六年级下册《圆柱的体积》教学设计
《圆柱的体积》教学设计6篇
《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
〔4〕说一说长方体体积的计算公式。
2、创设问题情景。
〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。
〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。
板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
《圆柱的体积》教学设计
《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。
拓展教材内容,初步了解直柱体的相关知识。
2、过程与方法:利用教材空间,为学生搭建思维平台。
让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。
3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。
教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。
教学难点:正确理解圆柱体积计算公式的推导过程。
教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。
1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。
生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。
】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。
生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。
生3:圆柱体在水中必须完全浸没,而且水还不能溢出。
【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。
】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。
师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。
《圆柱的体积》教学设计
《圆柱的体积》教学设计
环节三: 循序渐进 巩固提升
1.比一比:三款蛋糕哪个更大?
2.算一算:
3.说一说: 知道哪些条件就可以求出圆柱的体积?
1.提问:第三款蛋糕的
体积是多少?怎么算?用到了哪个公式? 2.请同学们先说一说
解题方法,再动笔计算。
巡视学生书写情况,堂批。
3.总结方法。
1.回归主题情境,解决圆柱体积相关的实际问题。
2. 对比题组,加深学生对圆柱体积公式的灵活运用。
3.总结方法。
环节四: 总结反思 课后延伸
1. 回顾反思,总结方法和所学知识。
2.课后延伸:说一说这些立体图形有怎样的共同点?课后查找直柱体相关资料,继续探究这些图形的秘密吧! 1.这节课我们学习了什么?有哪些收获?
2. 提问:这些立体图形有怎样的共同点?规律背后藏着什么数学秘密?请同学们通
过查找资料,继续探究图形的秘密!
1.整理和反思,进一步巩固所学知识,归纳数学学习的方法。
2.激发学生思考与探索的欲望。
【板书设计】
圆柱的体积
=底面面积×高 圆柱的体积 =底面面积×高
V = πr 2
h
V = S h 转化
转化
× 宽 × 高
V = πr×r×h V = πr 2
h。
圆柱的体积教学设计(精选15篇)
圆柱的体积教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
下面是小编整理的圆柱的体积教学设计(精选15篇),欢迎大家分享。
圆柱的体积教学设计篇1一、情景引入1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。
)二、自主探究1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。
(课件出示)(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。
即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。
)2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
《圆柱的体积》数学教学设计(优秀4篇)
《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
人教版六年级下册数学《圆柱的体积》教案6篇
人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具推导圆柱体积公式的圆柱教具一套。
教学过程【复习导入】1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。
【新课讲授】1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。
②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方体的高就是圆柱的高,没有变化。
故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)
第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。
长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。
圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。
(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。
让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。
这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。
】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。
1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。
(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。
2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。
(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。
《圆柱的体积》教学设计12893
新授课《圆柱的体积》教学设计【教学内容】新审定人教版小学数学六年级下册第25页例5、例6及相应练习的内容。
【教材分析】圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。
教材将本课学习安排在圆柱的认识和圆柱的表面积之后。
让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。
基于以上认识,我在设计中突出了以下几点:1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。
在理解知识的基础上,发展学生思维。
2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。
尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。
3.加强空间观念的培养,提高学生形象思维及解决问题的能力。
突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。
【教学目标】1.知识目标:通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。
2.技能目标:在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。
3.情感目标:探索和解决问题,体验转化及极限的思想方法。
学会由未知向已知转化的学习方法。
【教学重、难点】教学重点:掌握和运用圆柱体积计算公式。
教学难点:掌握圆柱体积公式的推导过程。
突破重难点设想:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。
因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。
【教学准备】多媒体课件【教学过程】(3)感知:将圆柱体模具(已切好)当场演示。
小学六年级数学《圆柱的体积》教案(优秀9篇)
小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。
六年级下册数学教案-《圆柱的体积》人教版
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
《圆柱的体积》教案5篇
《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《圆柱的体积》教案八篇
《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。
现把它撷取下来与各位同行共赏。
……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。
(举起的手放下了一大半。
很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。
但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。
老师便顺水推舟,让他们来讲。
)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。
而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。
真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。
推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。
那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。
)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。
)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。
《圆柱的体积》教学设计
答:502.4 大于 498,所以这个杯子能装下这袋奶。
(让同学们独立完成,小组内交流,集体订正。出错的同学向大家说出错的原因。)
(三)做一做
1. 一根圆柱形木料,底面积是 75 平方厘米,长 90 厘米,它的体积是多少?
2. 李家庄挖了一口圆柱形水井,地面以下的井深 10m,底面直径为 1m。挖出的土有多少立方米?
1.理解并掌握圆柱的体积计算公式的推导过程,能熟练运用公式计算圆柱的体积。 2.知道知识间是可以相互转化的,提高空间观念和逻辑推理能力。 3.培养学生自学能力,动手能力,观察分析和归纳知识的能力。
教学重点
能熟练运用圆柱的体积计算公式计算圆柱的体积。
教学难点
理解并掌握圆柱的体积计算公式的推导过程。 教学策略
(让同学们独立完成,集体订正。)
(四)课堂练习
1. 填表
底面积 S(平方米) 18 5.5
高 h(米) 8 7
圆柱的体积 V(立方米)
学习好资料
பைடு நூலகம்
欢迎下载
2. 一个圆柱形水池,半径是 15 米,深 1 米.这个水池占地面积是多少?水池的容积是多少?
3.有一个高为 12.56 分米的圆柱体的机件,它的侧面展开正好是一个正方形,这个机件的体积 是多少?
六年级下数学教案圆柱的体积_人教新课标
六年级下数学教案圆柱的体积_人教新课标【教学内容】《义教课标实验教科书数学》(人教版)六年级下册【教学目标】1、探究并把握圆柱体积的运算方法,并能运用运算公式解决简单的实际问题。
2、经历观看、实验、猜想、证明等数学活动过程,进展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积运算公式的推导、运用的过程,体验数学问题的探干脆和挑战性,感受数学摸索过程的条理性和数学结论的确定性,获得成功的欢乐。
【教学重点】:把握和运用圆柱体积运算公式。
【教学难点】:圆柱体积公式的推导过程。
【教学预备】:多媒体课件【自学内容】:见预习作业听课随想【教学预设】一、自学反馈如图,一根圆柱形木料,底面半径是5分米,长10分米。
它的体积是多少?12、汇报交流:34圆柱的底面是圆。
5、什么缘故圆柱的体积能够用底面积乘高来运算?二、关键点拨1、回忆旧知,关心迁移请大伙儿想一想,在学习圆的面积时,我们是如何样把圆转化成已学的图形,来推导圆面积的运算公式的?配合学生的回答,课件动态演示:把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积的运算公式。
2、小组合作,实践迁移(1)启发:我们能不能把圆柱转化成我们已学过的立体图形,来运算它的体积?学生相互讨论,摸索应如何转化,而后组织全班汇报。
(2)操作:学生操作学具,进行拼组。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……)让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
(3)讨论:圆柱与所拼成的近似长方体之间有什么联系?学法指导:长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积确实是圆柱的体积,长方体的体积等于底面积乘高,因此圆柱的体积也等于底面积乘高。
(4)概括:试着让学生依照圆柱与近似长方体的关系,推导公式,用字母表示运算公式。
出示推导图示:长方体的体积=底面积×高=高用字母表示公式:V=sh(6)深化:要用那个公式运算圆柱的体积,必须明白什么条件?三、巩固练习2、判定正误,对的画“√”,错误的画“×”。
六年级数学下《圆柱的体积》教学说课稿
六年级数学下《圆柱的体积》教学说课稿六班级数学下册《圆柱的体积》教学说课稿一、把握教材,目标定位《圆柱的体积》是在同学初步认识了圆柱体的基础上,进一步讨论圆柱体的特征,让同学比较深入地讨论立体几何图形,是同学进展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培育同学形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
依据本节课的性质特点和六班级同学以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:1、知识与技能:通过推导圆柱体积公式的过程,向同学渗透转化思想,建立空间观念,培育同学判断、推理的技能和迁移技能。
2、过程与方法:结合详细情境和实践活动,理解圆柱体积的含义。
探究并掌控圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简约的实际问题。
3、情感、立场、价值观:感悟数学知识的内在联系,加强同学应用数学的意识,激发同学的学习爱好。
教学的重点和难点:由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较繁复,需要用转化的方法来推导,推导过程要有肯定的规律推理技能,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法(一)学情分析六班级的同学已经有了较丰富的生活阅历,这些感性阅历是他们进一步学习的基础,本节课的学习过程正是让同学的感性阅历上升到理性阅历的过程,符合同学的年龄特征和认知规律,在这一过程中,能使同学体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使同学从中获得数学学习的积极情感体验,感受数学的能量。
同时我紧密结合自己的课题“培育同学自主合作学习技能与同学数学素养的策略讨论”、“在数学课上如何激发同学的学习爱好”。
通过教学实践,使同学学会自主学习和小组合作,培育同学的创新精神和小组合作及应用数学意识。
六年级数学下册教案《3.1.3 圆柱的体积》1-人教版
六年级数学下册教案《3.1.3 圆柱的体积》1-人教版
一、教学目标
1.知识与技能:
–能够理解圆柱的概念,掌握计算圆柱体积的方法。
–能够运用所学知识解决相关问题。
2.过程与方法:
–引导学生探究圆柱的体积计算方法。
–培养学生观察问题、分析问题、解决问题的能力。
3.情感态度与价值观:
–培养学生合作精神,互帮互助,积极参与课堂讨论。
二、教学重难点
1.重点:理解圆柱的体积概念,掌握计算圆柱体积的公式。
2.难点:灵活运用圆柱的体积公式解决问题。
三、教学过程
1. 导入新知识
•通过视频或图片展示圆柱的实物形态,引出本节课的主题:圆柱的体积计算。
2. 讲解圆柱的体积计算公式
1.引入“底面积乘以高”公式来推导圆柱的体积公式。
2.带领学生理解“底面积乘以高”的含义,和圆柱的体积之间的关系。
3. 练习与讨论
1.让学生自主完成练习题,掌握圆柱体积的计算方法。
2.分组讨论解决实际问题,分享解题思路。
4. 拓展应用
1.提出一些思考题目,让学生运用所学知识解决更复杂的问题。
2.带领学生讨论圆柱体积在日常生活中的应用。
四、课堂小结
•回顾本课所学内容,强调圆柱体积计算的方法和要点。
五、课后作业
1.完成课本上的习题。
2.思考圆柱体积在其他几何形体中的应用。
以上是本节课的教学内容,希望同学们在学习过程中能够理解圆柱体积的计算方法,并能够应用到实际生活中解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容:
人教版小学数学六年级下册《圆柱的体积》。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。
发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教具学具准备:教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。
我们还可以往下继续分割,无限分割就变成了一个长方形。
长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。
所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
∨∨∨
长方体体积=底面积×高
用字母公式怎样表示呢?v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米②底面半径2厘米,高5厘米
③直径10厘米,高4厘米④周长18.84厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。
()
②圆柱的底面积扩大3倍,体积也扩大3倍。
()
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。
()
④圆柱体的底面直径和高可以相等。
()
⑤两个圆柱体的底面积相等,体积也一定相等。
()
⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。
()
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱的体积
圆柱体积=底面积×高
‖‖‖
长方体体积=底面积×高
V=sh。