初中数学-四边形单元测试题有答案

合集下载

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)一、选择题1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.2.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.3.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD1③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为1故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.6.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=43,⑤S△DOC=S四边形EOFB中,正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.9.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】 【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,可添加的条件不正确的是( )A .AB ∥CDB .∠B =∠DC .AD =BC D .AB =CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.15.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个 【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。

初三数学四边形试题答案及解析

初三数学四边形试题答案及解析

初三数学四边形试题答案及解析1.在ABCD中,,AE平分∠BAC,交BC于E. 沿AE将△ABE折叠,点B的对应点为F,连结EF并延长交AD于G,EG将ABCD分为面积相等的两部分. 则 .【答案】4.【解析】根据题意,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,∴点F在对角线AC上,且.∵EG将ABCD分为面积相等的两部分,∴点F为对角线AC的中点.∴(等底同高).∵,∴.【考点】1.折叠问题;2.平行四边形的性质;3. 折叠对称的性质.2.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+【答案】D.【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6-,CF=3+5,即CE+CF=11-,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+,故D.考点: 平行四边形的性质.3.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积.【答案】(1)证明见解析;(2).【解析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可.(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.试题解析:(1)∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形.∵AD⊥BC,∴∠ADC=90°.∴四边形ADCE是矩形.(2)∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°.∴∠ACE=30°,AE=2,CE=.∵四边形ADCE为矩形,∴OC=OA=2.∵CF=CO,∴CF=2.如图,过O作OH⊥CE于H,∴OE=OC=1.∴.【考点】1.矩形的判定和性质;2.等边三角形的性质.4.如图,已知矩形OABC的A点在x轴上,C点在y轴上,,.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.【答案】(1).作图见解析;(2)(8,6).【解析】(1)利用EO=AO,以O为圆心AO为半径画弧得出E即可;(2)首先过点E作EF⊥OA,垂足为F,得出B点坐标,进而求出FO的长,即可得出E点坐标.试题解析:(1)如图所示:E点即为所求;(2)过点E作EF⊥OA,垂足为F.∵矩形OABC中OC=6,OA=10,∴B点坐标为(10,6).∴EF=6.又∵OE=OA,∴OF==8.∴点E的坐标为(8,6).【考点】1.作图—复杂作图;2.坐标与图形性质;3.勾股定理;4.矩形的性质.5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为 .【答案】.【解析】∵四边形ABCD是平行四边形,∴AO=OC.∵点E,F分别是边AD,AB的中点,∴EF是△ABD的中位线.∴.∴.【考点】1.平行四边形的性质;2.三角形中位线定理.6.已知:如图,正方形ABCD,E,F分别为DC,BC中点.求证:AE=AF.【答案】证明书见解析.【解析】根据正方形的性质,证明△ADE≌△ABF,即可证得AE=AF..∵四边形ABCD为正方形,∴ AB=AD,∠B=∠D=90°,DC=CB.∵ E、F为DC、BC中点,∴ DE=DC,BF=BC.∴ DE=BF.∵在△ADE和△ABF中,,∴△ADE≌△ABF(SAS).∴ AE=AF.【考点】1.正方形的性质;2.全等三角形的判定和性质.7.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E.【答案】见解析【解析】证明:∵四边形ABCD是等腰梯形,∴∠B=∠BCD,∵AD∥BC,∴∠BCD=∠CDE,∵CE=CD,∴∠CDE=∠E,∴∠B=∠E.8.如图,矩形纸片ABDC中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕A E上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__________.【答案】.【解析】先根据题意画出图形,由翻折变换的性质得出F、B′重合,分别延长AE,CD相交于点G,由平行线的性质可得出GB′=AB′=AB=4,再根据相似三角形的判定定理得出△ACG∽△PB′G,求出其相似比,进而可求出答案.试题解析:如图所示,设PF⊥CD,由翻折变换的性质可得BP=B′P,又∵P到边CD的距离与到点B的距离相等,∴B'P⊥CD,∵AB平行于CD,∴∠BAG=∠AGC,∵∠BAG=∠B′AG,AGC=∠B′AG,∴GB′=AB′=AB=4,∵PB′⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ADB′中,AB′=4,AC=3,∴CB′=,在△ACG和△PB′G中.,解得:PB'=考点: 1.翻折变换(折叠问题);2.勾股定理;3.矩形的性质.9.如图所示,在△中,,,将绕点沿逆时针方向旋转得到.(1)线段的长是,的度数是;(2)连接,求证:四边形是平行四边形.【答案】(1)6,135°;(2)证明见解析.【解析】(1)旋转后的图形与原图形全等知OA1与OA相等,∠AOB1=∠AOA1+∠A1OB1=90°+45°=135°.(2)根据一组对边平等且相等的四边形是平等四边形可证明四边形是平行四边形. 试题解析:(1)6,135°;(2)∵∠AOA1=∠OA1B1=90°∴OA∥A1B1又OA=AB=A1B1,∴四边形是平行四边形.考点: 1.旋转的性质;2。

(易错题精选)初中数学四边形经典测试题附答案(1)

(易错题精选)初中数学四边形经典测试题附答案(1)

(易错题精选)初中数学四边形经典测试题附答案(1)一、选择题1.下列说法中正确的是( )A .有一个角是直角的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直平分的四边形是正方形D .两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】 根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.4.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 5.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.6.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A.a B.45a C2D3【答案】C【解析】【分析】根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=DM CNDE CE,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =7.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为31故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).∴△BOC≌△EOD.综上所述,B、C、D均正确.故选A.9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD∵BD=2AD∴BO=DO=AD=BC,且点E是OC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF∥DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD∥AB∴BG=EF=GE,EF∥CD∥AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选D.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH ⊥CB于点H,则OH的长为( )A.5cm B.52 cmC.125cm D.245cm【答案】C 【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC =+=+=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .15【答案】B【解析】【分析】根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO 12=BD =4, ∴AO =3,∴AC =2AO =6,∴四边形ABCD 的面积12=⨯6×8=24, 故选:B .【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z++的值为( ) A .1B .23C .12D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.14.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.15.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.17.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形OBCD 的边OB 固定在x 轴上,开始时30DOB ∠=︒,现把菱形向左推,使点D 落在y 轴正半轴上的点D ¢处,则下列说法中错误的是( )A .点C '的坐标为()4,4B .60CBC '∠=︒ C .点D 移动的路径长度为4个单位长度D .CD 垂直平分BC '【答案】C【解析】【分析】 先证明四边形OBC′D′是正方形,且边长=4,即可判断A ;由平行线的性质得∠OBC 的度数,进而得到60CBC '∠=︒,即可判断B ;根据弧长公式,求出点D 移动的路径长度,即可判断C ;证明CD ⊥BC ′,BC′=BC=2BE ,即可判断D .【详解】∵四边形OBCD 是菱形,∴OB=BC=CD=OD ,∴OB=BC ′=C ′D ′=OD ′,∵∠BOD′=90°,∴四边形OBC′D′是正方形,且边长=4,∴点C '的坐标为()4,4,故A 不符合题意.∵30DOB ∠=︒,OD ∥BC ,∴∠OBC=180°-30°=150°,∵∠OBC ′=90°,∴60CBC '∠=︒,故B 不符合题意.∵点D 移动的路径是以OD 长为半径,圆心角为∠DOD ′=90°-30°=60°的弧长,∴点D 移动的路径长度=604180π⨯=43π,故C 符合题意. 设CD 与BC′交于点E ,∵在菱形OBCD 中,∠C=30DOB ∠=︒,∵60CBC '∠=︒,∴∠BEC=180°-60°-30°=90°,即CD ⊥BC ′,∴BC′=BC=2BE ,∴CD 垂直平分BC ',故D 不符合题意.故先C .【点睛】本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.19.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

第一章 特殊平行四边形 单元测试(含答案解析)

第一章 特殊平行四边形 单元测试(含答案解析)

初中数学北师大版九年级上学期第一章单元测试一、单选题1.已知四边形是平行四边形,,相交于点O,下列结论错误的是()A. ,B. 当时,四边形是菱形C. 当时,四边形是矩形D. 当且时,四边形是正方形2.如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 43.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为()A. B. C. D.4.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A. 3B. 4C. 5D. 65.如图,正方形的面积为1,是的中点,则图中阴影部分的面积是()A. B. C. D.6.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为( )A. 12B. 12C. 12D. 10二、填空题7.如图,在菱形中,,点E在上,若,则________.8.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.9.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C 的对应点是R点,则∠CQP=________.10.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是________度.三、作图题11.在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.四、综合题12.如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.13.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.14.如图,的对角线,交于点O,过点D作于E,延长到点F,使,连接,.(1)求证:四边形是矩形;(2)若,,,试求的长.15.如图,点是正方形外一点,点是线段上一点,且是等腰直角三角形,其中,连接、.(1)求证:;(2)判断与的位置关系,并说明理由.16.如图,菱形的三个顶点、、分别在正方形的边、、上,连接.(1)求证:;(2)当时,求证:菱形为正方形.答案解析部分一、单选题1. B解析:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故答案为:B.【分析】(1)根据平行四边形的对角线互相平分可得OA=OC,OB=OD;(2)根据菱形的判定“一组邻边相等的平行四边形是菱形”可知当AB=CD时,四边形ABCD是菱形错误;(3)根据一个角是直角的平行四边形是矩形可知当∠ABC=90°时,四边形是矩形;(4)根据对角线相等且互相垂直的平行四边形是正方形可知,当且时,四边形是正方形.2. B解析:∵四边形ABCD是菱形,AC=8,BD=6,∴CO=AC=4,OD=BD=3,AC⊥BD,∴DC==5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE,∴∠EOC=∠ECO,∴∠DOE=∠ODC,∴DE=OE,∴OE=CD=.故答案为:B.【分析】根据菱形的性质,可得CO=AC=4,OD=BD=3,AC⊥BD,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC,可得DE=OE,从而可得DE=OE=CE,继而得出OE=CD,据此即可求出结论.3. B解析:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD== S;故答案为:B.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG 是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.4. B解析:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∴∠AOB=90°,又∵AB+BC+CD+AD=32.∴AB=8,在Rt△AOB中,OE是斜边上的中线,∴OE= AB=4.故答案为:B.【分析】利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.5. B解析:如图,过点E作HF⊥AB,∵AM//CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE,∴AM:DC=EH:EF=1:2,FH=AD=1,∴EH= ,EF= .∴阴影部分的面积=S正方形ABCD-S△AME-S△CDE-S△MBC=1- - - = .故答案为:B.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.6. B解析:如图,在AD上取点k,使AK=2,连接EK,在△AEK和△ADE中,∠EAK=∠DAE,∴△AEK∽△ADE,∴,即EK= ED,∴EF+ ED=EF+EK,当F、E、K三点共线时,EF+ ED=FK=6 ,∴(2EF+ED)最小=2(EF+ ED)=12 ,故答案为:B。

初中八年级数学下册第十八章平行四边形单元复习试题十(含答案) (55)

初中八年级数学下册第十八章平行四边形单元复习试题十(含答案) (55)

初中八年级数学下册第十八章平行四边形单元复习试题十(含答案)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE 求证:(1)△ABF△△DCE;(2)四边形ABCD是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF△△DCE.(2)平行四边形的性质得到两边平行,从而△B+△C=180°.利用全等得△B=△C,从而得到一个直角,问题得证.【详解】(1)△BE=CF,BF=BE+EF,CE=CF+EF,△BF=CE.△四边形ABCD是平行四边形,△AB=DC.在△ABF和△DCE中,△AB=DC,BF=CE,AF=DE,△△ABF△△DCE.(2)△△ABF△△DCE,△△B=△C.△四边形ABCD是平行四边形,△AB△CD.△△B+△C=180°.△△B=△C=90°.△平行四边形ABCD是矩形.82.如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD 沿点A对折,点D正好落在BC上的点F处,AE是折痕.(1)图中有全等的三角形吗?如果有,请直接写出来;(2)求线段EF的长;∆≅∆(2)5cm【答案】(1)ADE AFE【解析】【分析】(1)由折叠性质可得:△ADE≌△AFE;(2)由(1)可知AF=AD=10,EF=DE,利用勾股定理即可得到FC的长,根据勾股定理可求EF的长.【详解】解:(1)由折叠性质可得:△ADE≌△AFE;(2)△△ADE△△AFE,∴AD=AF=10cm,DE=EF,在Rt△ABF中,222AB,1086∵BC=AD=10cm,BF=6cm,∴FC=4cm,∵在Rt△EFC中,EF2=EC2+FC2.∴EF2=(8-EF)2+16,∴EF=5.【点睛】本题考查了翻折变换,全等三角形的判定与性质,矩形的性质,勾股定理,熟练运用勾股定理求线段的长度是本题的关键.83.如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.【答案】见解析【解析】【分析】连结PB,由正方形的性质得到BC=DC,△BCP=△DCP,接下来证明△CBP△△CDP,于是得到DP=BP,然后证明四边形BNPM是矩形,由矩形的对角线相等可得到BP=MN,从而等量代换可证得问题的答案.【详解】证明:如图,连结PB.△四边形ABCD是正方形,△BC=DC,△BCP=△DCP=45°.△在△CBP和△CDP中,,△△CBP△△CDP(SAS).△DP=BP.△PM△AB,PN△BC,△MBN=90°△四边形BNPM是矩形.△BP=MN.△DP=MN.【点睛】本题主要考查的是正方形的性质、全等三角形的性质和判定、矩形的性质和判定,证得四边形BFPE为矩形是解题的关键.84.如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE AC 与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC CE =;(2)连结BF ,若DAF FBE ∠=∠,且2AD CF =,求证:四边形ABCD 是正方形.【答案】(1)证明见解析,(2)证明见解析.【解析】【分析】(1)根据平行四边形的性质得:AD ∥BC ,AD=BC ,又由平行四边形的判定得:四边形ACED 是平行四边形,又由平行四边形的对边相等可得结论;(2)根据(1):四边形ACED 是平行四边形,对角线互相平分可得:11,22DF CF CD AB ===结合2AD CF =,从而证明AD=AB ,即邻边相等,证明四边形ABCD 为菱形,再证明,BF AF EF == 从而∠ABC=90°,根据有一个角是直角的菱形是正方形可得结论.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∵AC ∥DE ,∴四边形ACED 是平行四边形,∴AD=CE ,∴BC=CE ;(2)由(1)知:四边形ACED 是平行四边形,∴DF=CF=12CD =12AB ,EF=AF , ∵AD=2CF ,∴AB=AD ,四边形ABCD 为平行四边形,∴ 四边形ABCD 为菱形,∵AD ∥EC ,∴,DAF FEC ∠=∠DAF FBE ∠=∠,FBE FEB ∴∠=∠,FB FE FA ∴==,FAB FBA ∴∠=∠18090,2FBA FBE ︒∴∠+∠==︒ 90,ABE ∴∠=︒ ∴四边形ABCD 是正方形.【点睛】此题考查了平行四边形的性质、正方形的判定、等腰三角形的判定与性质、平行线的性质,属于基础题,正确利用平行四边形的性质是解题关键.85.如图,已知四边形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.a.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是矩形.b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.【答案】AC△BD AC=BD AC⊥BD且AC=BD【解析】【分析】首先连接AC,BD,由三角形中位线的性质,可判定EH∥FG,GH∥EF,继而可证得四边形EFGH是平行四边形;a、由EFGH是平行四边形可得当原四边形ABCD的对角线AC、BD满足AC⊥BD时,四边形EFGH是矩形;b、由EFGH是平行四边形可得原四边形ABCD的对角线AC、BD满足AC =BD时,四边形EFGH是菱形;c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC =BD时,四边形EFGH是正方形.【详解】连接AC,BD,∵四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,∴EH∥BD,FG∥BD,∴EH∥FG,同理:GH∥EF,∴四边形EFGH是平行四边形.a、当AC⊥BD时,四边形EFGH是矩形.∵由①得:四边形MONH是平行四边形,∴当AC⊥BD时,四边形MONH是矩形,∴∠EHG=90°,∴四边形EFGH是矩形.b、当AC=BD时,四边形EFGH是菱形.∵HG=12AC,EH=12BD,∴EH=GH,∴四边形EFGH是菱形;c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC =BD时,四边形EFGH是正方形.故答案为a、AC⊥BD,b、AC=BD,c、AC⊥BD且AC=B D.【点睛】本题考查了中点四边形的性质,解题关键是注意掌握辅助线的作法,注意掌握数形结合思想的应用.86.如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。

初中八年级数学下册第十八章平行四边形单元复习试题二(含答案) (45)

初中八年级数学下册第十八章平行四边形单元复习试题二(含答案) (45)

初中八年级数学下册第十八章平行四边形单元复习试题二(含答案)如图,平行四边形ABCD中,点O为对角线AC、BD的交点,点E为CD 边的中点,连接OE,如果AB=4,OE=3,则平行四边形ABCD的周长为_____.【答案】20【解析】分析:平行四边形中对角线互相平分,则点O是BD的中点,而E是CD 边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=6,进一步即可求得▱ABCD的周长.详解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,又∵点E是CD边中点∴AD=2OE,即AD=6,∴▱ABCD的周长为(6+4)×2=20.故答案为:20.点睛:此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛;三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题82.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.【答案】(1)y=x2+2x﹣3;(2)当m=-12时,PQ最长,最大值为94;(3)R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3).【解析】【分析】(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(3)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案【详解】解:(1)将A (1,0),B (﹣3,0)代入y =ax 2+bx ﹣3得:309330a b a b +-=⎧⎨--=⎩ 解得:12a b =⎧⎨=⎩∴抛物线的解析式为:y =x 2+2x ﹣3,当x =﹣2时,y =(﹣2)2﹣4﹣3=﹣3,∴D (﹣2,﹣3),设直线AD 的解析式为y =kx +b ,将A (1,0),D (﹣2,﹣3)代入得: 023k b k b +=⎧⎨-+=-⎩ 解得:11k b =⎧⎨=-⎩∴直线AD 的解析式为y =x ﹣1;因此直线AD 的解析式为y =x ﹣1,抛物线的解析式为:y =x 2+2x ﹣3.(2)∵点P 在直线AD 上,Q 抛物线上,P (m ,n ),∴n =m ﹣1 Q (m ,m 2+2m ﹣3)∴PQ 的长l =(m ﹣1)﹣(m 2+2m ﹣3)=﹣m 2﹣m +2 (﹣2≤m ≤1) ∴当m =-11-=--122⨯ 时,PQ 的长l 最大=﹣(1-2 )2﹣(1-2)+2=94. 答:线段PQ 的长度l 与m 的关系式为:l =﹣m 2﹣m +2 (﹣2≤m ≤1) 当m =1-2时,PQ 最长,最大值为94. (3)①若PQ 为平行四边形的一边,则R 一定在直线x =﹣2上,如图: ∵PQ 的长为0<PQ ≤94的整数, ∴PQ =1或PQ =2,当PQ =1时,则DR =1,此时,在点D 上方有R 1(﹣2,﹣2),在点D 下方有R 2(﹣2,﹣4);当PQ =2时,则DR =2,此时,在点D 上方有R 3(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣3)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3).答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3).【点睛】此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式83.如图,在Rt△ABC中,∠B=90°,BC=∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A 出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是,AB的长是.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.时,【答案】(1)AB=5,AC=10;(2)EF与AD平行且相等;(3)当t=103四边形AEFD为菱形【解析】【分析】(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.(3)求得四边形AEFD为平行四边形,进而利用菱形的判定与性质得出AE=AD 时,求出t的值,进而得出答案.【详解】(1)解:∵在Rt△ABC中,∠C=30°,∴AC=2AB,根据勾股定理得:AC2﹣AB2=BC2,∴3AB2=75,∴AB=5,AC=10;(2)EF与AD平行且相等.证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF.∴四边形AEFD为平行四边形.∴EF与AD平行且相等.(3)解:能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∵AB=5,AC=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,.即t=10﹣2t,解得:t=103时,四边形AEFD为菱形.即当t=103故答案为:(1)AB=5,AC=10;(2)EF与AD平行且相等;(3)当t=103时,四边形AEFD为菱形.【点睛】本题考查平行四边形、菱形的判定与性质,以及30°角的直角三角形的性质,熟练掌握平行四边形的判定与性质是解题的关键.84.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.【答案】(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【解析】【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC12==(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===,∴CE 365====7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t为11s或12s或13.2s时,△BCQ为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.85.按要求作图,不要求写做法,但要保留作图痕迹.(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请只用..直尺(不带刻度)在边AD上找点F,使DF=BE...(不带刻度)(2)如图2,BE是菱形ABCD的边AD上的高,请只用直尺....作出菱形ABCD的边AB上的高DF.【答案】(1)图见解析;(2)图见解析.【解析】【分析】(1)根据平行四边形是中心对称图形,找到对称中心——即对角线的交点,;连接EO并延长交边AD于点F即可得DF BE(2)根据菱形是关于对角线对称的轴对称图形,根据轴对称的性质作出线段BF关于AC对称的DF即可.【详解】解:(1)如图所示:①连接AC、BD交于O,②连接EO并延长交AD于F点,(2)如图所示:①连接AC、BD交于点G;②连接DG并延长交AB于点F,由轴对称可知,DF⊥AB,【点睛】本题考查了作图 复杂作图、平行四边形的性质、菱形的判定与性质,解决本题的关键是熟练掌握平行四边形是中心对称图形,对称中心是对角线的交点,菱形的对角线所在直线是菱形的对称轴.86.已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD.(1)请补全以上证明过程.(2)请你参考上述信息,当点P分别在图1、图2中的位置时,S△PBC、S△PAC、S PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.【答案】(1)证明见解析;(2)猜想结果:图2结论S△PBC=S△PAC+S△PCD;图3结论S△PBC=S△PAC﹣S△PCD,证明见解析.【解析】【分析】分析图2,先过点P作EF垂直AD,分别交AD、BC于E、F两点,利用三角形的面积公式可知,经过化简,等量代换,可以得到S△PBC=S△PAD+1S矩形ABCD,2S矩形ABCD,故有S△PBC=S△PAC+S△PCD.而S△PAC+S△PCD=S△PAD+12【详解】S矩形ABCD,(1)证明:∵S△PAC+S△PCD+S△PAD=12∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD;(2)猜想结果:图2结论S△PBC=S△PAC+S△PCD;图3结论S△PBC=S△PAC﹣S△PCD.证明:如图,过点P作EF垂直AD,分别交AD、BC于E、F两点.∵S△PBC=12BC•PF=12BC•PE+12BC•EF=1 2AD•PE+12BC•EF=S△PAD+12S矩形ABCDS△PAC+S△PCD=S△PAD+S△ADC=S△PAD+12S矩形ABCD∴S△PBC=S△PAC+S△PCD.【点睛】本题利用了三角形的面积公式,以及图形面积的整合等知识.87.如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?(如果你知道勾股定理的话,请问线段AC、GE、AE、CG有什么数量关系?)【答案】(1)是,详见解析;(2)是,详见解析;(3)90°;(4)是,详见解析【解析】【分析】(1)由四边形ABCD 与DEFG 是正方形,可得AD CD =,DG DE =,90ADC GDE ∠∠︒==,进而得出ADG CDE ∠∠=,然后由边角边即可判定ADG CDE ≌;(2)根据全等三角形的性质则可证得AG CE =;(3)根据全等三角形的性质和角的关系即可得出夹角是90︒;(4)根据全等三角形的性质和三角形的面积解答即可.【详解】解:(1)结论:成立证明:∵ABCD 和DEFG 是正方形∴AD CD =,DG DE =,且90ADC GDE ∠∠︒==∴ADG CDE ∠∠=在ADG 与CDE △中AD CD ADG CDE DG DE =⎧⎪∠=∠⎨⎪=⎩∴()ADG CDE SAS ≌;(2)结论:AG CE =证明:∵ADG CDE ≌∴AG CE =;(3)CE 与DG 交点为O ,如图:∵ADG CDE ≌∴DEC AGD ∠∠=∵90DEC DOE ∠+∠︒=∴90AGD DOE AGD GOH ∠+∠︒∠+∠==∴90GHE ∠︒=∴AG 和CE 的夹角为90︒;(4)结论:HD 平分AHE ∠证明:过点D 作MD AG ⊥,DN CE ⊥,如图:∵ADG CDE ≌∴DCE ADG S S = ∴22CE DN AG DM ⋅⋅= ∵AG CE =∴DM DN =∵MD AG ⊥,DN CE ⊥∴HD 平分AHE ∠.由勾股定理可得:AC 2+GE 2=AE 2+CG 2.【点睛】本题考查了全等三角形的判定和性质、勾股定理、正方形的性质、角的和差、三角形的面积、角平分线的判定、三角形的内角和等知识点,体现了逻辑推理的核心素养,熟练掌握相关知识点是解决问题的关键.88.如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若BC =10,cos ∠ABF 45=,求菱形CEFG 的边长.【答案】(1)证明见解析;(2)174. 【解析】【分析】 (1)根据题意和翻折的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,设EF=x ,则CE=x ,DE=6-x ,得出22+(6-x )2=x 2,可得出答案.【详解】解:(1)由题意可得:△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE .∵FG ∥CE ,∴∠FGE =∠CEB ,∴∠FGE =∠FEG ,∴FG =FE ,∴FG =EC ,∴四边形CEFG 是平行四边形,又∵CE =FE ,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,BC =10,cos ∠ABF 45AB BF ==, 由翻折可知: BF =BC =10,∴AB =8,AD =10,∴∠BAF =90°,AD =BC =BF =10,∴AF =6,∴DF =4,设EF =x ,则CE =x ,DE =8﹣x .∵∠FDE =90°,∴22+(8﹣x )2=x 2,解得:x174=,∴CE174 =.【点睛】本题考查了翻折变换、菱形的判定与性质、矩形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.89.如图在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C 点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动. 当Q点到达B点时,动点P、Q同时停止运动. 设点P、Q同时出发,并运动了t秒.(1)求梯形ABCD的面积.(2)当t为何值时,四边形PQCD成为平行四边形?(3)是否存在t,使得P点在线段DC上,且PQ⊥DC(如图(2)所示)?若存在,求出此时t的值,若不存在,说明理由.【答案】(1)48cm2(2)t=49(3) t=74【解析】(1)作DH∥AB交BC于H,利用勾股定理说明DH∥BC再求得面积为;(2)若四边形PQCD成为平行四边形,则PD=CQ,即可得到结果;(3)连接DQ,根据面积相等得PQ=3t,即得CQ="5t," PC=14-4t,再根据勾股定理即可求得结果。

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题一(含答案)在平行四边形ABCD 中,过点D 作DE⊥AB 于点E,点F 在CD 上,CF =AE,连接BF,AF.(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD,交DE与H点,且AB=3AE,BF=6,求AH 的长.【答案】(1)证明见解析; (2)4.【解析】【分析】(1)由CF =AE易得BE=DF.根据有一个角是90度的平行四边形是矩形即可判定.(2)由AF 平分∠BAD,结合平行四边形性质可知AD=DF,而AB=3AE,即可知AD=DF=2AE,推出∠ADE=30°,由此可以解题.【详解】(1)证明:∵在□ABCD中,AB∠CD,AB=CD,∵CF=AE,∴AB-AE=CD-CF,即BE=DF,∵BE∠DF,∴四边形DEBF是□DEBF,∵DE∠AB,∴∠DEB=90º,∴四边形BFDE 是矩形. (2)解:∵AF 平分∠BAD,∴∠1=∠2,∵AB∠CD,∴∠1=∠3,∴∠2=∠3,∴AD=DF,∵AB=3AE∴BD=2AE∵BD=DF,AD=DF∴AD=2AE,又∠AED=90º∴∠4=30º,∠DAE=60º在矩形DEBF中DE=BF=6∴在 Rt ΔAEH 中,∵∠AEH=90º,∠1=12∠DAE=30º ∴AH=cos30AE= 4 【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、解直角三角形等知识,解题的关键是通过线段比转化得出∠HAE=30°.102.如图所示,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于G,AB ⊥BE,垂足为B,DE ⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC ≌△DEF;(2)如果GF=4,求GC 的长.【答案】(1)见解析;(2)GC =4【解析】【分析】(1)要证明三角形ABC 和DEF 全等.这两个三角形中已知的条件有一组直角,AB=DE ,那么只需证得BC=EF 即可得出两三角形全等的结论,已知了BF=CE ,等式两边都加上FC 后,就可得出BC=EF ,那么这两三角形也就全等了(SAS );(2)根据全等三角形的性质得到∠ACB=∠DFE ,再根据等腰三角形的性质即可求解.【详解】(1)证明:AB BE DE BE ,,⊥⊥90ABC DEF ∴∠=∠=︒,BF CE =,BC EF ∴=,ABC DEF ∆∆在与中,AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ABC DEF SAS ∴∆∆≌()(2)ABC DEF ∆∆≌,ACB DFE ∴∠=∠,4GC GF ∴==.【点睛】本题考查的是全等三角形的判定与性质.利用全等三角形来得出角相等或线段相等是解此类题的关键.103.如图,平行四边形,,ABCD AD AC AD AC =⊥.(1)如图,点E 在AD 延长线上,//CE BD ,求证:点D 为AE 中点.(2)如图,点E 在AB 中点,F 是AC 延长线上一点,且ED EF ⊥,求证:ED EF =.(3)在(2)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE 是否为平行四边形?并证明你的结论(先补全图形再解答).【答案】(1)见详解;(2)见详解;(3)四边形ACPE是平行四边形,补图与证明见详解.【解析】【分析】(1)先由平行四边形ABCD可得AD∠BC,AD=BC,再证四边形BDEC 为平行四边形可得BC=DE,再等量代换即可得证;(2)连接CE,根据三线合一可证得∠AEC=90°,结合∠DEF=90°,可得∠AED=∠CEF,根据∠ACB=90°,E为AB中点可得CE=AE,再结合∠DAE =∠ECF=135°即可证得∠DAE∠∠ECF进而得证;(3)四边形ACPE是平行四边形,理由如下:先证得∠CEB=∠EBP=∠ECP =90°可得矩形BECP,进而得CP=BE等量代换得AE=CP,再结合AE∥CP 即可得证.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AD∠BC,AD=BC,∵AD∠BC,CE∥BD,∴四边形BDEC为平行四边形,∴BC=DE,又∵AD=BC,∴AD=DE,∴点D为AE中点.(2)如图,连接CE,∵AD∠AC,AD∠BC,∴∠ACB=∠DAC=90°,∵AD=BC,AD=AC,∴BC=AC,∵BC=AC,点E为AB中点,∴CE∠AB,∴∠AEC=∠BEC=90°,∴∠AED+∠DEC=90°,∵ED⊥EF,∴∠CEF+∠DEC=∠DEF=90°,∴∠CEF =∠AED ,∵∠ACB =90°,BC =AC ,∴∠CAB =∠CBA =45°,∴∠DAE =∠DAC +∠CAB =135°,∵∠ACB =90°,点E 为AB 中点,∴CE =AE =12AB , ∴∠ACE =∠CAB =45°,∴∠FCE =180°-∠ACE =135°,∴∠FCE =∠DAE ,在△DAE 和△FCE 中,DAE FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAE ≌△FCE (ASA ),∴DE =EF .(3)如图,四边形ACPE 是平行四边形,理由如下:∵△DAE ≌△FCE ,∴AD =CF ,∵AD =BC ,∴BC=CF,又∵∠FCB=180°-∠ACB=90°,∴∠CBF=∠CFB=45°,∵∠CBA=45°,∴∠EBF=∠CBF+∠CBA=90°,∵AB∠CD,∠BEC=90°,∴∠ECP=180°-∠BEC=90°,∴∠ECP=∠BEC=∠EBF=90°,∴四边形BECP为矩形,∴BE=CP,又∠AE=BE,∴AE=CP,∠AE=CP,AE∥CP,∴四边形ACPE是平行四边形.【点睛】本题考查了平行四边形、全等三角形、等腰三角形、直角三角形、矩形等图形的判定与性质,是一道四边形的综合题,熟练运用相关图形的性质,作出正确的辅助线构造全等三角形是解决本题的关键.104.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE延长线于F,连接CF.(1)求证:四边形ADCF 是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD 面积相等的三角形(不包含△ACD ).【答案】(1)见解析;(2)与△ACD 面积相等的三角形有:△ABD ,△ACF ,△AFB【解析】【分析】(1)首先由E 是AD 的中点,AF ∥BC ,易证得△AFE ≌△DBE ,即可得AF =BD ,又由在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,可得AD =BD =CD =AF ,证得四边形ADCF 是平行四边形,继而判定四边形ADCF 是菱形;(2)根据平行线之间的距离处处相等、等高模型和菱形的性质即可解决问题;【详解】(1)证明:如图,∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE =DE ,BD =CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFE ≌△DBE (AAS );∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=12 BC,∴四边形ADCF是菱形;(2)∵BD=CD,而△ABD的边BD上的高即为△ACD的边CD上的高∴S△ACD=S△ABD;∵四边形ADCF是菱形∴S△ACD=S△ACF;∵AF∥CD∴△ACD的边CD上的高等于△BAF的边AF上的高∵AF=CD∴S△ACD=S△AFB综上:与△ACD面积相等的三角形有:△ABD,△ACF,△AFB.【点睛】此题考查的是全等三角形的判定及性质、菱形的判定及性质、直角三角形的性质和三角形的面积,掌握全等三角形的判定及性质、菱形的判定及性质、直角三角形斜边上的中线等于斜边的一半和平行线之间的距离处处相等是解决此题的关键.105.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:(1)四边形OCED是矩形;(2)OE=BC.【答案】见解析【解析】试题分析:()1根据菱形的定义即可证得;()2根据平行四边形的对边相等即可证得.,,试题解析:()1DE AC CE BD∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴⊥AC BD.DOC∴∠=︒90.∴四边形OCED是矩形.(2)∵四边形ABCD是菱形,∴=BC CD.∵四边形OCED是矩形,∴=,OE CD∴=.OE BC106.如图,ABCD的对角线AC,BD相交于O,点E、F分别是线段AO、BO的中点.若32AC BD+=厘米,OAB∆的周长是24厘米,求EF的长.【答案】4EF=【解析】【分析】根据平行四边形的性质可知OA=12AC,OB=12BD,结合AC+BD=24厘米,△OAB的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF 的长.【详解】解:∵▱ABCD的对角线AC,BD相交于点O,∴OA=OC,OB=OD,∵AC+BD=32厘米,∴OB+0A=16厘米,∵△OAB的周长是24厘米,∴AB=24-16=8厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=12AB=4厘米,故答案为:4cm.【点睛】本题考查了三角形中位线定理以及平行四边形的性质的知识,解题的关键是求出AB的长.107.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD 三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y 轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC 的过程中,p值是否有变化?若不变,请直接写出结论.【答案】(1)GE=GD+DF,证明见解析;(2)β=2α时,GE=GD+DF仍然成立,理由见解析;(3)△BMN的周长没有变化,周长为2.【解析】【分析】(1)由正方形的性质可得∠BCD=∠B=∠ADC=90°,BC=CD,由∠CEG=45°可得∠BCE+∠DCG=45°,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,即可得出∠FCG=45°,可得∠FCG=∠GCE,利用SAS 可证明△CEG≌△CFG,可得EG=FG,根据BE=DF即可得出GE=GD+BE;(2)①如图,延长AD到F,使DF=BE,连接CF,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,根据GE=GD+BE可得EG=GF,利用SSS可证明△CEG≌△CFG,可得∠GCF=∠GCE,由∠GCF=∠GCD+∠DCF可得∠GCE=∠GCD+∠BCE,即可得出∠BCD=2∠GCE,可得答案;②如图,延长BA,交y轴于H,由旋转的性质可得∠HOA=∠NOC,利用ASA可证明△HOA≌△NOC,可得AH=CN,OH=ON,由直线OM的解析式可得∠HAM=∠MON=45°,利用SAS可证明△HOM≌△NOM,可得HM=MN,可得MN=AM+CN,即可得出△MBN的周长p=AB+BC=2,即可证明△MBN的周长没有变化.【详解】(1)GE=GD+DF,理由如下:∵ABCD是正方形,∴∠BCD=∠B=∠ADC=90°,BC=CD,在△BCE和△DCF中,BC CDEBC FDC BE=DF=⎧⎪∠=∠⎨⎪⎩,∴△BCE≌△DCF,∴CE=CF,∠BCE=∠DCF,∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠DCF+∠DCG=45°,即∠GCF=45°,∴∠GCF=∠GCE,在△CEG和△CFG中,CE CFGCE GCF CG CG=⎧⎪∠=∠⎨⎪=⎩,∴△CEG≌△CFG,∴GE=GF=GD+DF.(2)当β=2α时,GE=GD+DF仍然成立,理由如下:如图,延长AD到F,使DF=BE,连接CF,在△BCE和△DCF中,BC CDEBC FDC=90 BE=DF=⎧⎪∠=∠︒⎨⎪⎩,∴△BCE≌△DCF,∴CE=CF,∠BCE=∠DCF,∵EG=GD+BE,∴EG=GD+DF=GF,在△CEG和△CFG中,CE CF EG GF CG CG=⎧⎪=⎨⎪=⎩,∴△CEG≌△CFG,∴∠ECG=∠FCG,∴∠ECG=∠DCF+∠DCG=∠BCE+∠DCG,∴∠BCD=2∠ECG,即β=2α,∴当β=2α时,图1中GE,BE,GD三线段之间的关系仍然成立.(3)如图,延长BA,交y轴于H,∵将正方形OABC绕O点顺时针旋转,∴∠HOA=∠NOC,在△HOA和△NOC中,HOA NOC OA OCOAH OCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HOA≌△NOC,∴AH=CN,OH=ON,∵直线OM的解析式为y=x,∴∠HOM=∠MON=45°,在△HOM和△NOM中,OH ONHOM MON OM OM=⎧⎪∠=∠⎨⎪=⎩,∴HM=MN,∴MN=AM+AH=AM+CN,∴△BMN的周长p=BM+MN+BN=BM+AM+CN+BN=AB+BC=2,∴△BMN的周长没有变化,周长为2.【点睛】本题考查正方形的性质、全等三角形的判定与性质、旋转的性质及正比例函数的性质,熟练掌握全等三角形的判定定理是解题关键.108.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.(1)如图①,当点H与点C重合时,可得FG FD.(大小关系)(2)如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.(3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF的长.【答案】(1)=;(2)FD=FG,理由见解析;(3)4811【解析】(1)连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.(2)连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.(3)设FG=x,则FC=8-x,FE=3+x,在Rt△ECF中利用勾股定理可求出x的值,进而可得出答案.解:(1)连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴△AGF≌△ADF.∴FG=FD.(2)猜想FD=FG.证明:连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴△AGF≌△ADF.∴FG=FD.(3)设FG=x,∵AB=8,BE=3,∴BC=CD=8,∴FC=8﹣x,FE=3+x,EC=8﹣3=5,在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(8﹣x)2+52,解得x=.∴CF=8﹣=,即FG的长为.点睛:本题主要考查折叠、正方形的性质、全等三角形的性质、勾股定理,是一道四边形综合问题.解题的关键在于要利用折叠及正方形的性质找出相等的线段,为全等的证明作好铺垫.109.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连OH接,求证:∠DHO=∠DCO.【答案】证明见解析.【解析】试题分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.试题解析:∠四边形ABCD是菱形,∠OD=OB,∠COD=90°,∠DH∠AB,∠OH=12BD=OB,∠∠OHB=∠OBH,又∠AB∠CD,∠∠OBH=∠ODC,在Rt∠COD中,∠ODC+∠DCO=90°,在Rt∠DHB中,∠DHO+∠OHB=90°,∠∠DHO=∠DCO.考点:菱形的性质.110.在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).【答案】(1)见解析;(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF =DE ,又AE =EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC =90°,即可推出四边形ADCF 是矩形.(2)根据三角形的中位线定理和平行四边形的判定即可找出图中的所有平行四边形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠EDC ,∵E 是AC 中点,∴AE =EC ,在△AEF 和△CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CED ,∴EF =DE ,∵AE =EC ,∴四边形ADCF 是平行四边形,∵AD ⊥BC ,∴∠ADC =90°,∴四边形ADCF 是矩形.(2)∵线段DG 、线段GE 、线段DE 都是△ABC 的中位线,又AF ∥BC , ∴AB ∥DE ,DG ∥AC ,EG ∥BC ,∴四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE 都是平行四边形.【点睛】本题考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

初中八年级数学下册第十八章平行四边形单元复习试题六(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题六(含答案) (59)

初中八年级数学下册第十八章平行四边形单元复习试题六(含答案)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=1∠BAD,上述结论是否仍然成立,并说明理由;2实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【答案】问题背景:EF=BE+DF;探索延伸:结论仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为210海里.【解析】试题分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明∠ABE和∠ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明∠AEF和∠GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解;实际应用:先连接EF,延长AE、BF相交于点C,再求出∠EAF=1∠AOB,2判断出符合探索延伸的条件,最后根据探索延伸的结论解答.试题解析:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图2,延长FD到G,使DG=BE,连接AG,∠∠B+∠ADC=180°,∠ADC+∠ADG=180°,∠∠B=∠ADG,在∠ABE和∠ADG中,,∠∠ABE∠∠ADG(SAS),∠AE=AG,∠BAE=∠DAG,∠∠EAF=∠BAD,∠∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∠∠EAF=∠GAF,在∠AEF和∠GAF中,,∠∠AEF∠∠GAF(SAS),∠EF=FG,∠FG=DG+DF=BE+DF,∠EF=BE+DF;实际应用:方法一:如图3,连接EF,延长AE、BF相交于点C,∠∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∠∠EOF=∠AOB,又∠OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∠符合探索延伸中的条件,∠结论EF=AE+BF 成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.考点:全等三角形的性质与判定102.如图,在四边形ABCD 中,90B D ∠=∠=︒,AB CD =.求证:四边形ABCD 是矩形.【答案】详见解析【解析】【分析】连接AC ,先利用HL 证明Rt Rt ABC CDA ∆∆≌,再根据全等三角形的性质得出四边形ABCD 为平行四边形,进一步可得出四边形ABCD 为矩形.【详解】证明:连接AC∵90B D ∠=∠=︒∴ABC ∆和CDA ∆都是直角三角形∴在Rt ABC ∆和Rt CDA ∆中AB CD AC CA =⎧⎨=⎩∴在Rt Rt (H.L.)ABC CDA ∆∆≌∴BC AD =∵BC AD =,AB CD =∴四边形ABCD 为平行四边形∵90B ∠=︒∴ABCD 为矩形.【点睛】本题考查了矩形的判定,需要掌握平行四边形的判定及性质以及全等三角形的判定及性质.103.如图,已知 Rt ABC ∆,90ACB ︒∠=,CD 是斜边AB 的中线,过点A 作AE CD ⊥,AE 分别与CD ,CB 相交于点H ,E ,且2AH CH =,求sin B 的值.【解析】【分析】 根据∠ACB=90°,CD 是斜边AB 上的中线,可得出12CD AB BD ==,则DCB B ∠=∠,再由题意,可得∠B=∠CAH ,由AH=2CH ,根据三角函数即可可得出CH :,即可得出sinB 的值; 【详解】 解:∵∠ACB=90°,CD 是斜边AB 的中线, ∴12CD AB BD ==. ∴DCB B ∠=∠.又∵90ACD DCB ︒∠+∠=,90ACD CAH ︒∠+∠=,∴DCB CAH B ∠=∠=∠.在Rt ACH ∆中,2AH CH =.∴AC =.∴sin sinCH B CAH AC =∠===【点睛】本题考查直角三角形斜边上的中线和三角函数,解题的关键是掌握直角三角形斜边上的中线的性质和三角函数的计算.104.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE=DA=BC=3,再求出CE即可.【详解】解:如图,(1)AE即为∠DAB的角平分线;(2)∵AE为∠DAB的角平分线,∴∠DAE=∠BAE,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.105.如图,木制活动衣帽架由3个全等的菱形构成,在A、E、F、C、G、H处安装上、下两排挂钩,可以根据需要改变挂钩间的距离,并在B、M处固定. 已知菱形ABCD的边长为13cm,要使两排挂钩间的距离AC为24cm,求B、M之间的距离.【答案】B、M之间的距离是30cm.【解析】分析:连接AC,BD交于点O,根据四边形ABCD是菱形求出AO的长,然后根据勾股定理求出BO的长,于是可以求出B、M两点的距离.详解:连接AC,BD交于点O.AC=12厘米,AC⊥BD,∵四边形ABCD是菱形,∴AO=12∴BO=5厘米,∴BD=2BO=10厘米,∴BM=3BD=30厘米.点睛:本题主要考查菱形的性质和勾股定理,掌握菱形的对角线互相垂直平分是解题的关键,此题难度一般.106.图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;(3)图①中所画的矩形的面积为;图②中所画的菱形的周长为.【答案】(1)见解析;(2)见解析;(3)8,4.【解析】【分析】(1)根据矩形的性质画图即可;(2)根据菱形的性质画图即可;(3)根据矩形的面积公式和菱形的周长公式即可得到结论.【详解】解:(1)如图①所示,矩形ACBD即为所求;(2)如图②所示,菱形AFBE 即为所求;(3)矩形ACBD 的面积=2×4=8;菱形AFBE 的周长=4, 故答案为:8,.【点睛】本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.107.已知ABC ∆中,D 是AB 上一点,AD AC =,AE CD ⊥,垂足是E ,F 是BC 的中点,试说明2BD EF =.【答案】证明见解析.【解析】【分析】根据等腰三角形的性质可得E 为CD 中点,继而根据三角形中位线定理进行证明即可.【详解】∵AD=AC,AE⊥CD,∴E为CD中点,又∵F为BC中点,∴EF是∵CBD的中位线,∴BD=2EF.【点睛】本题考查了等腰三角形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.注意数形结合思想的应用.108.已知:如图,在ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,⊥1=⊥2.(l)若CF=2,AE=3,求BE的长;(2)求证:1∠=∠.CEG AGE2【答案】(1)BE=(2)见解析【解析】【分析】(1)根据平行四边形对边相等的性质,由已知,经过等量代换得到直角三角形ABE的AB长,从而由已知的AE长,应用勾股定理可求得BE的长.(2)过点GH∥BC交AE于点H,则∠CEG=∠EGH,通过△CEG≌△CDF 得到点G为CD的中点,从而确定GH是AE的垂直平分线,根据线段垂直平分线上的点到线段两端距离相等的性质,得到GA=GE,进而根据等腰三角形三线合一的性质,得∠EGH=∠AGH,从而得证.【详解】解:(1)∵CF=2,点F为CE的中点,∴CE=4.∵CE=CD,∴CD=4.∵四边ABCD是平行四边形,∴AB=CD=4.∵AE⊥BC,AE=3,∴BE==.(2)如图,过点GH∥BC交AE于点H,则∠CEG=∠EGH.∵∠1=∠2,∠C=∠C,CE=CD,∴△CEG≌△CDF(AAS).∴CG=CF.∵点F为CE的中点,∴点G为CD的中点.∴点H为AE的中点,即GH是AE的垂直平分线.∴GA=GE.∴∠EGH=∠AGH.∴1CEG AGE2∠=∠.109.如图,在ABCD中,对角线,AC BD交于点O,且OA OB=.(1)求证:ABCD是矩形;=.(2)点E在BA延长线上,且,AE AB=连接,DE求证:DE AC 【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据对角线相等的平行四边形是矩形即可证明;(2)证明四边形CAED是平行四边形即可证明.【详解】()1四边形ABCD是平行四边形∴==,OA OC OB OD=OA OB∴=DB AC∴是矩形.ABCD()2∵四边形ABCD是平行四边形,∴CD∥AB即CD∥AE,CD=AB,=,AE AB∴AE=CD,∴四边形CAED是平行四边形,DE AC∴=.【点睛】本题考查平行四边形的性质和判定,矩形的判定.熟练掌握相关定理,并能结合题意灵活运用是解决此题的关键.110.如图,在菱形ABCD中,点E,F分别在BC,CD上,且CE=CF,(1)求证△ABE≌△ADF.(2)若∠B=50°,AE⊥BC,求∠AEF的度数.【答案】(1)见解析;(2)∠AEF=65°【解析】【分析】(1)由“SAS”可证∵ABE∵∵ADF;(2)由菱形的性质可求∵C=110°,由余角的性质可求∵CEF的值,即可求∵AEF的值.【详解】证明:(1)∵四边形ABCD是菱形,∵AB=AD=BC=CD,∵B=∵D,AB∵CD.∵CE=CF,∵BE=DF,且∵B=∵D,AB=AD,∵∵ABE∵∵ADF(SAS);(2)∵AB∵CD,∵∵B+∵C=180°,且∵B=50°,∵∵C=130°,且CE=CF,∵∵CEF=25°.∵AE∵BC,∵∵AEF=90°﹣25°=65°.【点睛】本题考查了菱形的性质,全等三角形的判定,熟练运用菱形的性质是本题的关键.。

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (131)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (131)

初中八年级数学下册第十八章平行四边形单元复习试题一(含答案)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF∥BC于F.DE∥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=12×BC×AF,S△BCD=12×BC×DE .所以S△ABC=S△BCD由此我们可以得到以下的结论:像图1这样.(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B 作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S▱ABCD=S△APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.【答案】(1)同底等高的两三角形面积相等;(2)证明见解析(3)40 【解析】试题分析:(1)利用图形直接得出:同底等高的两三角形面积相等(2)利用(1)的结论△ABC和△AEC的公共边AC上的高也相等,从而S▱ABCD=S△APD。

(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,阴影部分面积是S△AFG+S正方形DEFG+S△ADC﹣S△CEF,分别计算.试题解析:(1)利用图形直接得出:同底等高的两三角形面积相等;故答案为:同底等高的两三角形面积相等.(2)△AB△CE,BE△AC,△四边形ABEC为平行四边形,△△ABC和△AEC的公共边AC上的高也相等,△S△ABC=S△AEC,△S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,△S△ACF=S四边形ACEF﹣S△CEF=S△AFG+S正方形DEFG+S△ADC﹣S△CEF=12×b×(a﹣b)+b×b+12×a×a﹣12×b×(b+a)=12ab﹣12b2+b2+12a2﹣12b2﹣12ab=12a2,△S△ACF=12S正方形ABCD=12×80cm2=40cm2.故答案为:40.102.如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AH⊥EF于点H,AH=10,连接BD,分别交AE、AH、AF 于点P、G、Q.(1)求△CEF的周长;(2)若E是BC的中点,求证:CF=2DF;(3)连接QE,求证:AQ=EQ.【答案】(1)△ECF的周长为20;(2)证明见解析;(3)证明见解析. 【解析】【分析】(1)想办法证明EB=EH,FD=FH,即可解决问题;(2)通过计算求出CF、DF即可解决问题;(3)想办法证明△APB∽△QPE,可得∠AEQ=∠ABP=45°即可解决问题. 【详解】解:(1)在Rt△ABE和Rt△AHE中,∵∠ABE=∠AHE=90°,AB=AH=10,AE=AE,∴△ABE≌△AHE,∴BE=HE,同理,DF=FH,∴△ECF的周长=CE+CF+EF=CE=CE+BE+CF+FD=CB+CD=20.(2)∵E是BC中点,∴BE=EC=EH=5,设DF=FH=x,则CF=10﹣x,在Rt△ECF中,∵∠C=90°,∴EF2=EC2+CF2,∴52+(10﹣x)2=(5+x)2,解得x=103,即DF=103,则CF=10﹣103=203,∴CF=2DF;(3)在△BPE和△APQ中,∠EBP=∠QAP=45°,∠BPE=∠APQ,∴△BPE∽△APQ,∴BPAP=EPQP,即BPEP =AP QP,∵∠APB=∠QPE,∴△APB∽△QPE,∴∠QEP=∠ABP=45°,∵∠EAF=45°,∴∠QEA=∠QAE=45°,∴AQ=EQ.【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.103.△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°.(1)如图1,点E在BC上,则线段AE和BD有怎样的关系?请直接写出结论(不需证明);(2)若将△DCE绕点C旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;(3)当△DCE旋转到使∠ADC=90°时,若AC=5,CD=3,求BE的长.【答案】(1)AE=BD,AE⊥BD ;(2)见解析;(3)【解析】分析:(1)延长AE交BD于F,由△AEC≌△BDC,可得AE=BD,再利用同角的余角相等,可得出AE⊥BD ;(2)不发生变化,只要证明△AEC≌△BDC,推出AE=BD,∠EAC=∠DBC,由∠EAC+∠AFC =90°,∠AFC=∠BFG,可得∠BGF=90°,从而得证;(3)过B作BM⊥EC于M,则∠M=90°,在RT△ACD 中利用勾股定理可得AD=4,再利用△BCM≌△ACD,得出CM=CD=3,BM=AD=4,在△BME中利用勾股定理即可求出结果.本题解析:(1)AE=BD,AE⊥BD ;(2)(1)中的结论仍然成立,理由如下:∵△ACB和△ECD均为等腰直角三角形,∠ACB=△ECD=90°∴AC=BC, △ACE=△BCD,EC=DC∴△ACE≌△BCD(SAS), ∴AE=BD, △EAC=△DBC∵△EAC+△AFC =90°,△AFC=△BFG∴△DBC+△BFG=90°, ∴△BGF=90°,∴AE△BD(3) 过B作BM△EC于M,则∠M=90°∵△ADC=90°,AC=5,CD=3,∴AD=4=∵△ACB=△ECD=90°, ∴△CBE+△ACD=180°∵△CBE+△BCM=180°, ∴△BCM=△ACD∵△M=△ADC=90°, AC=BC∴△BCM≌△ACD(AAS), ∴CM=CD=3, BM=AD=4∵CE=CD=3,∴EM=6,∴B E=104.在正方形ABCD中,点E是直线CD上一动点,以BE为斜边向上方作等腰直角△BEF ,连接AF ,试求线段AF 与DE 的数量关系.(1)小可同学进行探索:△将点E 的位置特殊化,发现DE= ___ AF ; △点E 运动过程中,△BAF= ___ ;(填度数)(2)如图1,当点E 在线段CD 上时,证明AF 与DE 的数量关系;(3)如图2,当边EF 被对角线BD 平分时,求DEM AFB S S 值. 【答案】(1)△DE =;△45°或135°;(2)DE =;(3)34DMEABF S S = 【解析】【分析】(1)△当点E 与点C 重合、点F 与点O 重合时,可证得AF ,△BAF=45°;△当点E 在CD 延长线上时,利用两边对应成比例且夹角相等证得△ABF △△DBE ,即可求得△BAF=△BDE=135°;(2)利用两边对应成比例且夹角相等证得△ABF △△DBE ,即可求得答案;(3)利用(2)的结论证得22EDB AFB S DE S AF==(),BF 2a =,则FE=2a ,BE=,求得BM =,证得△MBE ∽△EBD ,得到BE BM BD BE=,即可求得BD和MD 的长,从而求得答案.【详解】(1)△△四边形ABCD 是正方形,△OB=OC=12AC=12BD ,△BOC=90°, 当点E 与点C 重合、点F 与点O 重合时,如图:△BEF 等腰直角三角形,△AF ,△△BAF=45°;当点E 在CD 延长线上时,如图:连接BD ,△四边形ABCD 是正方形△△ABD=45°,△cos 452AB BD =︒=, △△BEF 是等腰直角三角形,△BFE=90°, △BF=FE ,△FBE=45°,△cos 45BF BE =︒=, △AB BF BD BE =,即AB BD BF BE=, △△ABF+△EBA =△DBE+△EBA =45°, △△ABF=△DBE ,△△ABF △△DBE ,△△BAF=△BDE=△ADB+△ADE =45°+90°=135°, 故答案为:△AF ,△△BAF=45°或135°;(2)连接BD ,△四边形ABCD 是正方形△△ABD=45°,△cos 452AB BD =︒=, △△BEF 是等腰直角三角形,△BFE=90°, △BF=FE ,△FBE=45°,△cos 452BF BE =︒=, △AB BF BD BE =,即AB BD BF BE=, △△ABF+△DBF =△DBE+△DBF=45°, △△ABF=△DBE ,△△ABF △△DBE ,△DE BD AF AB==,△DE =;(3)△△ABF △△EBD , △22EDB AFB S DE S AF==(),又△△MEB=△BDE=45°,△MBE=△EBD , △△MBE △△EBD ,△BE BM BD BE=, 令BF 2a =,△FE=2a ,BE=, △M 是FE 的中点,△FM=12FE a =, △==,=, △,△,△3588DME DBE SMD S BD ===, △34DMEABFSS =. 【点睛】本题属于相似形综合题,考查了正方形的性质,相似三角形的判定和性质,三角函数等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.105.如图,在平行四边形ABCD 中,点E 是边BC 的中点,DE 的延长线与AB 的延长线相交于点F.(1)求证:△CDE ≌△BFE ;(2)试连接BD 、CF ,判断四边形CDBF 的形状,并证明你的结论【答案】(1)证明见解析;(2)四边形CDBF 是平行四边形,证明见解析.【解析】【分析】(1)用AAS 证明△CDE ≌△BFE ;(2)根据全等三角形的对应边相等,得DE=FE ,由对角线互相平分的四边形是平行四边形证得四边形DBFC为平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB∥CD即AF∥CD.∴∠F=∠CDE∵BE=CE,∠BEF=∠CED∴△CDE≌△BFE;(2)由(1)知:△CDE≌△BFE∴DE=FE又BE=CE,∴四边形DBFC为平行四边形.106.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少.【答案】(1)证明见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠ADB的度数,根据三角形内角和定理求出∠AOB,从而可得到∠CDO,最后,依据∠BDE=90°-∠DOC求解即可.【详解】解:(1)∵AO=CO ,BO=DO ,∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC ,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD 是矩形;(2)∵∠ADC=90°,∠ADB :∠CDB=2:3,∴∠ADB=36°,∵四边形ABCD 是矩形,∴OA=OD ,∴∠OAD=∠ADB=36°,∴∠DOC=72°,∵DE ⊥AC ,∴∠BDE=90°-∠DOC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.107.如图所示,在ABC 中,90ACB ∠=︒,CE 是AB 边上的高,AF 平分CAB ∠交CE 于点F ,过点F 作//FD CB 交AB 于点D .求证:AC AD =.【答案】见解析.【解析】【分析】由平行线的性质和直角三角形的性质可证明∠ADF=∠B=∠ACF,结合角平分线的定义可证明△ACF≌△ADF,可得AC=AD.【详解】证明:∵FD∥BC,∴∠ADF=∠B,∵AC⊥BC,CE⊥AB,∴∠ACB=∠CEB=90°,∴∠ACF+∠ECB=∠ECB+∠B=90°,∴∠ACF=∠B,∴∠ACF=∠ADF,∵AF平分∠CAB,∴∠CAF=∠DAF,在△ACF和△ADF中,CAF DAFACF ADF AF AF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ADF(AAS),∴AC=AD.【点睛】本题主要考查全等三角形的判定和性质、平行线的性质、角平分线的定义,正确寻找全等三角形是解题的关键,属于中考常考题型.108.已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB 的中点,连接AC、EC.点Q从点A出发,沿折线A—D—C运动,同时点P 从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α° (0<α<360°),直线PF 分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN 为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.【答案】(1)6t =,9t =;(2)见解析;(3)见解析.【解析】【分析】(1)根据题意求出运动的距离,再除以速度即可求出时间;(2)分当0<t ≤3时,当3<t ≤6时,当6<t ≤9时,当9<t ≤12时,四种情况,分别求出重叠部分面积即可;(3)分交点都在BC 左侧,顶角为120°,交点都在BC 右侧时,顶角可能为30°和120°;交点在BC 两侧时,顶角为150°进行讨论求解即可.【详解】解:(1)当等边△PQF 的边PQ 恰好经过点D 时,如图1,AQ=AD=6,∴t=6÷1=6(秒);当等边△PQF 的边QF 恰好经过点E 时,如图2,由菱形ABCD的边长为6,∠DAB=60°,P、Q的速度均为每秒1个单位长度,知:∠APQ=60°,∠QEB=60°,∴QE∥AD,∵点E是AB的中点,∴此时点Q是CD的中点,可求:AD+DQ=6+3=9,所以t=9÷1=9(秒);(2)如图3,当0<t≤3时,由菱形ABCD的边长为6,∠DAB=60°,可求:∠PAG=30°,∵∠APQ=60°,∴∠AGP=90°,由AP=t ,可求:PG=12t ,,∴S=12PG ×AG=8t 2; 当3<t ≤6时,如图4,,AE=3,AP=t ,∴PE=t-3,过点C 作AB 的垂线,垂足为H ,由菱形ABCD 的边长为6,∠DAB=60°,可求:BH=3,EH=6,tan ∠KEB=2, 过点K 作KM ⊥AB ,作CN ∥PK 交AB 的延长线于N , ∵△EKP ∽△ECN ,可得EM CH =EB EN,可求,∴S △PEK 可求∠QAG=30°,又∠AQG=60°,AQ=t ,可求∠AGQ=90°,DG=12t ,,∴S △AGQ 2,等边三角形APD 的面积为:24,∴S=24-8t 2-2t-36)=−2t 24t −2, 当6<t ≤9时,如图5,,与前同理可求:S△FQPS △GQN =28),S △KEP ,∴=2, 当9<t ≤12时,如图6,求出:S△PQFS △QGH =28),S △NEP =2t-36),S △KEF∴S=S △PQF -S △QGH -S △NEP +S △KEFt 2− (3)逆时针旋转:①α=150°,如图7,此时,易求∠CNM=∠NCM=∠APM=∠MAP=∠DAP=30°, 可证△ACD ∽△APM , ∴AD AM =AC AP, 易求AP=12,,AD=6,解得:,所以,②α=105°,如图8,此时,易求CM=CN,∠CMN=∠CNM=∠APM=75°,∴AM=AP=12,在菱形ABCD中,AD=CD=6,∠D=120°,可求AC=6所以,;③α=60°,如图9,此时,易求∠CMN=∠MCN=∠ACB=30°,∴BC∥PM,由AB=BP=6可得,CM=AC=6,所以:④α=15°,如图10,此时,易求∠APM=∠M=15°,∴AM=AP=12,所以:CM=AM+AC , .【点睛】此题主要考察四边形动点综合问题,会分析运动情况,用定点研究动点问题,会用变量表示图形面积,会针对等腰三角形进行分类讨论是解题的关键.109.如图①,在半径为6的扇形AOB 中,120AOB ∠=︒,点C 是弧AB 上的一个动点(不与点A 、B 重合),OD AC ⊥、OE BC ⊥,垂足分别为D 、E .(1)△当4BC =时,线段OE = ;△当BC 的度数= °时,四边形OACB 成为菱形;(2)试说明:四边形ODCE 的四个顶点在同一个圆上;(3)如图②,过点O 作OF DE ⊥,垂足为F ,连接AF ,随着点C 的运动,在△AOF 中是否存在保持不变的角?如果存在,请指出这个角并求出它的度数;如果不存在,请说明理由;(4)在(3)条件下,若点C 从点B 运动到点A ,则点F 的运动路径长为 .【答案】(1)①;②60;(2)证明见详解;(3)存在,60AOF ∠=︒;(4)3【解析】【分析】(1)△根据勾股定理即可求得线段OE ;△点C 为AC 中点,即BC =60°时,得△OBC ,△OAC 为等边三角形,可得四边形OACB 成为菱形;(2)取OC 中点M ,连接ME ,MD ,根据直角三角形斜边上的直线等于斜边的一半,证得EM CM OM DM ===,问题得证;(3)先求得∠EOD =60°,根据(2)的结论,进行角的转化,证明∠EOF =∠AOD ,进而求得60AOF EOD ∠=∠=︒;(4)根据60AOF ∠=︒不变,确定F 的运动轨迹是一条线段,当点C 与A 、B 重合时,OF 最小,当C 位于BC 的中点时,OF 最长,分别求出OF 长,计算可得.【详解】解:(1)△∵OB=OC , OE BC ⊥,∴BE =122BC =,∴在R t △OBE 中,OE ==故答案为:②当∠BOC=60°时,∠AOC =60°,△OBC ,△OAC 为等边三角形, ∴OA=AC=OC=BC=OB ,∴四边形OACB 成为菱形;故答案为:60;(2)取OC 中点M ,连接ME ,MD∵OD AC ⊥,OE BC ⊥∴EM CM OM ==,DM CM OM ==∴EM CM OM DM ===∴以M 为圆心,ME 为半径的圆过,,C D O 三点即四边形ODCE 的四个顶点在同一个圆上(3)答:AOF ∠不变,60AOF ∠=︒;证明:∵OB=OC=OA , OD AC ⊥、OE BC ⊥,∴∠COE =∠BOE =12BOC ∠,∠COD =∠AOD =12AOC ∠, ∴∠EOD =∠COE +∠COD =()111206022AOC BOC ∠+∠=⨯︒=︒, ∵四边形ODCE 的四个顶点在同一个圆上,∴=OD OD ,∴∠OED =∠OCD ,∵OF ⊥DE ,OD ⊥OC ,∴∠OEF +∠EOF =90°, ∠OCD +∠COD =90°,∴∠EOF=∠COD ,∵∠COD =∠AOD ,∴∠EOF =∠AOD ,∴60AOF AOD DOF EOF DOF EOD ∠=∠+∠=∠+∠=∠=︒;(4)由(3)得,60AOF ∠=︒,∴点F 的运动轨迹在∠AOB 的平分线上, 如图1,当点C 与A 重合时,F 与E 重合,∠OAB =30°,OF ⊥AB , ∴OF =132OA =;如图2,当点C 运动到AB 中点时,∠AOD =∠DOC =30°,OD=OA ·cos ∠AOD =6= OF= OD ·cos ∠FOD =392; ∴933=22-; 当点C 从点B 运动到AB 中点时,也运动了32, ∴在(3)条件下,若点C 从点B 运动到点A ,则点F 的运动路径长为3.【点睛】本题考查了圆,直角三角形,菱形,圆内接四边形等数学知识,综合性较强,为几何题中压轴题,解题时要注意,每一步为后续解题提供了条件或方法上的帮助,这是解题关键.110.如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=△DEF.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF△AB,DE△AC,再根据平行四边形的定义证明即可.(2)根据平行四边形的对角线相等可得△DEF=△BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得△DAH=△DHA,△FAH=△FHA,然后求出△DHF=△BAC,等量代换即可得到△DHF=△DEF.试题解析:证明:(1)△点D,E,F分别是AB,BC,CA的中点,△DE、EF都是△ABC的中位线.△EF△AB,DE△AC,△四边形ADEF是平行四边形.(2)△四边形ADEF是平行四边形,△△DEF=△BAC.△D,F分别是AB,CA的中点,AH是边BC上的高,△DH=AD,FH=AF.△△DAH=△DHA,△FAH=△FHA.△△DAH+△FAH=△BAC,△DHA+△FHA=△DHF,△△DHF=△BAC.△△DHF=△DEF.考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.。

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (55)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (55)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案)已知:平行四边形ABCD ,对角线,9,12,AC AB AB AC ⊥==点P 为射线BC 上一点,AP PM ⊥,(点M 与点B 分别在直线AP 的两侧),且,PAM CAD ∠=∠联结MD .(1)当点M 在ABCD 内时,如图一,设,,BP x AP y ==求y 关于x 的函数解析式.(2)请在图二中画出符合题意得示意图,并探究:图中是否存在与ADM ∆相似的三角形?若存在,请写出证明过程,若不存在,请说明理由(3)当AMD ∆为等腰三角形时,求PB 的长.【答案】(1)27155y x ⎫=<<⎪⎭;(2)~APC AMD ∆∆,证明见解析;(3)7.5或3或27.【解析】【分析】(1)作AE ⊥BC 于E ,先在Rt △ABC 中运用勾股定理求出BC=15,再解Rt △ABE ,得到AE=365,BE=275,然后在Rt △AEP 中,利用勾股定理得AP 2=PE 2+AE 2,即可求出y 关于x 的函数关系式;(2)先由两角对应相等的两三角形相似证明出△APM ∽△ACD ,则AP :AC=AM :AD ,即AP :AM=AC :AD ,又由∠PAM=∠CAD ,得出∠PAC=∠MAD ,根据两边对应成比例且夹角相等的两三角形相似即可得到△PAC ∽△MAD ;(3)先由相似三角形的形状相同,由(2)得出△APC 为等腰三角形,再分两种情况进行讨论:①点M 在平行四边形内;②点M 在平行四边形外;又分两种情况:(i )P 在BC 上,(ii )P 在BC 的延长线上.【详解】解:(1)如图,作AE ⊥BC 于E ,在Rt △ABC 中,∵AB=9,AC=12,∴BC=15,∵△ABE ∽△CBA ,∴BE=275,AE=365∵BP=x ,∴PE=275x -, 在Rt △AEP 中,222AE EP AP +=∴27155y x ⎫=<<⎪⎭ (2) 存在,APC AMD ∆∆∽,∵∠PAM=∠CAD ,∠APM=∠ACD=90°,∴△APM ∽△ACD , ∴AP AM AC AD= ∴AP AC AM AD = ∵PAM CAD ∠=∠,∴∠PAC=∠MAD ,∴~APC AMD ∆∆(3)∵△PAC ∽△MAD ,∴当△AMD为等腰三角形时,△APC也为等腰三角形,①当点M在平行四边形内时,如图1.点P只能在EC上, ∵∠APC为钝角,∴∠PAC=∠PCA,∴PC=PA,又∵∠PAB=90°-∠PAC,∠B=90°-∠PCA,∴∠PAB=∠B,∴PA=PB,∴PA=PB=PC=12BC=115=752.,即BP=7.5;②当点M在平行四边形外时,(i)若P在BC上,如图2.点P只能在BE上,∵AP<AC,AP<PC,∴CA=CP=12,则BP=15-12=3;(ii)若P在BC的延长线上,如图3,∵AP>AC,AP>PC,∴CA=CP=12,则BP=15+12=27.综上可知,当△AMD为等腰三角形时,BP的长为7.5或3或27.【点睛】本题考查了勾股定理,解直角三角形,相似三角形的判定与性质,综合性较强,有一定难度.运用数形结合及分类讨论是解题的关键.82.如图,在△ABC 中,点D ,E 分别是边BC ,AC 上的中点,连接DE ,并延长DE 至点F ,使EF=ED ,连接AD ,AF ,BF ,CF ,线段AD 与BF 相交于点O ,过点D 作DG ⊥BF ,垂足为点G.(1)求证:四边形ABDF 是平行四边形;(2)当12AE DF 时,试判断四边形ADCF 的形状,并说明理由; (3)若∠CBF=2∠ABF ,求证:AF=2OG .【答案】(1)证明见解析;(2)四边形ADCF 是矩形,理由见解析;(3)证明见解析.【解析】【分析】(1)欲证明四边形ABDF 是平行四边形,只要证明AF ∥BD ,AF=BD 即可.(2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.(3)作AM⊥DG 于M,连接BM,先证明AM=2OG,再证明AM=AF 即可解决问题.【详解】(1)证明:∵点D,E分别是边BC,AC上的中点,∴ED∥AB,AE=CE,∵EF=ED,∴四边形ADCF是平行四边形,∴AF∥BC,∴四边形ABDF是平行四边形;(2)四边形ADCF是矩形.理由:∵AE=12DF,EF=ED,∴AE=EF=DE,∴∠EAF=∠AFE,∠DAE=∠ADE,∴∠DAF=∠EAF+∠EAD=12×180°=90°,由(1)知:四边形ADCF是平行四边形;∴四边形ADCF是矩形;(3)证明:作AM⊥DG 于M,连接BM.∵四边形ABDF是平行四边形,∴OA=OD,∵OG∥AM,∴GM=GD,∴AM=2OG,∵BG⊥DM,GM=GD,∴BM=BD,∴∠CBF=∠MBG,∵∠CBF=2∠ABF,∴∠ABM=∠ABF,∵AM∥BF,∴∠MAB=∠ABF,∴∠MAB=∠MBA,∴AM=BM=BD=AF=2OG,∴AF=2OG.【点睛】本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.83.如图,已知AB //CD ,BE 丄AD ,垂足为点E ,CF 丄AD ,垂足为点F ,并且AF =DE .求证:四边形是BECF 平行四边形.【答案】证明见解析.【解析】【分析】通过全等三角形(AEB DFC ≌)的对应边相等证得BE=CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE ∥CF .则四边形BECF 是平行四边形.【详解】证明:BE AD ⊥,CF AD ⊥,90AEB DFC ∴∠=∠=︒,//AB CD ,A D ∴∠=∠,AF DE =,即AE EF DF EF +=+,AE DF ∴=在AEB △与DFC △中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩AEB DFC ∴≌()ASA ,BE CF ∴=.BE AD ⊥,CF AD ⊥,//BE CF ∴,∴四边形BECF 是平行四边形.【点睛】本题考查了平行四边形的判定、一组对边平行且相等的四边形是平行四边形,全等三角形的判定与性质掌,握以上知识是解题的关键.84.在四边形ABDC 中,AC AB =,DC DB =,60CAB ∠=︒,120CDB ∠=︒,E 是AC 上一点,F 是AB 延长线上一点,且CE BF =.(1)试说明:DE DF =;(2)在图中,若点G 在AB 上,且60EDG ∠=︒,试猜想CE 、EG 、BG 之间的数量关系,并证明所归纳结论.【答案】(1)见解析;(2)EG CE BG =+,证明见解析【解析】【分析】(1)通过角的计算得出∠C=∠DBF ,结合CD=BD 、CE=BF 即可证出△CDE ≌△BDF (SAS ),由此即可得出DE=DF ;(2)连接AD ,结合AC=AB 、DC=DB 即可证出△ABD ≌△ACD (SSS ),由此即可得出∠BDA=∠CDA=60°,再根据∠EDG=60°即可得出∠CDE=∠ADG ,∠ADE=∠BDG ,由(1)可知△CDE ≌△BDF ,进而得知∠CDE=∠BDF ,根据角的计算即可得出∠EDG=∠FDG ,结合DE=DF 即可证出△DEG ≌△DFG(SAS ),即得出EG=FG ,由相等的边与边之间的关系即可证出CE+BG=EG .【详解】(1)∵∠CAB+∠C+∠CDB+∠ABD=360°,∠CAB=60°,∠CDB=120°, ∴∠C+∠ABD=360°-60°-120°=180°,又∵∠DBF+∠ABD=180°,∴∠C=∠DBF ,在△CDE 和△BDF 中,CD BD C DBF CE BF ⎧⎪∠∠⎨⎪⎩===, ∴△CDE ≌△BDF(SAS),∴DE=DF ;(2)如图,连接AD ,猜想CE 、EG 、BG 之间的数量关系为:CE+BG=EG .证明:在△ABD 和△ACD 中,AB AC BD CD AD AD ⎧⎪⎨⎪⎩===, ∴△ABD ≌△ACD(SSS),∴∠BDA=∠CDA=12∠CDB=1120602⨯︒=︒, 又∵∠EDG=60°, ∴∠CDE=∠ADG ,∠ADE=∠BDG ,由(1),可得△CDE ≌△BDF ,∴∠CDE=∠BDF ,∴∠BDG+∠BDF=60°,即∠FDG=60°,∴∠EDG=∠FDG ,在△DEG 和△DFG 中,DE DF EDG FDG DG DG ⎧⎪∠∠⎨⎪⎩===, ∴△DEG ≌△DFG ,∴EG=FG ,又∵CE=BF ,FG=BF+BG ,∴CE+BG=EG .【点睛】本题考查了全等三角形的判定与性质以及角的计算,解决该题型题目时,根据全等三角形的性质找出相等的边角关系是关键.85.如图所示,AE 是ABC ∆的外角DAC ∠的角平分线,AB AC =,求证:AE BC ∥.【答案】见解析【解析】【分析】因为等腰三角形,则外角2DAC B ∠=∠;又AE 是ABC ∆的外角DAC ∠的角平分线,即2DAC DAE ∠=∠,则∠B=∠DAE,根据内错角相等,两直线平行即可完成证明;【详解】证明:由等腰形外角关系图知:2DAC B ∠=∠,AE ∵是ABC ∆的外角DAC ∠的角平分线,2DAC DAE ∴∠=∠,B DAE ∴∠=∠,AE BC ∴∥.【点睛】本题是一道容易题,关键在于运用等腰三角形外角等于一个底角的二倍和角平分线的定义,找到相等的角.86.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是 ;(2)数轴上表示x 与2的两点之间的距离可以表示为 ;(3)同理|x +3|+|x ﹣1|表示数轴上有理数x 所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.【答案】(1)7;(2)|x﹣2|;(3)﹣3、﹣2、﹣1、0、1.【解析】【分析】(1)根据距离公式即可解答;(2)根据距离公式即可解答;(3)利用绝对值和数轴求解即可.【详解】(1)数轴上表示5与﹣2两点之间的距离是:5﹣(﹣2)=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,故:①当x<-3时,方程|x+3|+|x﹣1|=4变形为:-x-3-x+1=4,解得,x=-3,所以,此方程无解;②当-3≤x<1时,方程|x+3|+|x﹣1|=4变形为:x+3-x+1=4所以,4=4,此时,整数x=-3,-2,-1,0;③当x≥1时,方程|x+3|+|x﹣1|=4变形为:x+3+x-1=4,解得,x=1;∴这样的整数有﹣3、﹣2、﹣1、0、1.【点睛】本题考查数轴、绝对值,解答本题的关键是会去绝对值符号,利用数轴的特点解答.87.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB 延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.【答案】(1)详见解析;(2)【解析】【分析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=18,根据勾股定理得到AC=是得到结论.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形;(2)解:如图,连接OE,∵AE=12,AD=13,∴AB=13,∴BE=5,∵AB=BC=13,∴CE=18,∴AC∵对角线AC,BD交于点O,∴AO=CO=∴OE=故答案为:【点睛】本题考查了矩形的判定和性质,菱形的性质,解直角三角形,正确的识别图形是解题的关键.88.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.【答案】(1)见解析;(2)四边形ABCD的面积为144.【解析】【分析】(1)根据平行四边形对边平行的性质和BF平分∠ABC,可得∠AFB=∠ABF,进而得出AB=AF,再证明△ABO≌△EBO得AB=BE,最后得出四边形ABEF是菱形;(2)作AG⊥BC于点G,根据勾股定理以及菱形的性质先求出BE的长,再利用菱形面积公式求出AG的长,最后即可求得四边形ABCD的面积.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,又OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE=AF,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形;(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,∴OE=12AE=6,OB=12BF=8,∴在Rt△OBE中,BE=10.又S菱形ABE F=12×AE×BF=BE×AG,∴12×12×16=10×AG,∴AG=485.∴四边形ABCD的面积为:BC•AG=(10+5)×485=144.【点睛】本题考查了菱形的判定与性质,菱形的面积的求法,平行四边形的性质,等腰三角形的判定与性质,全等的判定与性质以及勾股定理等知识点,掌握基本性质是解题的关键.89.如图,在△ABC中,已知BE⊥AD,CF⊥AD,且BE=CF.(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件.(填上你认为正确的一个条件即可)【答案】(1)AD是△ABC的中线,证明见解析;(2)AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC【解析】【分析】(1)先证明△BDE≌△CDF,得出BD=CD,即可可以判断AD是△ABC的中线;(2)要使四边形BFCE是菱形,由BC与EF互相平分,只要BC与EF互相垂直即可,则添加的条件为∠ABC=∠ACB或AD⊥BC或AD平分∠BAC,答案不唯一.【详解】解:(1)AD是△ABC的中线,理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,又∵BE=CF,∠BDE=∠CDF,∴△BDE≌△CDF (AAS),∴BD=CD,即AD 为△ABC 的中线.(2) ∠ABC =∠ACB 或AD ⊥BC 或AD 平分∠BAC 等(答案不唯一).【点睛】本题考查了全等三角形的判定、菱形的判定. 找出两个三角形全等的条件及菱形的判定方法是解题的关键.90.如图,在▱ABCD 中,以点A 为圆心AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长度为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若∠C =60°,AE =ABEF 的面积.【答案】(1)见解析;(2)【解析】【分析】(1)先利用角平分线的性质和平行线的性质得出四边形ABEF 是平行四边形,再利用两邻边相等即可证明四边形ABEF 是菱形;(2)连结BF ,交AE 于G ,先利用菱形的性质和特殊角的三角函数值求出BF 的长度,然后利用菱形的面积公式12S AE BF =⋅即可求解. 【详解】解:(1)∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠EAF =∠AEB ,∵∠EAB =∠EAF ,∴∠EAB =∠AEB .∴BE =AB =AF .∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =BE ,∴四边形ABEF 是菱形;(2)如图,连结BF ,交AE 于G .∵四边形ABCD 是平行四边形,∴∠BAD =∠C =60°,∵四边形ABEF 菱形,∴BF ⊥AE ,AG =EG =12AE = ∠BAG =∠FAG =12BAD ∠= 30°, ∴BG =FG =AG •tan30°=2,∴BF =4,∴菱形ABEF 的面积=11422AE BF ⋅=⨯= 【点睛】本题主要考查平行四边形的性质,菱形的判定及性质,解直角三角形,掌握平行四边形的性质,菱形的判定及性质,特殊角的三角函数值是解题的关键.。

初中数学 第十九章《四边形》单元总复习题(含答案)

初中数学 第十九章《四边形》单元总复习题(含答案)

第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖块;(2)第n个图形中有白色地面砖块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD为菱形,∠A=60°, 对角线BD长度为10c m,则此菱形的周长c m.6.已知正方形的一条对角线长为8c m,则其面积是__________c m2.7.平行四边形ABCD中,AB=6c m,AC+BD=14c m,则∠AOC的周长为_______.8.在平行四边形ABCD中,∠A=70°,∠D=_________, ∠B=__________.9.等腰梯形ABCD中,AD∠BC,∠A=120°,两底分别是15c m和49c m,则等腰梯形的腰长为______.10.用一块面积为450c m2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条c m.11.已知在平行四边形ABCE中,AB=14cm,BC=16cm,则此平行四边形的周长为cm. 12.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明图19-2图19-1ABCDO图19-3(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm . 16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . 20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:∠矩形; ∠菱形; ∠等腰三角形(腰与底边不相等); ∠等边三角形; ∠平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )A .∠∠B .∠∠∠C .∠∠∠∠D .∠∠∠∠∠22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )AB C D图19-611图19-4 A BCO图19-523.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形. 27.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从∠AB //CD ;∠AB =CD ;∠BC //AD ;∠BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .∠∠ B .∠∠ C . ∠∠ D . ∠∠29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BDC .当AC ∠BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A .1个B .2个C .3个D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A D CB F E 图19-7 ·A .矩形B .菱形C .正方形D .菱形、矩形或正方形 35.如图19-8,直线a ∠b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∠AB 交AC 于点E ,DF ∠AC 交AB于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∠CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在∠ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MNA BC D EF图19-9 图19-10 图19-11 D A EBC图19-12交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是∠ABC 的角平分线,DE ∠AC 交AB 于点E ,DF ∠AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ∠DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ∠AB 于F ,如果AB =6,EF =5,AE B CF O N M D图19-13 A EB DC F1图19-142O图19-15 A BN M C D O AD求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:∠画出的圆应符合比例要求; ∠为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ∠MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图19-19, 中,DB=CD , 70=∠C ,AE ∠BD 于E .试求DAE ∠的度数.D A B C ME N图19-18图19-17ABCD47.如图19-20, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21∠),使AB=CD,EF=GH ;(2)摆放成如图∠的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图∠),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图∠),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图∠) (图∠) (图∠) (图∠)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.图19-19图19-20图19-21ABCD图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE =15°,试求∠COE的度数。

初中数学四边形专题训练50题含答案

初中数学四边形专题训练50题含答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。

初中八年级数学下册第十八章平行四边形单元复习试题十一(含答案) (44)

初中八年级数学下册第十八章平行四边形单元复习试题十一(含答案) (44)

初中八年级数学下册第十八章平行四边形单元复习试题十一(含答案)如图,四边形ABCD中,//,=.求⊥,点E是BC的中点,AD ECAD BC AB AC证:四边形ADCE是菱形.【答案】见解析【解析】【分析】先根据直角三角形斜边上的中线等于斜边的一半可以证得AE=CE,根据题意可证四边形AECD是平行四边形,继而求证结论.【详解】⊥,点E是BC的中点,证明:AB AC∴==AE BE EC∵AD∥EC,且AD=EC∴四边形ADCE是平行四边形=又AE EC∴四边形ADCE是菱形【点睛】本题考查菱形的判定、直角三角形斜边上的中线性质、平行四边形的判定,解题的关键是根据直角三角形斜边上的中线性质求证AE=CE.92.如图,B 、E 、C 、F 在同一直线上,AB =DE ,BE =CF ,∠B =∠DEF ,求证:AC =DF .【答案】见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.93.如图,在EF 是平行四边形ABCD 的对角线BD 的垂直平分线,EF 与边AD BC 、分别交于点E F 、。

(1)求证:四边形BFDE 是菱形;(2)若5,8ED BD ==,求菱形BFDE 的面积。

【答案】(1)见解析;(2)24.【解析】【分析】(1)根据平行四边形ABCD 的性质得到//,AD BC OB OD =,利用“ASA ”得到OED OFB ∆≅∆,根据全等三角形的对应边相等得到DE BF =,由一组对边平行且相等的四边形为平行四边形得到四边形BEDF 是平行四边形,又根据对角线垂直的平行四边形为菱形即可得证;(2)由菱形性质求得OD 的长度,利用勾股定理求得OE 的长度,进而求EF 的长,而BD 与EF 为菱形BFDE 的两条对角线,根据对角线乘积的一半即可求出菱形的面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴//,AD BC OB OD =,∵,EDO FBO OED OFB ∠=∠∠=∠,∴OED OFB∆≅∆,∴DE BF=,又∵//ED BF,∴四边形BEDF是平行四边形,∵EF BD⊥,∴BEDF是菱形.(2)∵BEDF是菱形∴142OD BD==,EF BD⊥∴在Rt△EOD中,3OE==所以EF=6∴菱形BFDE的面积为:116824 22EF BD=⨯⨯=.【点睛】此题考查了平行四边形的性质,菱形的判定与性质,以及勾股定理.菱形的判定方法一般有:四条边相等的四边形为菱形,对角线互相垂直的平行四边形为菱形,邻边相等的平行四边形为菱形等,熟练掌握这些判定与性质是解本题的关键.同时注意菱形的面积可以利用对角线乘积的一半来求.94.请阅读下列材料:问题:如图,在正方形ABCD和平行四边形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.探究:当PG与PC的夹角为多少度时,平行四边形BEFG是正方形?小聪同学的思路是:首先可以说明四边形BEFG是矩形;然后延长GP交DC 于点H,构造全等三角形,经过推理可以探索出问题的答案.请你参考小聪同学的思路,探究并解决这个问题.(1)求证:四边形BEFG是矩形;(2)PG与PC的夹角为________度时,四边形BEFG是正方形.理由:【答案】(1)详见解析;(2)90.【解析】【分析】(1)由正方形ABCD,易得∠EBG=90°,根据有一个角是直角的平行四边形是矩形,即可证得四边形BEFG是矩形;(2)首先作辅助线:延长GP交DC于点H,根据正方形与平行四边形的性质,利用AAS易得△DHP≌△FGP,则有HP=GP,当∠CPG=90°时,利用SAS易证△CPH≌△CPG,根据全等三角形与正方形的性质,即可得BG=GF,根据有一组邻边相等的平行四边形是菱形,可得▱BEFG是菱形,而∠EBG=90°,即得四边形BEFG是正方形.【详解】解:(1)∵正方形ABCD中,∠ABC=90°,∴∠EBG=90°,∴▱BEFG是矩形;(2)90°;理由:延长GP交DC于点H,∵正方形ABCD和平行四边形BEFG中,AB∥DC,BE∥GF,∴DC∥GF,∴∠HDP=∠GFP,∠DHP=∠FGP,∵P是线段DF的中点,∴DP=FP,∴△DHP≌△FGP,∴HP=GP,当∠CPG=90°时,∠CPH=∠CPG,∵CP=CP,∴△CPH≌△CPG,∴CH=CG,∵正方形ABCD中,DC=BC,∴DH=BG,∵△DHP≌△FGP,∴DH=GF,∴BG=GF,∴▱BEFG是菱形,由(1)知四边形BEFG是矩形,∴四边形BEFG是正方形.故答案为:90【点睛】此题考查了正方形的判定与性质、矩形的判定与性质、菱形的判定以及全等三角形的判定与性质等知识.此题综合性比较强,解题时要注意数形结合思想的应用.95.如图,已知EF∥GH,Rt∥ABC的两个顶点A、B分别在直线EF、GH 上,∥C=90°,AC交EF于点D,若BD平分∥ABC,∥BAH=28°.求∥BAC的度数.【答案】∴BAC=34°【解析】分析:根据平行线的性质可得∠BAH=∠ABD,由角平分线的定义知ABC =2∠BAH,结合直角三角形中的两个锐角互余求解.详解:∵EF∥GH,∴∠BAH=∠ABD,∵BD平分∠ABC,∴∠ABC=2∠BAH,∵∠BAH=28°,∴∠ABC=2×28°=56°.∴∠BAC=90°-56°=34°.点睛:本题考查了角平分线的定义和平行线的性质,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直角平行,同旁内角互补.AB DC,96.如图,在四边形ABCD中,对角线AC,BD交于点O,//AB BC =,BD 平分ABC ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形.(2)若AB =4BD =,求OE 的长.【答案】(1)证明见解析;(2)EO =.【解析】【分析】(1)根据平行线的性质及角平分线的性质证得CDB CBD ∠=∠,由此得到BC=CD ,利用AB ∥CD 即可证得四边形ABCD 是平行四边形,由AB BC =即可证得结论;(2)先利用勾股定理求出OA ,再由CE AB ⊥根据直角三角形的性质得到斜边中线等于斜边一半求出OE .【详解】解:(1)∵AB CD ∥,∴ABD CDB ∠=∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴CDB CBD ∠=∠,∴BC CD =,且AB BC =,∴CD AB =,且AB CD ∥,∴四边形ABCD 是平行四边形,且AB BC =,∴四边形ABCD 是菱形.(2)∵四动形ABCD 是菱形,∴OA OC =,BD AC ⊥,2BO DO ==,∴ AO ===∵CE AB ⊥,AO CO =,∴EO AO CO ===.【点睛】此题考查菱形的判定定理及性质定理、勾股定理、直角三角形斜边中线等于斜边一半的性质,熟练掌握性质定理并灵活运用是解题的关键.97.如图,在四边形ABCD 中,AB ∥CD ,且AB =2CD ,E ,F 分别是AB ,BC 的中点,EF 与BD 交于点H .(1)求证:四边形DEBC 是平行四边形;(2)若BD =9,求DH 的长.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)结合题意,得出DC=BE ,利用平行四边形的判定定理,证明,即可.(2)结合三角形相似,得出DH 和BH 的长度关系,计算结果,即可.【详解】(1)证明:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴DC=BE,又∵AB∥CD,即DC∥BE,∴四边形BCDE是平行四边形.(2)解:∵四边形BCDE是平行四边形,∴BC=DE,BC∥DE,∴△EDM∽△FBM,∴=,∵BC=DE,F为BC的中点,∴BF=BC=DE,∴==2,∴DH=2HB,又∵DH+HB=9,∴DH=6.【点睛】考查平行四边形的判定,考查相似三角形的判定,关键得出DH和HB的长度关系,即可,难度中等.98.如图,已知BD是菱形ABCD的一条对角线,请仅用无刻度的直尺,分别按下列要求画图.(1)如图,点E 在AB 上,连接DE ,在BC 上取点F ,使DE DF =;(2)如图,BDE 为等腰直角三角形,90BED ∠=︒,在菱形ABCD 内取点F ,使四边形BEDF 为正方形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)连接CE ,交BD 于点O ;连接AO ,并延长交BC 于点F ;连接DF ,则DE DF =,点F 即为所求;(2)延长DE 交AB 于点M ,同(1)的方法作点N ,使得DM DN =,根据三角形全等的判定定理与性质可知点E 、F 在对角线AC 上,由此可知连接AC ,与DN 的交点F 即为所求.【详解】(1)连接CE ,交BD 于点O ;连接AO ,并延长交BC 于点F ;连接DF ,则DE DF =,如图1,点F 即为所求.理由如下:由菱形的性质可得:AB BC CD AD ===,BD 为ABC ∠的角平分线则ABO CBO ∠=∠BO BO =()ABO CBO SAS ∴∆≅∆BAO BCO ∴∠=∠ABF CBE ∠=∠()ABF CBE ASA ∴∆≅∆BF BE ∴=,BD BD DBE DBF =∠=∠()DEB DFB SAS ∴∆≅∆DE DF ∴=;(2)延长DE 交AB 于点M ,同(1)的方法作点N ,使得DM DN =;再连接AC ,与DN 的交点F 即为所求(如图2).理由如下:BDE ∆∵为等腰直角三角形DE BE ∴=在ADE ∆和ABE ∆中,DE BE AD AB AE AE =⎧⎪=⎨⎪=⎩()ADE ABE SSS ∴∆≅∆DAE BAE ∴∠=∠则点E 在对角线AC 上点F 也在AC 上,AC 与BD 互相垂直平分DF BF ∴=同(1)可知,DM DN MB NB ==AB MB CB NB ∴-=-,即AM CN =在ADM ∆和CDN ∆中,AD CD AM CN DM DN =⎧⎪=⎨⎪=⎩()ADM CDN SSS ∴∆≅∆ADM CDN ∴∠=∠由菱形的性质得,ADB CDB ∠=∠ADB ADM CDB CDN ∴∠-∠=∠-∠,即MDB NDB ∠=∠9090DEF MDB DFE NDB ∠=︒-∠⎧⎨∠=︒-∠⎩DEF DFE ∴∠=∠DE DF ∴=在四边形BEDF 中,,90BE DE DF BF BED ===∠=︒故四边形BEDF 是正方形.【点睛】本题考查了菱形的性质、等腰三角形的性质、三角形全等的判定定理与性质、正方形的判定,灵活利用各定理与性质是解题关键.99.如图,在平行四边形ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .【答案】见解析【解析】【分析】由“平行四边形ABCD 的对边平行且相等”的性质推知AB=CD ,AB ∥CD .然后根据图形中相关线段间的和差关系求得BE=DF ,易证四边形EBFD 是平行四边形,即可得出结论.【详解】解:∵在平行四边形ABCD 中,AB ∥CD 且AB=CD又∵AE =CF∴AB-AE=CD-CF∴BE=DF∴四边形EBFD 是平行四边形∴DE =BF .【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.100.如图,APB 中,AB 2=,APB 90∠=,在AB 的同侧作正ABD 、正APE 和正BPC ,求四边形PCDE 面积的最大值.【答案】四边形PCDE 面积的最大值为1.【解析】【分析】先延长EP 交BC 于点F ,得出PF BC ⊥,再判定四边形CDEP 为平行四边形,根据平行四边形的性质得出:四边形CDEP 的面积11EP CF a b ab 22=⨯=⨯=,最后根据22a b 4+=,判断1ab 2的最大值即可. 【详解】延长EP 交BC 于点F ,APB 90∠=,APE BPC 60∠∠==,EPC 150∠∴=,CPF 18015030∠∴=-=,PF ∴平分BPC ∠,又PB PC =,PF BC ∴⊥,设Rt ABP 中,AP a =,BP b =,则11CF CP b 22==,222a b 24+==, APE 和ABD 都是等边三角形,AE AP ∴=,AD AB =,EAP DAB 60∠∠==,EAD PAB ∠∠∴=,EAD ∴≌()PAB SAS ,ED PB CP ∴==,同理可得:APB ≌()DCB SAS ,EP AP CD ∴==,∴四边形CDEP 是平行四边形,∴四边形CDEP 的面积11EP CF a b ab 22=⨯=⨯=, 又222(a b)a 2ab b 0-=-+≥, 222ab a b 4∴≤+=,1ab 12∴≤, 即四边形PCDE 面积的最大值为1.【点睛】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(2)

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(2)

人教新版八年级下学期《第18章平行四边形》单元测试卷一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.14.如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=时四边形BECD是正方形.15.已知:如图,在△ABC中,AB=AC,AD是BC边的中线,AN为△ABC的外角∠CAM 的平分线,CE⊥AN于点E,线段DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)线段DF与AB有怎样的关系?证明你的结论.16.如图,在△ABC中,点O在AB边上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD交直线OD于点E.(1)求证:OE=OD;(2)当点O在AB的什么位置时,四边形BDAE是矩形?说明理由.17.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.18.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.19.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.20.如图,正方形ABCD中,E是BD上一点,AE的延长线交CD于F,交BC的延长线于G,M是FG的中点.(1)求证:①∠1=∠2;②EC⊥MC.(2)试问当∠1等于多少度时,△ECG为等腰三角形?请说明理由.21.如图,已知△ABC为等边三角形,CF∥AB,点P为线段AB上任意一点(点P不与A、B重合),过点P作PE∥BC,分别交AC、CF于G、E.(1)四边形PBCE是平行四边形吗?为什么?(2)求证:CP=AE;(3)试探索:当P为AB的中点时,四边形APCE是什么样的特殊四边形?并说明理由.22.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.23.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.24.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.26.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.27.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.28.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE 交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.29.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.30.如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.31.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?32.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.33.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?34.如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?35.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?36.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG 以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.37.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t 为何值时,四边形QPBC为矩形?38.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b 满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C 运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.39.在正方形ABCD中,P是CD上的一动点,连接P A,分别过点B、D作BE⊥P A、DF ⊥P A,垂足为E、F.(1)求证:BE=EF+DF;(2)如图(2),若点P是DC的延长线上的一个动点,请探索BE、DF、EF三条线段之间的数量关系?并说明理由;(3)如图(3),若点P是CD的延长线上的一个动点,请探索BE、DF、EF三条线之间的数量关系?(直接写出结论,不需说明理由).40.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.41.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.42.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP 是腰长为5的等腰三角形时,求点P的坐标.43.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)44.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.45.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.46.已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).47.如图1,在平面直接坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.(友情提示:•图2、图3备用,‚不要漏解)48.在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s 的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?49.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.50.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE =度.人教新版八年级下学期《第18章平行四边形》2019年单元测试卷参考答案与试题解析一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.【点评】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=115度.【分析】(1)先证出△ABP≌△CBP,得P A=PC,由于P A=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由P A=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)由△DP A≌△DPC,推出∠DAP=∠DCP,P A=PC,推出P A=PE,推出∠DAP=∠E,推出∠E=∠PCD,由∠DFE=∠CFP,推出∠CPF=∠EDF,由此即可解决问题;【解答】解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DP A≌△DPC,∴∠DAP=∠DCP,P A=PC,∵P A=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等腰三角形的判定和性质,正确寻找全等三角形的条件是解题的关键.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).【分析】(1)根据四条边都相等的四边形ABCD是菱形证明即可;(2)四边形ABC1D1是平行四边形,根据一组对边平行且相等的四边形是平行四边形判定即可;(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形,此时此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1,利用在直角三角形中30°角所对的直角边是斜边的一半即可求出点B移动的距离.【解答】解:(1)四边形ABCD是菱形;理由如下:∵△ABD和△BDC都是边长为1的等边三角形.∴AB=AD=CD=BC=DB,∴AB=AD=CD=BC,∴四边形ABCD是菱形;(2)四边形ABC1D1是平行四边形.理由:∵∠ABD1=∠C1D1B=60°∴AB∥C1D1,又∵AB=C1D1,∴四边形ABC1D1是平行四边形(一组对边平行且相等的四边形是平行四边形).(3)四边形ABC1D1有可能是矩形.此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1∴BD1=2,又∵B1D1=1,∴BB1=1,即点B移动的距离是1.【点评】本题考查了等边三角形的性质、菱形的判定和性质矩形的判定和性质以及直角三角形的性质,掌握特殊平行四边形的判定定理是解此题的关键.4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题(2)的关键.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.【分析】(1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=20°,证出∠AEB=∠ABE=20°,由三角形内角和定理求出结果即可;(2)求出DE,由勾股定理求出CE,即可得出结果.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=20°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=20°,∴AE=AB,∠A=(180°﹣20°﹣20°)÷2=140°;(2)∵AE=AB=5,AD=BC=8,CD=AB=5,∴DE=AD﹣AE=3,∵CE⊥AD,∴CE===4,∴▱ABCD的面积=AD•CE=8×4=32.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证出∠AEB=∠ABE是解决问题的关键.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠F AE,根据平行四边形的性质可得∠F AE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO 的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠F AE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=F A,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.【分析】(1)证明△DAE≌△DCF,根据全等三角形的性质证明;(2)根据全等三角形的性质得到DE=DF,证明DG是EF的垂直平分线,得到DE=EG=GF=GF,证明结论.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,在△DAE和△DCF中,,∴△DAE≌△DCF,∴AE=CF;(2)四边形DEGF是菱形,∵△DAE≌△DCF,∴DE=DF,∵AE=CF,∴BE=BF,∴DG是EF的垂直平分线,∴GE=GF,∵OG=OD,DG⊥EF,∴ED=EG,∴DE=EG=GF=FD,∴四边形DEGF是菱形.【点评】本题考查的是正方形的性质、菱形的判定、全等三角形的判定和性质,掌握相关的性质定理和判定定理是解题的关键.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS 即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,设EF交BD于O.如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.【点评】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.【分析】(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.【解答】(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.【点评】此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【分析】(1)由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形;(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.证明:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,。

(专题精选)初中数学四边形经典测试题及答案解析

(专题精选)初中数学四边形经典测试题及答案解析

(专题精选)初中数学四边形经典测试题及答案解析一、选择题1.在四边形ABCD 中,两对角线交于点O ,若OA =OB =OC =OD ,则这个四边形( ) A .可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD ,判断四边形ABCD 是平行四边形.然后根据AC=BD ,判定四边形ABCD 是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC 、BD 交于点O ,OA= OC, OB=OD ,∴四边形ABCD 是平行四边形,又∵OA=OC=OD=OB ,∴AC=BD ,∴四边形ABCD 是矩形.故选D .【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.2.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.3.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.4.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.6.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.22C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.7.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=483x -+.故选C .8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A .考点:多边形内角与外角.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=; ∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .33B .3C 3D .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CE m =, 根据折叠的性质可得:BC′=6,EC′=23CE m =, ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=33或33-(舍),当x=6时,m=0(舍),故m 的值为33,故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.11.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AM MD等于( )A .35B .23C .38D .45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a ,由四边形BMDN 是菱形知BM=MD ,设AM=b,则BM=MD=2a-b.在Rt △ABM 中,由勾股定理即可求值.试题解析:∵四边形MBND 是菱形,∴MD=MB .∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.12.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点()5,3D在边AB上,以C为中心,把CDB△旋转90︒,则旋转后点D的对应点'D的坐标是( )A.()2,10B.()2,0-C.()2,10或()2,0-D.()10, 2或()2,0-【答案】C【解析】【分析】先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q四边形OABC是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB△逆时针旋转90︒,此时旋转后点B的对应点B'落在y轴上,旋转后点D的对应点D¢落在第一象限由旋转的性质得:2,5,90B D BD BC BC CBD B'''''====∠=∠=︒10OB OC B C''∴=+=∴点D¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.13.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-= ∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =∴2221OA AD OD =+=∴21OC OA ==. 故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.14.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】 因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形,故④选项正确,故选A .【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.17.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF=22AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=2EF=2×2AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.18.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16【答案】D【解析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】如图所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE=∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴AB=BE ,同理可得AB=AF ,∴AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA=OE ,OB=OF=12BF=6, ∴2222=106AB OB --=8,∴AE=2OA=16.故选D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.19.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若∠BOC =60°,FO =FC ,则下列结论:①AE =CF ;②BF 垂直平分线段OC ;③△EOB ≌△CMB ;④四边形是BFDE 菱形.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

人教版苏科版初中数学—特殊的平行四边形(单元测试卷)

人教版苏科版初中数学—特殊的平行四边形(单元测试卷)

特殊的平行四边形单元测试卷班级小组姓名成绩(满分120)一、选择题(共10小题,每题3分,共30分)1.如图,矩形ABCD的两条对角线相交于点O,60AD=,则AC的长是()∠=︒,2AODA.2B.4C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.矩形ABCD的对角线AC、BD相交于点O,120∆的周长为()AODAC=,则ABO∠=︒,8A.16B.12C.24D.204.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB BC⊥⊥D.AB BD=B.AC BD=C.AC BD5.如图,将矩形ABCD沿对角线BD折叠,使点C和点C'重合,若2AB=,则C D'的长为()A.1B.2C.3D.46.如图,四边形ABCD为平行四边形,延长AD到E,使DE AD=,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB BE=B.BE DC⊥C.90⊥ADB∠=︒D.CE DE7.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若2AE =,6DE =,60EFB ∠=︒,则矩形ABCD 的面积是()A.12B.24C.D.8.如图,长方形ABCD 中,M 为CD 中点,今以B 、M 为圆心,分别以BC 长、MC 长为半径画弧,两弧相交于P 点.若70PBC ∠=︒,则MPC ∠的度数为何?()A.20B.35C.40D.559.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若:3:5OE AO =,则AD AB 的值为()A.12B.3C.23D.2210.如图,点E 是矩形ABCD 的边CD 上一点,把ADE ∆沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE =,且34EC BF FC AB ==,那么该矩形的周长为()A.72cmB.36cm C.20cm D.16cmO二、填空题(共5小题,每题3分,共15分)11.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =,BC =,则图中阴影部分的面积为.12.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 边上运动,当ODP ∆是腰长为5的等腰三角形时,点P 的坐标为.13.如图,将矩形ABCD 沿对角线AC 剪开,再把ACD ∆沿CA 方向平移得到△111A C D ,连结1AD 、1BC .若30ACB ∠=︒,2AC =,1CC x =,则下列结论:①△11A AD ≅△1CC B ;②当1x =时,四边形11ABC D 是菱形;③当2x =时,1BDD ∆为等边三角形;其中正确的是(填序号).14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于E ,若4BC =,8AB =,则BE 的长为.15.如图,在矩形ABCD中,点E是边CD的中点,将ADE∆沿AE折叠后得到AFE∆,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).三、解答题(共10小题,共75分,)16.(9分)如图,将ABCD的边AB延长至点E,使AB BE=,连接DE,EC,DE交BC于点O.(1)求证:ABD BEC∆≅∆;(2)连接BD,若2BOD A∠=∠,求证:四边形BECD是矩形.17.(9分)如图,在ABC∆中,AB BC=,BD平分ABC∠.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.18.(9分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且2AB=,求BC的长.=,连接AF,DE交于点O.求19.(9分)如图,在矩形ABCD中,E,F为BC上两点,且BE CF证:∆≅∆;(1)ABF DCE∆是等腰三角形.(2)AOD20.(9分)在矩形ABCD中,点E是BC上一点,AE AD=,DF AE⊥,垂足为F;求证:DF DC=.21.(10分)如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 的中点,连接AF ,CE .(1)求证:BEC DFA ∆≅∆;(2)求证:四边形AECF 是平行四边形.22.(10分)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM CN =;(2)若CMN ∆的面积与CDN ∆的面积比为3:1,求MN DN的值.23.(10分)如图,在ABCD 中,DE AB ⊥,BF CD ⊥,垂足分别为E ,F .(1)求证:ADE CBF ∆≅∆;(2)求证:四边形BFDE 为矩形.。

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (69)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案) (69)

初中八年级数学下册第十八章平行四边形单元复习试题(含答案)如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.【答案】(1)12,2)【解析】【分析】(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm,然后再证明△ABC是等边三角形,进而得到AC=AB=12cm,然后再根据勾股定理得出BO 的长,进而可得BD的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.【详解】解:(1)△菱形ABCD的周长是48cm,△AB=BC=CD=DA=12cm,又△△ABC与△BAD的度数比为1:2,△ABC=60°,△△ABC是正三角形,AC=AB=12cm,又△ABO=30°,△AO=6cm,=,BD=,AC·BD=2.(2)S菱形ABCD=1102.如图,点E是正方形ABCD的边BC延长线上的一点,点P是BC上任意一点,AP⊥PF,且AP=PF,连接CF.(1)求证:∠BAP=⊥FPC;(2)求∠FCE的度数.【答案】(1)见解析;(2)45°【解析】试题分析:(1)过点F作FE⊥CE于点H,结合已知条件证△ABP≌△PHF即可得到∠BAP=∠FPC;(2)由(1)中所得△ABP≌△PHF可得BP=HF,AB=PH,结合AB=BC 可得BC=PH,从而可得BP=CH=HF,即可得到∠CFH=∠FCE=45°.试题解析:(1)作FH△CE于H,则△FHP=90°,△AP△PF,△△APF=90°,△△APB+△FPH=90°,又△△BAP+△APB=90°,△△FPH=△BAP,△四边形ABCD是正方形,△△B=△BCD=90°,AB=BC,在△ABP和△PHF中,△B=△FHP=90°,△BAP=△FPH,AP=PF △△ABP△△PHF(AAS),△△BAP=△FPC;(2)△△ABP△△PHF,△BP=HF,AB=PH,△PH-PC=BC-PC,△BP=CH,△CH=HF.△△FCE=△CFH=12(180°-90°)=45°.点睛:本题解题的关键是:过点F作FH△CE于点H,这样结合AP=PF及AP△PF即可证得△ABP△△PHF从而使问题得到解决.103.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∠DE;(2)过点B作BF∠AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.【答案】(1)证明见解析;(2)四边形BCEF是平行四边形【解析】⑴在矩形ABCD中,AC⑴DE,⑴⑴DCA=⑴CAB,⑴⑴EDC=⑴CAB,⑴⑴DCA=⑴EDC,⑴AC⑴DE;⑴四边形BCEF是平行四边形.理由:由⑴DEC=90°,BF⑴AC,可得⑴AFB=⑴DEC=90°,又⑴EDC=⑴CAB,AB=CD,⑴⑴DEC⑴⑴AFB,⑴DE=AF,由⑴得AC⑴DE,⑴四边形AFED是平行四边形,⑴AD⑴EF且AD=EF,⑴在矩形ABCD中,AD⑴BC且AD=BC,⑴EF⑴BC且EF=BC,⑴四边形BCEF是平行四边形.104.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)见解析(2)成立【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证⑴CEB⑴⑴CFD,从而证出CE=CF.(2)由(1)得,CE=CF ,⑴BCE+⑴ECD=⑴DCF+⑴ECD 即⑴ECF=⑴BCD=90°又⑴GCE=45°所以可得⑴GCE=⑴GCF ,故可证得⑴ECG ⑴⑴FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===⑴⑴CBE ⑴⑴CDF (SAS ).⑴CE=CF .(2)GE=BE+GD 成立.理由是:⑴由(1)得:⑴CBE ⑴⑴CDF ,⑴⑴BCE=⑴DCF ,⑴⑴BCE+⑴ECD=⑴DCF+⑴ECD ,即⑴ECF=⑴BCD=90°,又⑴⑴GCE=45°,⑴⑴GCF=⑴GCE=45°. CE =CF⑴⑴GCE =⑴GCF , GC =GC⑴⑴ECG ⑴⑴FCG (SAS ).⑴GE=GF .⑴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.105.如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF ,(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.【答案】证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC△△ADC,由此可得△BAC=△DAC,再证△ABF△△ADF即可得到△AFB=△AFD,结合∠AFB=△CFE即可得到∠AFD=△CFE;(2)由AB△CD可得∠DCA=△BAC结合∠BAC=△DAC可得∠DCA=△DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在△ABC和△ADC中,△AB=AD,CB=CD,AC=AC,△△ABC△△ADC,△△BAC=△DAC,在△ABF和△ADF中,△AB=AD,△BAC=△DAC,AF=AF,△△ABF△△ADF,△△AFB=△AFD.(2)证明:△AB△CD,△△BAC=△ACD,△△BAC=△DAC,△△ACD=△CAD,△AD=CD,△AB=AD,CB=CD,△AB=CB=CD=AD,△四边形ABCD是菱形.106.如图,∠ABC中,AB=AC,AD是∠ABC的角平分线,点O为AB 的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当∠ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【答案】解:(1)证明:⑴点O为AB的中点,连接DO并延长到点E,使OE=OD,⑴四边形AEBD是平行四边形.⑴AB=AC,AD是⑴ABC的角平分线,⑴AD⑴BC.⑴⑴ADB=90°.⑴平行四边形AEBD是矩形.(2)当⑴BAC=90°时,矩形AEBD是正方形.理由如下:⑴⑴BAC=90°,AB=AC,AD是⑴ABC的角平分线,⑴AD=BD=CD.⑴由(1)得四边形AEBD是矩形,⑴矩形AEBD是正方形.【解析】试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出⑴ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:⑴点O为AB的中点,连接DO并延长到点E,使OE=OD,⑴四边形AEBD是平行四边形,⑴AB=AC,AD是⑴BAC的角平分线,⑴AD⑴BC,⑴⑴ADB=90°,⑴平行四边形AEBD是矩形;(2)当⑴BAC=90°时,理由:⑴⑴BAC=90°,AB=AC,AD是⑴BAC的角平分线,⑴AD=BD=CD,⑴由(1)得四边形AEBD是矩形,⑴矩形AEBD是正方形.107.如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE =DF,EF分别与AB、CD交于点G、H,求证:AG=CH.【答案】证明见解析.【解析】【分析】根据平行四边形的性质得AD ∥BC ,AD=BC ,∠A=∠C ,根据平行线的性质得∠E=∠F ,再结合已知条件可得AF=CE ,根据ASA 得△CEH ≌△AFG ,根据全等三角形对应边相等得证.【详解】∵在四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∠A=∠C , ∴∠E=∠F ,又∵BE =DF ,∴AD+DF=CB+BE ,即AF=CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEH ≌△AFG ,∴CH=AG.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.108.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【答案】(1)证明见解析;(2【解析】【分析】(1)根据正方形的性质得AB=BC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AE=BF;(2)根据全等三角形的对应边相等得BE=CF,再利用勾股定理计算即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE和△BCF中,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由(1)得△ABE≌△BCF,∴BE=CF.∵正方形的边长是5,BE=2,∴DF=CD-CF=CD-BE=5-2=3.在Rt△ADF中,由勾股定理得:AF===.【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练的掌握全等三角形的判定与性质和正方形的性质.109.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.【答案】(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.110.如图,在⊥ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE△△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:△AF△BC,△△AFE=△DBE.△E是AD的中点,AD是BC边上的中线,△AE=DE,BD=CD.在△AFE和△DBE中,△△AFE=△DBE,△FEA=△BED,AE=DE,△△AFE△△DBE(AAS)△AF=BD.△AF=DC.(2)四边形ADCF是菱形,证明如下:△AF△BC,AF=DC,△四边形ADCF是平行四边形.△AC△AB,AD是斜边BC的中线,△AD=DC.△平行四边形ADCF是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学-四边形单元测试题
一、选择题
1.如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的()
A. AO=OD
B. AO⊥OD
C. AO=OC
D. AO⊥AB
2.如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为()
A. 菱形
B. 正方形
C. 矩形
D. 一般平行四边形
3.如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为15,则△ABC的周长为()
A. 30
B. 15
C. 7.5
D. 45
4.如图,在正方形ABCD中,BD=BE,CE∥BD,BE交CD于F点,则∠DFE的度数为()
A. 45°
B. 60°
C. 75°
D. 90°
5.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD 的面积为()
A. 24
B. 36
C. 40
D. 48
6.若一个多边形的内角和小于其外角和,则这个多边形的边数是()
A. 3
B. 4
C. 5
D. 6
7.如图,在矩形ABCD中,E , F分别是AD , BC中点,连接AF , BE , CE , DF分别交于点M , N , 四边形EMFN是().
A. 正方形
B. 菱形
C. 矩形
D. 无法确定
8.已知□ABCD的周长为32,AB=4,则BC=()
A. 4
B. 12
C. 24
D. 28
9.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()
A. 18
B. 28
C. 36
D. 46
10.若一个四边形的两条对角线相等,我们则称这个四边形为对角线四边形.下列图形是对角线四边形的是()
A. 一般四边形
B. 平行四边形
C. 矩形
D. 菱形
11.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是()
A. 4
B. 5
C. 6
D. 7
12.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF 的值为()
A. 2
B. 4
C. 4
D. 2
二、填空题
13.顺次连接四边形各边中点所得的四边形是________
14.菱形的对角线长分别是5cm、12cm,则该菱形的面积为________
15.在矩形ABCD中,AB=4cm,AD=3cm,则AC=________cm.
16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC , DF⊥BC , 当△ABC满足条件________时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)
17. 如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=________ .
18.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=________cm.
19.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是________.(只填一个条件即可,答案不唯一)
20.如图,平行四边形ABCD中,E是边AB的中点,F是对角线BD的中点,若EF=3,则BC=________
21.如图,矩形ABCD的对角线AC,BD交于点O,若AD=2,∠AOB=120°,则CD=________.
22.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,若△PEF的面积为3,那么△PDC与△PAB的面积和等于________
三、解答题
23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.
24.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF,∠FDC=30°,求∠BEF的度数.
25.如图:在▱ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=27°,求∠C、∠B的度数.
26.如图,在四边形ABCD中,BC、AD不平行,且∠BAD+∠ADC=270°,E、F分别是AD、BC的中点,已知EF=4,求AB2+CD2的值.
27.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=4,∠BCD=120°,求四边形AODE的面积.
28.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.
参考答案
一、选择题
C A A C
D A B B C C A A
二、填空题
13.平行四边形14.30 cm215.5 16.AC=BC 17.18.2 19.∠BAD=90°或AC=BD
20.6 21.2 22.12
三、解答题
23.证明:∵四边形ABCD是平行四边形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,
∴△DFO≌△BEO(ASA),
∴OE=OF.
24.解:∵四边形ABCD是正方形,∴∠BCD=∠DCF=90°,BC=CD, ∵CE=CF,∠FDC=30°,∴△BCE≌△DCF,
∴∠EBC=∠FDC=30°,
∴∠BEC=60°,
∵∠DCF=90°,CE=CF,
∴∠FEC=45°,
∴∠BEF=∠BEC+∠FEC=60°+45°=105°.
25.解:∵∠BAD的平分线AE交DC于E,
∴∠DAB=2∠DAE=54°,
∵四边形ABCD是平行四边形,
∴∠C=∠DAB=54°,AD∥BC,
∴∠DAB+∠B=180°,
∴∠B=126°.
26.解:连接BD,取BD的中点M,连接EM并延长交BC于N,连接FM, ∵∠BAD+∠ADC=270°,
∴∠ABC+∠C=90°,
∵E、F、M分别是AD、BC、BD的中点,
∴EM∥AB,FM∥CD,EM=AB,FM=CD,
∴∠MNF=∠ABC,∠MFN=∠C,
∴∠MNF+∠MFN=90°,即∠NMF=90°,
由勾股定理得,ME2+MF2=EF2=16,
∴AB2+CD2=(2ME)2+(MF)2=64.
27.(1)证明:∵DE∥AC,AE∥BD,
∴四边形AODE是平行四边形,
∵在菱形ABCD中,AC⊥BD,
∴平行四边形AODE是菱形,
故四边形AODE是矩形
(2)解:∵∠BCD=120°,AB∥CD,
∴∠ABC=180°﹣120°=60°,
∵AB=BC,
∴△ABC是等边三角形,
∴OA= ×4=2,
∵在菱形ABCD中,AC⊥BD
∴由勾股定理OB= =2 ,
∵四边形ABCD是菱形,
∴OD=OB=2 ,
∴四边形AODE的面积=OA•OD=2 =4
28.(1)解:在菱形ABCD中,AB=AD,∠A=60°, ∴△ABD为等边三角形, ∴∠ABD=60°;
(2)解:由(1)可知BD=AB=4, 又∵O为BD的中点, ∴OB=2,
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.。

相关文档
最新文档