2七年级数学试卷
人教版数学七年级第二学期期末考试试卷及答案二
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
七年级数学试卷二单元
一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 3/42. 在下列各式中,正确的是()A. 2a + 3b = 2(a + b) + 3bB. a^2 + b^2 = (a + b)^2C. (a + b)^2 = a^2 + 2ab + b^2D. a^2 - b^2 = (a + b)(a - b)3. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 1,4C. 2,2D. 1,14. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长为()A. 5cmB. 6cmC. 7cmD. 8cm5. 已知a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 2B. 4C. 6D. 86. 在下列各式中,正确的是()A. sin^2θ + cos^2θ = 1B. tanθ = sinθ/cosθC. cotθ = cosθ/sinθD. secθ = 1/cosθ7. 已知一个圆的半径为r,则它的面积为()A. πr^2B. 2πrC. πrD. 2πr^28. 若∠A、∠B、∠C是三角形ABC的内角,且∠A + ∠B + ∠C = 180°,则下列说法正确的是()A. ∠A = ∠B = ∠CB. ∠A > ∠B > ∠CC. ∠A < ∠B < ∠CD. 无法确定9. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0),则下列说法正确的是()A. 若△ = b^2 - 4ac > 0,则方程有两个不相等的实数根B. 若△ = b^2 - 4ac = 0,则方程有两个相等的实数根C. 若△ = b^2 - 4ac < 0,则方程没有实数根D. 以上说法都正确10. 已知平行四边形ABCD,对角线AC和BD相交于点O,若OA = 3cm,OB = 4cm,则AB的长度为()A. 5cmB. 6cmC. 7cmD. 8cm二、填空题(每题5分,共50分)11. 已知a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为______。
2022-2023学年七年级(下)期末数学试卷 解析版
七年级(下)期末数学试卷一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o 6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2 11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2 12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2 13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E 是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是.16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是.三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 【分析】直接利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=5,故此选项错误;B、=6,故此选项错误;C、=﹣3,正确;D、﹣=﹣3,故此选项错误;故选:C.2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故B正确;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性、广泛性,故C错误;D、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故D错误;故选:B.3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b【分析】根据①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选:C.5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o【分析】根据垂线的定义,可得∠AOB,根据角的和差,可得∠AOC,根据角平分线的定义,可得∠COD,根据角的和差,可得答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=50°,∴∠AOC=50°+90°=140°.∵OD平分∠AOC,∴∠COD=∠AOC=×140°=70°.∵∠BOD=∠COD﹣∠BOC=70°﹣50°=20°,故选:A.6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【分析】如图,证明∠AEF+∠BFE=180°;借助翻折变换的性质求出∠BFE,即可解决问题.【解答】解:如图,∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选:B.7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:由已知得方程组,解得,代入,得到,解得.故选:A.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①【分析】利用加减消元法判断即可.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2【分析】根据点A和A1的坐标确定出横向平移规律,点B和B1的坐标确定出纵向平移规律,然后求出a、b,再代入代数式进行计算即可得解.【解答】解:∵A(1,0),A1(3,b),B(0,2),B1(a,4),∴平移规律为向右3﹣1=2个单位,向上4﹣2=2个单位,∴a=0+2=2,b=0+2=2,∴a﹣b=2﹣2=0.故选:C.11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【解答】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13故选:A.12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2【分析】把代入,再让两式相减,即可得出n﹣m的值,继而可得答案.【解答】解:根据题意知,①﹣②,得:﹣m+n=﹣2,即n﹣m=﹣2,∴n﹣m=(n﹣m)=﹣1,故选:B.13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是内错角相等两直线平行或(垂直于同一条直线的两直线平行).【分析】根据平行线的判定定理填空即可.【解答】解:依题意得:∠DFE=∠ACB,则DF∥AC(内错角相等两直线平行.或(垂直于同一条直线的两直线平行))故答案是:内错角相等两直线平行.或(垂直于同一条直线的两直线平行)16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积48 .【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据平分线分线段成比例定理,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【解答】解:根据题意得,DE=AB=10;BE=CF=6;CH∥DF.∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC:6,∴EC=9.∴S△EFD=×10×(9+6)=75;S△ECH=×6×9=27.∴S阴影部分=75﹣27=48.故答案为48.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【分析】根据B点位置分类讨论求解.【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 4 .【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(2021,1).【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【解答】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故答案为:(2021,1).三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.【分析】(1)先计算算术平方根和立方根、去绝对值符号,再计算加减可得;(2)整理方程组,再利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2+3﹣2+2﹣=3+;(2)方程组整理,得:,①+②,得:4x=12,解得x=3,将x=3代入①,得:3+4y=14,解得y=,∴方程组的解为;(3)解不等式x﹣3(x﹣1)<7,得:x>﹣2,解不等式x﹣2x<,得:x>0.6,则不等式组的解集为x>0.6,将不等式的解集表示在数轴上如下:21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360°×=36°;(3)反对中学生带手机的大约有6500×=4550(名).22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解答】解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2022+2022=(﹣1)2022+2022=2021.∴a2022+2022的值为2021.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.【分析】(1)直接利用平移规律丰碑得出对应点位置进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律;(3)利用四边形ABCD所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A′(﹣4,1),B′(﹣2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a﹣2,b+1);(3)四边形ABCD的面积为:6×6﹣×2×6﹣×2×4﹣×2×4=22.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD =∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC =∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.。
2023年江苏省七年级下学期数学期末试题卷(附答案) (2)
江苏省七年级下学期数学期末试题卷本试卷由填空题、选择题和解答题三大题组成,共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.下列运算正确的是A.a·a2=a2 B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.某红外线遥控器发出的红外线波长为0.00 000 094m,用科学记数法表示这个数是A.9.4×10-7m B.9.4×107m C.9.4×10-8m D.9.4×108m3.一个正多边形的每个外角都等于36°,那么它是A.正六边形 B.正八边形 C.正十边形 D.正十二边形4.不等式组221xx≤⎧⎨+>⎩的最小整数解为A.-1 B.0 C.1 D.25.如图,直线l、n分别截∠A的两边,且l∥n.根据图中标示的角,判断下列各角的度数关系,正确的是A.∠2+∠5 >180°B.∠2+∠3< 180°C.∠1+∠6> 180°D.∠3+∠4<180°6.数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-c B.a+c<b+cC.ac>bc D.a cb b <7.下列命题中是真命题的是A.质数都是奇数B.如果a=b,那么a=bC.如果a>b,那么(a+b)(a-b)>0 D.若x<y,则x-202X<y-202X8.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.49.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)10.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元二、填空题本大题共8小题.每小题3分,共24分把答案直接填在答题卡相对应的位置上.11.命题“内错角相等”是▲命题(填“真”、“假”).12.(▲)(2a-3b)=12a2b-18ab2.13.已知2x=3y+7,则32x y-=▲.14.如果(x+3)(x+a)=x2-2x-15,则a=▲.15.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是▲.16.已知关于x的方程x-(2x-a)=2的解是负数,则a的取值范围是▲.17.计算:498×502-5002=▲.18.已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分9分,每小题3分)将下列各式分解因式:(1)4m2-36mn+81n2;(2)x2-3x-10;(3)18a2-50.20.(本题满分8分,每小题4分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]·x2y;(2)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.21.(本题满分8分,每小题4分)解下列方程组:(1)524235x yx y-=⎧⎨-=-⎩(2)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,每小题4分)解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来; (2)()32412123x xxx⎧-->-⎪⎨+>-⎪⎩.23.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=70°.填空:解:∵EF//AD(已知),∴∠2=▲(▲),∵∠1=∠2( ▲),∴∠1=∠3( ▲),∴AB∥▲( ▲).∴∠BAC+▲=180°( ▲).∵∠BAC=70°( ▲),∴∠AGD=▲°.24.(本题满分5分)某厂家为支援灾区人民,捐赠帐篷16800顶,该厂家备有2辆大货车、8辆小货车运送,每次每辆大货车所运帐篷数比小货车所运帐篷数的2倍少30顶,已知大、小货车每天均运送一次,2天恰好运完,求大、小货车每辆每次各运送帐篷多少顶?25.(本题满分5分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.26.(本题满分6分)已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.27.(本题满分7分)如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?28.(本题满分7分)甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.29.(本题满分8分)如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版七年级数学第二学期期末测试卷1-4Microsoft Word 文档 (2)
A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个 角都是对顶角 C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在 同一直线上,这两个角互为对顶角 10.下列各式中,正确的是( ) A.±=± B.±=; C.±=± D.=± 三、解答题:( 每题6分,共18分) 11.解下列方程组: 12.解不等式组,并在数 轴表示: 13.若A(2x-5,6-2x)在第四象限,求a的取值范围.
24.
25.(10分)如图,AD为△ABC的中线,BE为△ABD的中 线。 (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多 少?
26.(10分)5月12日我国四川汶川县发生里氏8.0级大地震,地 震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发 生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人 民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助 床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些 物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一 辆乙货车可装床架10个和课桌凳10套. (1)学校如何安排甲、乙两种货车可一次性把这些物资运到 灾区?有几种方案? (2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费 1000元,则学校应选择哪种方案,使运输费最少?最少运费是多
3.(05兰州)一束光线从点A(3,3)出发,经过y轴上 点C反射后经过点B(1,0)则光线从A点到B点经过的路 线长是( )A.4 B.5 C.6 D.7
4.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B. 四边形 C.五边形 D.六边形 5.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有 人提出了4种地 砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六 边形.其中不 能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④ 6.如果中的解x、y相同,则m的值是( )(A)1(B)-1 (C)2(D)-2 7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一 队打了14场比赛,负5场,共得19分,那么这个队胜了( )(A) 3场(B)4场(C)5场(D)6场 8.若使代数式的值在-1和2之间,m可以取的整数有( )(A)1个 (B)2个(C)3个 (D)4个 9.把不等式组的解集表示在数轴上,正确的是( ).
人教版七年级数学下册期末测试卷 (2)
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
七年级数学下册试卷
七 年 级 下 册数 学 试 卷2022.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约米.其中,用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22ba > 3 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5 如图,已知直线a 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足A .2m -≠B 0m ≠C 3m ≠D 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步 走的步数(单位:万步),将记录结果绘制成了如图所示的统计 图.在每天所走的步数这组数据中,众数和中位数分别是ba 21步数/万步天数A .,B .,C .,D .,8.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12那么第n (n 为正整数)个等式为A .n 2 - n -22 = 2 × 2n -2B .n 12 - n -12 = 2 × 2nC .2n 2 - 2n -22 = 2 ×4n -2D .2n 12 - 2n -12 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分) 9 因式分解:21x-= .10 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是 . 11 写出不等式组11x x -⎧⎨<⎩≥,的整数解为 .12 在①11x=y=-⎧⎨⎩,, ②23x=y=⎧⎨⎩,,-- ③30x=y=⎧⎨⎩,- 中,①和②是方程235x y=-的解; 是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩, 的解为 .13 程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统 宗》) 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚各几丁意思是:有100个和尚分100个馒头,如果大 和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人 如果设大和尚有人, 小和尚有人,那么根据题意可列方程组为 .14 在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a 3b .如:1⊕5=2×13×5=17.则不等式⊕4<0的解集为 .15 若3a b +=,则226a b b -+的值为16数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:baa①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b小华的画法:baa①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据答:我喜欢同学的画法,画图的依据是三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17因式分解:(1)269x x-+;(2)()22m n m n-+-18解不等式:12+x≥13-x,并把它的解集在数轴上表示出来.19解不等式组:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420 解方程组:13 5.x+y=x+y=⎧⎨⎩,21 已知关于,的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值22已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°求∠AOE 的度数FOED CBA23 已知2870x x +-=,求2)12()1(4)2)(2(++---+x x x x x 的值24 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2022年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2022年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25 如图,已知BD 平分∠ABC 请补全图形后,依条件完成解答 (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由26 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需万元;新建3个地上停车位和2个地下停车位共需万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案D CBA27 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D 作直线DH ∥AC 交直线EF 于点H(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动①当点H 在三角形ABC 内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立请在图2中画图探究,并说明理由28 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275xx x⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)数学试卷参考答案及评分标准2022.5一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= -3 2 ………………………… 2分 (2)原式= mn m -n m -n ………………………… 3分= m -n mn 1 ………………………… 5分18 解: 移项,得2-3≥-1-1 ………………………… 2分合并同类项,得-≥-2 ………………………… 3分 系数化为1,得≤2 ………………………… 4分解集在数轴上表示如下:……………… 5分19.解:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,①. ② 由①,得3-3≤5 1 ………………………… 1分-2 ≤4≥-2 …………………………2分由②,得8<9 -…………………………3分9<9<1…………………………4分所以不等式组的解集为-2≤<1…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2=4…………………………1分解这个方程,得=2…………………………2分把=2代入①,得2 = 1…………………………3分= -1 …………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a 2b = 2…………………………5分法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分解得431.3a=b=⎧⎪⎪⎨⎪⎪⎩,…………………………………………………………4分4321FO EDCBA所以a 2b = 2 ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90° …………………………1分 ∵∠2=60°,∴∠3=∠2=60° …………………………2分 ∵DF ∥OE ,∴∠3∠4=180° …………………………3分 ∴∠4=120° …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150° ………………5分23.解:原式= 2 - 4 - 42 4 42 4 1………………………… 3分= 2 8 - 3 ………………………… 4分由2 8 – 7 = 0,得 2 8 = 7 ………………………… 5分所以,原式= 7 – 3 = 4 ………………………… 6分24 解:(1)120 ………………………… 1分 (2)36 ………………………… 2分 不同意小明的看法 ………………………… 3分 手机部4月份销售额为:95×32%=(万元) …………………… 4分 手机部5月份销售额为:120×30%=36(万元) 因为36万元>万元, 故小明说法错误4321GFE D CBA(3)B ………………………… 5分 % ………………………… 6分 25解:(1)如图 ………………………… 1分 (2)如图 ………………………… 2分 (3)∠BFG =∠BGF ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4 …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4 …………………………6分 ∴∠1=∠2即∠BFG =∠BGF26 解:(1)设0.632 1.3.x+y=x+y=⎧⎨⎩,0.10.5.x y =⎧⎨=⎩,(m 为整数)个地上停车位,则建(50-m )个地下停车位根据题意,得12<(50-m )≤13. ……………4分 解得:30≤m <. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.54321AB CDEF H图2-2HFED CBA27(1)证明:如图∵DE ∥BC ,∴∠1=∠C ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2 ………………………… 2分 ∴∠2=∠C ………………………… 3分即∠HDE =∠C(2)解:①∠DHF +∠FEC =180° ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立理由如下:ⅰ如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC ………………… 6分ⅱ如图2-2,当点H 在直线DE 下方时,∵DH ∥AC ,∴∠DHF =∠FEC …………………… 7分综上所述,当点H 在三角形ABC 外部时,∠DHF =∠FEC(注(2)②中对应一图一理由正确得2分,完全正确得3分)28 解:(1)③ ………………………… 1分 (2)答案不唯一,只要解为 = 1即可 ………………………… 2分AB C D EFH图2-1(3)22.x x mx m-⎧⎨-⎩<,①≤②解不等式①,得>m…………………………3分解不等式②,得≤m2 …………………………4分所以不等式组的解集为m<≤m2方程2-1= 2的解为=3 …………………………5分方程1322x x+=+⎛⎫⎪⎝⎭的解为=2 …………………………6分所以,m的取值范围是1≤m<2…………………………7分。
王朝霞七年级数学试卷二
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001…2. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则a + b的值是()A. 5B. -5C. 6D. 03. 下列命题中,正确的是()A. 平行四边形的对边相等,对角相等B. 等腰三角形的底角相等C. 等边三角形的内角都是直角D. 四边相等的四边形是矩形4. 若|a| = 5,则a的值为()A. ±5B. 5C. -5D. 无法确定5. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 36. 已知x + y = 5,x - y = 1,则x的值为()A. 3B. 2C. 4D. 57. 若一个数的平方根是2,则这个数是()A. 4B. -4C. ±4D. 无法确定8. 在直角坐标系中,点P(-3,4)关于x轴的对称点坐标是()A.(-3,-4)B.(3,-4)C.(-3,4)D.(3,4)9. 若一个数的立方根是-2,则这个数是()A. -8B. 8C. ±8D. 无法确定10. 下列各数中,正数是()A. -3B. 0C. √9D. -√9二、填空题(每题3分,共30分)11. 2的平方根是______,它的立方根是______。
12. 若a^2 = 25,则a的值为______。
13. 已知x - 3 = 0,则x = ______。
14. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB = ______cm。
15. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b = ______。
16. 下列各数中,负数是______。
17. 若x^2 = 16,则x的值为______。
18. 在直角坐标系中,点Q(2,-3)关于y轴的对称点坐标是______。
七年级下册数学试卷全册
一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列方程中,x的值是-1的是()A. x + 3 = 2B. 2x - 1 = 0C. 3x + 2 = 0D. x - 4 = -13. 下列函数中,y随x增大而减小的函数是()A. y = 2x + 1B. y = -x + 3C. y = x^2D. y = 2x - 34. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 梯形5. 下列分数中,约分后分子分母都是奇数的是()A. 3/4B. 5/6C. 7/8D. 9/106. 下列数中,是质数的是()A. 25B. 27C. 31D. 337. 下列三角形中,是直角三角形的是()A. 两边长分别为3、4、5的三角形B. 两边长分别为5、12、13的三角形C. 两边长分别为6、8、10的三角形D. 两边长分别为7、24、25的三角形8. 下列图形中,是圆的是()A. 矩形B. 圆形C. 正方形D. 菱形9. 下列函数中,是二次函数的是()A. y = x^2 + 3x + 2B. y = 2x^2 + 5x - 3C. y = x^3 + 2x^2 + 3x + 1D. y = x^2 + 2x + 110. 下列数中,是正数的是()A. -1/2B. 0C. 1/3D. -2/3二、填空题(每题3分,共30分)11. 已知a + b = 5,a - b = 3,则a = ,b = 。
12. 下列函数中,y = -2x + 1的斜率是,截距是。
13. 下列图形中,等腰三角形的底边长是。
14. 下列分数中,约分后分子分母都是偶数的是。
15. 下列数中,是偶数的是。
16. 下列图形中,是平行四边形的是。
17. 下列函数中,y = x^2 - 3x + 2的顶点坐标是。
18. 下列数中,是负数的是。
三、解答题(每题10分,共40分)19. 已知a、b、c是三角形的三边长,且a + b = 8,a - b = 2,求c的值。
人教版七年级(下)期末数学试卷二
七年级(下)期末数学试卷6.14作业一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中只有一项符合题目要求)1.(3分)4的算术平方根是()A.2B.4C.﹣2D.﹣42.(3分)点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为6,7,则点P的坐标为()A.(﹣6,7)B.(6,﹣7)C.(7,﹣6)D.(﹣7,6)3.(3分)若a>b,则下列式子正确的是()A.1﹣4a>1﹣4b B.a<b C.﹣a>﹣b D.2a﹣4>2b﹣44.(3分)下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量5.(3分)有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y6.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上7.(3分)如图,下列条件中,能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠BAC=∠ACD D.∠BAD=∠BCD8.(3分)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是269.(3分)2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h 共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.10.(3分)若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.C.2D.3二、填空题(本大题共8个小题,每小题3分,共24分)11.(3分)为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是.12.(3分)“a的2倍与b的一半的差不大于0”用不等式表示为.13.(3分)点P(x﹣2,x+3)在第一象限,则x的取值范围是.14.(3分)若实数a与b满足(4a﹣b)2+|3a﹣b+2|=0,则ab的平方根为.15.(3分)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于.16.(3分)已知是二元一次方程组的解,则的值为.17.(3分)过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC =°.18.(3分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为.三、解答题(本大题共6个小题,共46分)19.(6分)如图,三角形ABC三个顶点的坐标分别为A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),将三角形ABC进行平移得到三角形A1B1C1,三角形ABC中任意一点P(x1,y1)平移后的对应点P1的坐标为(x1+6,y1+4).(1)请问:三角形ABC是如何平移得到三角形A1B1C1的?画出三角形A1B1C1;(2)写出点A1,B1,C1的坐标.20.(6分)解不等式组,并在数轴上表示出不等式组的解集.21.(6分)请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式性质).即∠BAF=.∴∠4=∠BAF.(等量代换).∴AB∥CD().22.(8分)某校七年级数学兴趣小组成员小华对本班上学期期末考试数学成绩作了统计分析,绘制成如下频数分布表和频数分布直方图.分组50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x ≤100 频数2 a 20 16 4 占调查总人数的百分比 4% 16% m 32% n请你根据图表提供的信息,解答下列问题:(1)分布表中a = ,m = ,n = ;(2)补全频数分布直方图;(3)如果80分以上为优秀,已知该年级共有学生600人,请你估计七年级学生这次考试优秀的人数是多少?23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A 、B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.(10分)先阅读,再完成练习一般地,数轴上表示数x 的点与原点的距离,叫做数x 的绝对值,记作|x |,|x |<3.x 表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x |<3的解集是﹣3<x <3;|x |>3x 表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数或大于3的数,它们到原点距离大于3,所以x>3的解集是x<﹣3或x>3解答下面的问题:(1)不等式|x|<5的解集为,不等式|x|>5的解集为.(2)不等式|x|<m(m>0)的解集为.不等式|x|>m(m>0)的解集为.(3)解不等式|x﹣3|<5.(4)解不等式|x﹣5|>3.。
2021-2022学年七年级第二学期期末数学考试试卷及参考答案
七年级数学试卷一、选择题(本大题共6题,每题2分,共12分) 1. 下列实数中,有理数是( )(A )0.2525525552……(相邻的两个“2”之间每次增加一个“5”); (B )π3-; (C )8; (D )722.2. 若三角形的两边长分别为3和6,则第三边的长不可能是( ) (A )3; (B ) 4; (C )5; (D )6.3. 如图1,能推断AD//BC 的是( ) (A )43∠=∠; (B ); (C )345∠=∠+∠ ; (D )213∠+∠=∠.4.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比( )(A )横坐标不变,纵坐标加3 (B ) 纵坐标不变,横坐标加3 (C )横坐标不变,纵坐标乘以3 (D )纵坐标不变,横坐标乘以324∠=∠5. 若点()b a P ,到y 轴的距离为2,则( )(A )2=a ; (B )2±=a ; (C )2=b ; (D ) 2±=b . 6.如图2,已知两个三角形全等,那么∠1的度数是( )(A )72°;(B )60°;(C )58°;(D )50°.二、填空题(本大题共12题,每题2分,共24分) 7. 827-的立方根等于. 8. 比较大小:3-2-. 9. 用幂的形式表示:37=.10.计算:51515÷⨯= .11. 位于浦东的“中国馆”总建筑面积约为1601000平方米,这个数字保留两个有效数字可写为平方米.12. 经过点P ()1,3-且垂直于y 轴的直线可表示为直线_________. 13.若三角形三个内角的比为2︰3︰4,则这个三角形是三角形(按角分类).EDCBA54321图1(图2)14. 如图3,已知△ABC,ACB∠的平分线CD交AB于点D,//DE BC,且8AC=,如果点E是边AC的中点,那么DE的长为.15. 如图4,在△ABC中,︒=∠70A,如果ABC∠与ACB∠的平分线交于点D,那么BDC∠=度.16. 如图5,如果AB∥CD,∠1 = 30º,∠2 = 130º,那么∠BEC=度.17.如图6,将Rt△ABC绕点O顺时针旋转90º,得到Rt△A´OB´,已知点A的坐标为(4,2),则点A´的坐标为____________.18.已知三角形ABC是一个等腰三角形,其中两个内角度数之比为1:4,则这个等腰三角形顶角的度数为.三、简答题(本大题共6小题,每小题6分,共36分)19. 计算:()4981331-++20. 计算:3ECBADCBAD图3图421DCBAE图5图621.计算:))2222- 22.利用幂的性质进行计算:633326⨯÷23. 如图,在直角坐标平面内,点A 的坐标是(0,3),点B 的坐标是(3,2)--(1)图中点C 关于x 轴对称的点D 的坐标是. (2)如果将点B 沿着与x 轴平行的方向向右平移3个单位得到点B ',那么A 、B '两点之间的距离是. (3)求四边形ABCD 的面积24. 说理填空:如图,点E 是DC 的中点,EC=EB ,∠CDA=120°,DF//BE ,且DF 平分∠CDA ,求证:△BEC 为等边三角形.yx·· ·解: 因为DF 平分∠CDA (已知)所以∠FDC=21∠________. ( ) 因为∠CDA=120°(已知) 所以∠FDC=______°.因为DF//BE (已知) 所以∠FDC=∠_________.(____________________________________) 所以∠BEC = 60°,又因为EC=EB,(已知)所以△BCE 为等边三角形.(_____________________________)三、解答题(25题8分、26题8分,27题12分,共28分) 25. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,CD 与BE 交FBCEDA于点O ,且满足CE B D =,21∠=∠.试说明ABC △是等腰三角形的理由.26.如图,已知AB=CD ,点E 是AD 的中点,EB=EC. 试说明AD//BC的理由.AB CDE27. 如果一个三角形能用一条直线将其分割出两个等腰三角形,那么我们称这个三角形为“活三角形”,这条直线称为该“活三角形”的“生命线”. (1)小明在研究“活三角形”问题时(如图),他发现,在△ABC中,若∠BAC = 3∠C时,这个△ABC一定是“活三角形”.点D在BC 边上一点,联结AD,他猜测:当∠DAC = ∠C时,AD就是这个三角形的“生命线”,请你帮他说明AD是△ABC的“生命线”的理由.(2)如小明研究结果可以总结为:有一个内角是另一个内角的3倍时,该三角形是一个“活三角形”。
七年级数学试卷第二章测试
一、选择题(每题3分,共30分)1. 下列数中,既是整数又是正数的是()A. -3B. 0C. 1.5D. -22. 如果a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 < b + 2D. a - 2 > b - 23. 下列数中,绝对值最大的是()A. -5B. -4C. 0D. 34. 如果a、b、c是三个不同的整数,且a + b = 0,那么下列说法正确的是()A. a、b中必有一个是正数B. a、b中必有一个是负数C. a、b中一个是正数,一个是负数D. a、b中一个是05. 下列各数中,有理数是()A. √2B. πC. 0.1010010001……D. 3/26. 下列各数中,无理数是()A. √4B. 3/2C. -πD. 0.111111……7. 下列各数中,既是正数又是无理数的是()A. √9B. 2/3C. -√2D. 38. 下列各数中,负整数是()A. -2B. 0C. 1/2D. √49. 下列各数中,有理数乘以无理数的结果是()A. 有理数B. 无理数C. 0D. 无法确定10. 下列各数中,两个无理数相乘的结果是()A. 有理数B. 无理数C. 0D. 无法确定二、填空题(每题3分,共30分)11. 有理数0.3的小数点向右移动两位后,这个数变为______。
12. 有理数-0.5的相反数是______。
13. 有理数5的绝对值是______。
14. 有理数3/4与-1/2的和是______。
15. 有理数-3/4与-1/2的差是______。
16. 有理数2/3与-1/3的积是______。
17. 有理数-2与-3的商是______。
18. 有理数√9的平方根是______。
19. 有理数-√4的平方根是______。
20. 有理数0.001的小数点向左移动三位后,这个数变为______。
七年级下册数学期末试题 二
第1页 (共8页)xx 县20 —20 学年度第二学期期末教学质量检测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
) 题号 Ⅰ Ⅱ总分 总分人一 二三 17 18 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.方程4x -3=x 的解是( )A .x = 34B .x = 43 C .x =1 D .x =-12.已知a >b ,且c 为有理数,则下列关系一定成立的是( )A .ac >bcB .c -a >c -bC .ac 2>bc 2D .c +a >c +b3.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺成一个平面图案的是( ) A .正方形和正六边形 B .正三角形和正方形C .正三角形和正六边形D .正三角形、正方形和正六边形4.下列图案既是中心对称图形又是轴对称图形的是( ).A .B .C .D .5.现有5cm ,6cm ,11cm ,13cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成不同的三角形的个数是( ) A .1个 B .2个 C .3个 D .4个得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页 (共8页)6.若⎩⎨⎧==23y x 是方程3x -ay =0的一个解,则a 的值为( )A .3B .4C .4.5D .67.如图1所示,△ABC 是等腰直角三角形,点D 是斜边BC 的中点,△ABD 绕点A 旋转到△ACE 的位置,恰好与△ACD 组成正方形ADCE ,则△ABD 所经过的旋转是( )A .顺时针旋转225°B .逆时针旋转45°C .顺时针旋转315°D .逆时针旋转90°8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ) A .⎩⎨⎧=-=+705.25.24205.25.2y x y x B .⎩⎨⎧=+=-4205.25.270y x y xC . ⎩⎨⎧=-=+4205.25.270y x y x D .⎩⎨⎧=+=+4205.25.270y x y x 9.下列判断正确的是( )A .方程(x -3)(y +1)=0的解是⎩⎨⎧-==13y xB .方程2x -4y =8的解必是方程组⎩⎨⎧=+=-753842y x y x 的解C .t 可以取任意数时,⎩⎨⎧+=+=2345t y t x 都是方程3x -5y =2的解D . 二元一次方程组一定只有一组解10.若不等式组⎪⎪⎩⎪⎪⎨⎧++≥++≥++a x a x x x )1(343450312恰有三个整数解,则a 的取值范围为( )第3页 (共8页)A .12≤a ≤1B .12<a ≤1C .1≤a <32D .1≤a ≤32第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。
七年级下册数学试卷及答案
七年级下册数学试卷及答案知识有重量,但成就有光泽。
有⼈感觉到知识的⼒量,但更多的⼈只看到成就的光泽。
下⾯给⼤家分享⼀些关于七年级下册数学试卷及答案,希望对⼤家有所帮助。
⼀、选择题(本题共10⼩题,每⼩题3分,共30分)1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是⽆理数的有( )A. 1个B. 2个C. 3个D. 4个考点:⽆理数.分析:根据⽆理数的定义(⽆理数是指⽆限不循环⼩数)判断即可.解答:解:⽆理数有,0.101001…(中间0依次递增),﹣π,共3个,故选C.点评:考查了⽆理数的应⽤,注意:⽆理数是指⽆限不循环⼩数,⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数.2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平⾏线的性质;⾓平分线的定义.专题:计算题.分析:本题主要利⽤两直线平⾏,同旁内⾓互补,再根据⾓平分线的概念进⾏做题.解答:解:∵AB∥CD,根据两直线平⾏,同旁内⾓互补.得:∴∠ACD=180°﹣∠A=70°.再根据⾓平分线的定义,得:∠ECD= ∠ACD=35°.故选D.点评:考查了平⾏线的性质以及⾓平分线的概念.3.(3分)下列调查中,适宜采⽤全⾯调查⽅式的是( )A. 了解我市的空⽓污染情况B. 了解电视节⽬《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某⼯⼚⽣产的⼀批⼿表的防⽔性能考点:全⾯调查与抽样调查.分析:由普查得到的调查结果⽐较准确,但所费⼈⼒、物⼒和时间较多,⽽抽样调查得到的调查结果⽐较近似.解答:解:A、不能全⾯调查,只能抽查;B、电视台对正在播出的某电视节⽬收视率的调查因为普查⼯作量⼤,适合抽样调查;C、⼈数不多,容易调查,适合全⾯调查;D、数量较⼤,适合抽查.故选C.点评:本题考查了抽样调查和全⾯调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选⽤,⼀般来说,对于具有破坏性的调查、⽆法进⾏普查、普查的意义或价值不⼤时,应选择抽样调查,对于精确度要求⾼的调查,事关重⼤的调查往往选⽤普查.4.(3分)⼀元⼀次不等式组的解集在数轴上表⽰为( )A. B. C. D.考点:在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表⽰出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表⽰为:故选B.点评:本题考查的是在数轴上表⽰不等式组的解集,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.5.(3分)⼆元⼀次⽅程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解⼆元⼀次⽅程.专题:计算题.分析:将x=1,2,3,…,代⼊⽅程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;则⽅程的正整数解有3个.故选B点评:此题考查了解⼆元⼀次⽅程,注意x与y都为正整数.6.(3分)若点P(x,y)满⾜xy<0,x<0,则P点在( )A. 第⼆象限B. 第三象限C. 第四象限D. 第⼆、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第⼆象限内点的坐标特征进⾏判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第⼆象限.故选A.点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平⾏线的性质.分析:过E作EF∥AB,根据平⾏线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.故选B.点评:本题考查了平⾏线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平⾏线的性质:两直线平⾏,同旁内⾓互补.8.(3分)已知是⽅程组的解,则是下列哪个⽅程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:⼆元⼀次⽅程组的解;⼆元⼀次⽅程的解.专题:计算题.分析:将x=2,y=1代⼊⽅程组中,求出a与b的值,即可做出判断.解答:解:将⽅程组得:a=2,b=3,将x=2,y=3代⼊2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,∴是⽅程2x﹣y=1的解,故选A.点评:此题考查了⼆元⼀次⽅程组的解,⽅程组的解即为能使⽅程组中两⽅程成⽴的未知数的值.9.(3分)下列各式不⼀定成⽴的是( )A. B. C. D.考点:⽴⽅根;算术平⽅根.分析:根据⽴⽅根,平⽅根的定义判断即可.解答:解:A、a为任何数时,等式都成⽴,正确,故本选项错误;B、a为任何数时,等式都成⽴,正确,故本选项错误;C、原式中隐含条件a≥0,等式成⽴,正确,故本选项错误;D、当a<0时,等式不成⽴,错误,故本选项正确;故选D.点评:本题考查了⽴⽅根和平⽅根的应⽤,注意:当a≥0时, =a,任何数都有⽴⽅根10.(3分)若不等式组的整数解共有三个,则a的取值范围是( )A. 5<a<6 p="" 5≤a≤6<="" d.="" 5≤a<6="" c.="" 5考点:⼀元⼀次不等式组的整数解.分析:⾸先确定不等式组的解集,利⽤含a的式⼦表⽰,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从⽽求出a的范围.解答:解:解不等式组得:2<x≤a,< p="">∵不等式组的整数解共有3个,∴这3个是3,4,5,因⽽5≤a<6.故选C.点评:本题考查了⼀元⼀次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同⼤取较⼤,同⼩取较⼩,⼩⼤⼤⼩中间找,⼤⼤⼩⼩解不了.⼆、填空题(本题共8⼩题,每⼩题3分,共24分)11.(3分)(2009?恩施州)9的算术平⽅根是 3 .考点:算术平⽅根.分析:如果⼀个⾮负数x的平⽅等于a,那么x是a的算术平⽅根,根据此定义即可求出结果.解答:解:∵32=9,∴9算术平⽅根为3.故答案为:3.点评:此题主要考查了算术平⽅根的等于,其中算术平⽅根的概念易与平⽅根的概念混淆⽽导致错误.12.(3分)把命题“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”写出“如果…,那么…”的形式是:在同⼀平⾯内,如果 两条直线都垂直于同⼀条直线 ,那么 这两条直线互相平⾏ .考点:命题与定理.分析:根据命题题设为:在同⼀平⾯内,两条直线都垂直于同⼀条直线;结论为这两条直线互相平⾏得出即可.解答:解:“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线互相平⾏”.故答案为:两条直线都垂直于同⼀条直线,这两条直线互相平⾏.点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.(3分)将⽅程2x+y=25写成⽤含x的代数式表⽰y的形式,则y= 25﹣2x .考点:解⼆元⼀次⽅程.分析:把⽅程2x+y=25写成⽤含x的式⼦表⽰y的形式,需要把含有y的项移到⽅程的左边,其它的项移到另⼀边即可.解答:解:移项,得y=25﹣2x.点评:本题考查的是⽅程的基本运算技能,表⽰谁就该把谁放到⽅程的左边,其它的项移到另⼀边.此题直接移项即可.14.(3分)不等式x+4>0的最⼩整数解是 ﹣3 .考点:⼀元⼀次不等式的整数解.分析:⾸先利⽤不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:x+4>0,x>﹣4,则不等式的解集是x>﹣4,故不等式x+4>0的最⼩整数解是﹣3.故答案为﹣3.点评:本题考查了⼀元⼀次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.(3分)某校在“数学⼩论⽂”评⽐活动中,共征集到论⽂60篇,并对其进⾏了评⽐、整理,分成组画出频数分布直⽅图(如图),已知从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,那么在这次评⽐中被评为优秀的论⽂有(分数⼤于或等于80分为优秀且分数为整数) 27 篇.考点:频数(率)分布直⽅图.分析:根据从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3和总篇数,分别求出各个⽅格的篇数,再根据分数⼤于或等于80分为优秀且分数为整数,即可得出答案.解答:解:∵从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,共征集到论⽂60篇,∴第⼀个⽅格的篇数是: ×60=3(篇);第⼆个⽅格的篇数是: ×60=9(篇);第三个⽅格的篇数是: ×60=21(篇);第四个⽅格的篇数是: ×60=18(篇);第五个⽅格的篇数是: ×60=9(篇);∴这次评⽐中被评为优秀的论⽂有:9+18=27(篇);故答案为:27.点评:本题考查读频数分布直⽅图的能⼒和利⽤统计图获取信息的能⼒;利⽤统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出⽅程组 .考点:由实际问题抽象出⼆元⼀次⽅程组.分析:利⽤“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出⼆元⼀次⽅程组求解即可.解答:解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:,故答案为::,点评:本题考查了由实际问题抽象出⼆元⼀次⽅程组的知识,解题的关键是从题⽬中找到两个等量关系,这是列⽅程组的依据.17.(3分)在平⾯直⾓坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .考点:坐标与图形性质.分析:根据线段AB∥x轴,则A,B两点纵坐标相等,再利⽤点B可能在A点右侧或左侧即可得出答案.解答:解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,∴点B可能在A点右侧或左侧,则端点B的坐标是:(﹣5,4)或(3,4).故答案为:(﹣5,4)或(3,4).点评:此题主要考查了坐标与图形的性质,利⽤分类讨论得出是解题关键.18.(3分)若点P(x,y)的坐标满⾜x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满⾜2+2=2×2.请另写出⼀个“和谐点”的坐标 (3, ) .考点:点的坐标.专题:新定义.分析:令x=3,利⽤x+y=xy可计算出对应的y的值,即可得到⼀个“和谐点”的坐标.解答:解:根据题意得点(3, )满⾜3+ =3× .故答案为(3, ).点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.三、解答题(本⼤题共46分)19.(6分)解⽅程组 .考点:解⼆元⼀次⽅程组.分析:先根据加减消元法求出y的值,再根据代⼊消元法求出x的值即可.解答:解:,①×5+②得,2y=6,解得y=3,把y=3代⼊①得,x=6,故此⽅程组的解为 .点评:本题考查的是解⼆元⼀次⽅程组,熟知解⼆元⼀次⽅程组的加减消元法和代⼊消元法是解答此题的关键.20.(6分)解不等式:,并判断是否为此不等式的解.考点:解⼀元⼀次不等式;估算⽆理数的⼤⼩.分析:⾸先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进⾏判断即可.解答:解:去分母,得:4(2x+1)>12﹣3(x﹣1)去括号,得:8x+4>12﹣3x+3,移项,得,8x+3x>12+3﹣4,合并同类项,得:11x>11,系数化成1,得:x>1,∵ >1,∴是不等式的解.点评:本题考查了解简单不等式的能⼒,解答这类题学⽣往往在解题时不注意移项要改变符号这⼀点⽽出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同⼀个数或整式不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个正数不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个负数不等号的⽅向改变.21.(6分)学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,( 垂直定义 )∴AD∥EG,( 同位⾓相等,两直线平⾏ )∴∠1=∠2,( 两直线平⾏,内错⾓相等 )∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴ ∠2 = ∠3 (等量代换)∴AD平分∠BAC( ⾓平分线定义 )考点:平⾏线的判定与性质.专题:推理填空题.分析:根据垂直的定义及平⾏线的性质与判定定理即可证明本题.解答:解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位⾓相等,两直线平⾏)∴∠1=∠2,(两直线平⾏,内错⾓相等)∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(⾓平分线定义 ).点评:本题考查了平⾏线的判定与性质,属于基础题,关键是注意平⾏线的性质和判定定理的综合运⽤.22.(8分)在如图所⽰的正⽅形⽹格中,每个⼩正⽅形的边长为1,格点三⾓形(顶点是⽹格线的交点的三⾓形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所⽰的⽹格平⾯内作出平⾯直⾓坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的⾯积.考点:作图-平移变换.分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;(2)利⽤点的坐标平移性质得出A,′B′,C′坐标即可得出答案;(3)利⽤矩形⾯积减去周围三⾓形⾯积得出即可.解答:解:(1)∵点A的坐标为(﹣4,5),∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所⽰:△A′B′C′即为所求;(3)△ABC 的⾯积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.点评:此题主要考查了平移变换以及三⾓形⾯积求法和坐标轴确定⽅法,正确平移顶点是解题关键.23.(10分)我市中考体育测试中,1分钟跳绳为⾃选项⽬.某中学九年级共有若⼲名⼥同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进⾏统计后分为A、B、C、D四等,并绘制成下⾯的频数分布表(注:5~10的意义为⼤于等于5分且⼩于10分,其余类似)和扇形统计图(如图).等级分值跳绳(次/1分钟) 频数A 12.5~15 135~160 mB 10~12.5 110~135 30C 5~10 60~110 nD 0~5 0~60 1(1)m的值是 14 ,n的值是 30 ;(2)C等级⼈数的百分⽐是 10% ;(3)在抽取的这个样本中,请说明哪个分数段的学⽣最多?(4)请你帮助⽼师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).考点:扇形统计图;频数(率)分布表.分析: (1)⾸先根据B等级的⼈数除以其所占的百分⽐即可求得总⼈数,然后乘以28%即可求得m的值,总⼈数减去其他三个⼩组的频数即可求得n的值;(2)⽤n值除以总⼈数即可求得其所占的百分⽐;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的⼈数,再除以50乘以100%就可以求出结论.解答:解:(1)观察统计图和统计表知B等级的有30⼈,占60%,∴总⼈数为:30÷60%=50⼈,∴m=50×28%=14⼈,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分⽐为: ×100%=10%;(3)B等级的⼈数最多;(4)及格率为:×100%=88%.点评:本题考查了频数分布表的运⽤,扇形统计图的运⽤,在解答时看懂统计表与统计图得关系式关键.24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某⼩区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好⽤去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出⼀种费⽤最省的⽅案,并求出该⽅案所需费⽤.考点:⼀元⼀次不等式的应⽤;⼀元⼀次⽅程的应⽤.专题:压轴题.分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利⽤购进A、B两种树苗刚好⽤去1220元,结合单价,得出等式⽅程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出⽅案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,< p="">解得:x> ,购进A、B两种树苗所需费⽤为80x+60(17﹣x)=20x+1020,则费⽤最省需x取最⼩整数9,此时17﹣x=8,这时所需费⽤为20×9+1020=1200(元).答:费⽤最省⽅案为:购进A种树苗9棵,B种树苗8棵.这时所需费⽤为1200元.点评:此题主要考查了⼀元⼀次不等式组的应⽤以及⼀元⼀次⽅程应⽤,根据⼀次函数的增减性得出费⽤最省⽅案是解决问题的关键.。
七年级下册数学试卷题及答案2
七年级(下)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 下列各式中,不是不等式的是( )A. 2x ≠1B. 3x 2−2x +1C. −3<0D. 3x −2≥1 2. 下列图案是万州区几个大学的校徽,其中是轴对称图形的是( )A. B. C. D.3. 若关于x 的方程ax -4=a -2的解是x =3,则a 的值是( )A. −2B. 2C. −1D. 14. 方程x m +2-y n -1=9是关于x 、y 的二元一次方程,则m 、n 的值分别为( )A. −1、2B. 1、1C. −1、1D. −3、2 5. 三边长是三个连续正整数,且周长不超过20的三角形共有( )A. 3个B. 4个C. 5个D. 6个 6. 已知二元一次方程组,如果应加减法消去n ,则下列方法可行的是( )A. ①×2+②×3B. ①×3+②×2C. ①×2−②×3D. ①×3−②×2 7. 如图是用长度相等的火柴棒按一定规律构成的图形,依次规律第10个图形中火柴棒的根数是( )A. 45B. 55C. 66D. 788. 一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A. 10 B. 20 C. 30 D. 25 9. 下列说法中,正确的是( )A. 所有等边三角形是全等三角形B. 全等三角形是指形状相同的三角形C. 全等三角形的对应边相等,对应角相等D. 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小 10. 若关于x的不等式组{x +x6≤1x −2>3(x −2)的解集为x <2,且关于x 的一元一次方程mx -4=2(x +1)有正整数解,则满足条件的所有整数m 的值之和是( )A. 7B. 5C. 4D. 3 二、填空题(本大题共6小题,共18.0分)11. 已知方程x -3y +2=0,用含y 的代数式表示x ,则x =______.12. 如图,将△ABC 沿BC 方向平移2个单位得到△DEF ,若△ABC 的周长等于18,则四边形ABFD 的周长等于______.13.绝对值大于2且不大于5的整数有______.14.已知规定一种新运算:x※y=xy+1;x★y=x+y-1,例如:2※3=2×3+1=7;2★3=2+3-1=4.若a※(4★5)的值为17,且a※x=a★6,则x的值为______.15.如图,已知△AOB是正三角形,OC⊥OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是______.16.某班参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分,其中题a满分20分,题b、题c满分均为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,在这个班的平均成绩是______分.三、计算题(本大题共2小题,共15.0分)3x−5x=2x的解满足x<0且y<0,求m的范围.17.若关于x,y的方程组{3x+5x=x−1818.某校“阳光足球俱乐部”计划购进一批甲、乙两种型号的足球,乙型足球每个进价比甲型足球每个进价多10元,若购进甲型足球3个和乙型足球5个,共需要资金370元.(1)求甲、乙两种型号的足球进价各是多少元?(2)该商店计划购进这两种型号的足球共50个,而可用于购买这两种型号的足球资金不少于2250元,但又不超过2270元.该商店有几种进货方案?(3)已知商店出售一个甲种足球可获利6元,出售一个乙种足球可获利10元,试问在(2)的条件下,商店采用哪种方案可获利最多?四、解答题(本大题共6小题,共37.0分)19.如图,在正方形网格上有一个△ABC,请画出△ABC关于直线MN的对称图形△DEF(不写画法).20. 解不等式2x −13-5x +12≥1,并把它的解集在数轴上表示出来.21. 如图,AC ⊥BC ,BD 平分∠ABE ,CD ∥AB 交BD 于D ,∠1=23°,求∠2的度数.22. 一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km ,就早到12分钟,若每小时行驶50km ,就要迟到6分钟,求快递员所要骑行的路程.23.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法,解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③,把方程①代入③得:2×3+y=5,x=4.y=-1,把y=-1代入①得x=4,所以,方程组的解为{x=−1请你解决以下问题:2x−3x=5.(1)模仿小军的“整体代换”法解方程组{6x−11x=93x2−2xx+12x2=47,求x2+4y2-xy的值.(2)已知x,y满足方程组{2x2+xx+8x2=3624.如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a-5|+(b-1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=______,b=______;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?答案和解析1.【答案】B【解析】解:A、2x≠1是不等式,故A不符合题意;B、3x2-2x+1是代数式,不是不等式,故B符合题意;C、-3<0是不等式,故C不符合题意;D、3x-2≥1是不等式,故D不符合题意;故选:B.主要依据不等式的定义-----用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.2.【答案】A【解析】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】D【解析】解:将x=3代入方程,得3a-4=a-2,解得a=1,故选:D.根据方程的解满足方程,可得关于a的方程,根据解方程,可得答案.本题考查了医院一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.4.【答案】A【解析】解:∵方程x m+2-y n-1=9是关于x,y的二元一次方程,∴m+2=1,n-1=1,解得:m=-1,n=2.故选A.直接利用二元一次方程的定义分析得出答案.此题主要考查了二元一次方程的定义,正确把握未知数的次数是解题关键.5.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长不超过20,则其中的任何一边不能超过7;再根据两边之差小于第三边,则这样的三角形共有2,3,4;3,4,5;4,5,6;5,6,7四个.故选:B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于7;再结合三角形的两边之差小于第三边分析出所有符合条件的三角形个数.此题考查了三角形的三边关系,注意三角形的三条边长为三个连续正整数的限定.6.【答案】B【解析】解:已知二元一次方程组,如果用加减法消去n,则方法可行的是①×3+②×2.故选:B.利用加减消元法消去n即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.【答案】C【解析】解:分析可得:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴.…;第10个图形中,共用火柴的根数是3+3+4+5+6+7+8+9+10+11=66根.故选:C.由已知图形可以发现:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴,以此类推可得:第10个图形中,所需火柴的根数是3+3+4+5+6+7+8+9+10+11=66根.本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.【答案】D【解析】解:设乙中途离开了x天,根据题意得:×40+×(40-x)=1,解得:x=25,则乙中途离开了25天.故选:D.设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题意是解本题的关键.9.【答案】C【解析】解:A、所有等边三角形的边长不一定相等,故不一定是全等三角形,故A错误;B、全等三角形是指形状、大小相同的三角形,故B错误;C、全等三角形的对应边相等,对应角相等,故C正确;D、平移和旋转都不改变图形的形状和大小,故D错误.故选:C.依据全等三角形的性质和判定定理以及平移、旋转的性质进行判断即可.本题主要考查的是平移和旋转的性质以及全等三角形的性质和判定,熟练掌握相关知识是解题的关键.10.【答案】A【解析】解:解不等式≤1,得:x≤6-m,解不等式x-2>3(x-2),得:x<2,∵不等式组的解集为x<2,则6-m≥2,即m≤4,解方程mx-4=2(x+1),得:x=,∵方程有正整数解,∴m-2=1或m-2=2或m-2=3或m-2=6,解得:m=3或4或5或8,又m≤4,∴m=3或4,则满足条件的所有整数m的值之和是7,故选:A.根据已知不等式组的解集确定出m的范围,再分式方程有正整数解确定出满足题意m的所有值,并求出之和即可.此题考查了一元一次方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】3y-2【解析】解:∵x-3y+2=0,∴x=3y-2,故答案为:3y-2.方程中将y看做已知数求出x.此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.12.【答案】22【解析】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=18,∴AB+BC+AC=18,∴四边形ABFD的周长=18+2+2=22.故答案为:22,根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.13.【答案】-5,5,-4,4,-3,3【解析】解:根据题意,满足条件的数有:-5,5,-4,4,-3,3,故答案为:-5,5,-4,4,-3,3.根据绝对值的性质求出满足条件的数即可.本题主要考查了绝对值的性质,找出满足条件的所有数据是解题的关键.14.【答案】3【解析】解:∵4★5=4+5-1=8,∴a※(4★5)=a※8=8a+1=17,解得:a=2,∵a ※x=a ★6, ∴2x+1=2+6-1, 解得:x=3, 故答案为:3.先计算出4★5=8,根据a ※(4★5)=17求得a 的值,代入a ※x=a ★6列出关于x 的方程,解之可得.本题主要考查有理数混合运算,解题的关键是熟练掌握有理数混合运算的顺序和运算法则及新定义的运用. 15.【答案】150° 【解析】解:∵△AOB 是正三角形,OC ⊥OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,∴∠AOB=60°,∠BOC=90°,∴旋转的角度是:∠AOB+∠BOC=60°+90°=150°. 故答案为:150°.根据等边三角形的性质以及垂直定义得出∠AOB=60°,∠BOC=90°,进而得出答案. 此题主要考查了旋转的性质以及等边三角形的性质,得出∠AOB ,∠BOC 的度数是解题关键.16.【答案】42 【解析】解:设答对a 题的有x 人,答对b 题的有y 人,答对c 题的有z 人, 根据题意得:,解得:.全班总得分为17×20+(12+8)×25=840(分), 全班总人数为17+12+8-1×15-2×1=20(人), 全班的平均成绩为840÷20=42(分). 故答案为:42.设答对a 题的有x 人,答对b 题的有y 人,答对c 题的有z 人,根据“答对题a 的人数与答对题b 的人数之和为29,答对题a 的人数与答对题c 的人数之和为25,答对题b 的人数与答对题c 的人数之和为20”,即可得出关于x 、y 、z 的三元一次方程组,解之即可得出x 、y 、z 的值,由x 、y 、z 的值结合a 、b 、c 三题的分值可求出全班总得分,由x 、y 、z 的值结合答对两题及答对三题的人数可求出全班总人数,再利用平均分=总分÷人数,即可求出结论.本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.17.【答案】解:{3x −5x =2x ①3x +5x =x −18②,①+②,得:6x =3m -18,解得:x =x −62, ②-①,得:10y =-m -18, 解得:y =−x −1810,∵x <0且y <0,∴{x −62<0−x −1810<0,解得:-18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.18.【答案】解:(1)设甲型足球进价是x 元,乙型足球进价是y 元得:{3x +5x =370x =x +10,解得:{x =50x =40.每只甲型足球进价是40元,每只乙型足球进价是50元.(2)设购进甲型足球为a 只,则购进乙型足球为(50-a )只, 得:{8x +12(50−x )≥50040x +50(50−x )≤2270解得:23≤a ≤25,因为a 是正整数,所以a =23,24,25. 该经销商有3种进货方案:①方案一:购进23只甲型足球,27只乙型足球; ②方案二:购进24只甲型足球,26只乙型足球; ③方案三:购进25只甲型足球,25只乙型足球. (3)方案一商家可获利408元; 方案二商家可获利402元; 方案三商家可获利400元. ∴方案一获利最多. 【解析】(1)设甲型足球进价是x 元,乙型足球进价是y 元,根据乙型足球每个进价比甲型足球每个进价多10元,若购进甲型足球3个和乙型足球5个,共需要资金370元即可列方程组求解;(2)设购进甲型足球为a 只,则购进乙型足球为(50-a )只,根据用于购买这两种型号的足球的资金不少于2250元但又不超过2270元即可列不等式组求得a 的范围,然后根据a 是正整数从而求得a 的值;(3)根据(2)中的方案,求得获利,即可进行比较.本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.【答案】解:如图所示,△DEF 即为所求.【解析】先利用网格确定△ABC 关于直线MN 对称的点,再顺次连接各点即可得到△ABC 关于直线MN 的对称图形.本题主要考查了利用轴对称变换进行作图,画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始的.20.【答案】解:去分母得:2(2x -1)-3(5x +1)≥6, 4x -2-15x -3≥6, -11x ≥11, x ≤-1,在数轴上表示不等式的解集为:.【解析】去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.【答案】解:∵BD 平分∠ABE ,∠1=23°, ∴∠ABC =2∠1=46°, ∵CD ∥AB ,∴∠DCE =∠ABC =46°, ∵∠ACB =90°,∴∠2=90°-46°=44°. 【解析】先根据BD 平分∠ABE ,∠1=23°,可得∠ABC=2∠1=46°,再根据CD ∥AB ,即可得到∠DCE=∠ABC=46°,进而依据∠ACB=90°,得出∠2=90°-46°=44°. 本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 22.【答案】解:设路程为xkm ,以每小时60km 的速度到达目的地所需的时间为x60;以每小时50km 的速度到达目的地所需的时间为x50. 根据题意得:x 60+1260=x 50-660, 解得:x =90.答:快递员需要骑行90km . 【解析】设路程为xkm,根据时间=路程÷速度、“若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟”,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)根据时间=路程÷速度表示出两种速度下将快递送到某地所需时间;(2)根据两种速度下所需时间之间的关系,列出关于x的一元一次方程.23.【答案】解:(1)由②得:3(2x-3y)-2y=9③,把①代入③得:15-2y=9,解得:y=3,把y=3代入①得:2x-9=5,解得:x=7,x=7;所以原方程组的解为{x=3(2)由①得:3(x2+4y2)-2xy=47,x2+4y2=47+2xx③,3+xy=36,把③代入②得:2×47+2xx3解得:xy=2,①-②得:x2-3xy+4y2=11,∴x2+4y2=11+3×2=17,∴x2+4y2-xy=17-2=15.【解析】(1)由②得出3(2x-3y)-2y=9③,把①代入③得出15-2y=9,求出y,把y=3代入①求出x即可;(2)由①求出x2+4y2=③,把③代入②求出xy=2,①-②得出x2-3xy+4y2=11,即可求出答案.本题考查了解高次方程组、解二元一次方程组和二元一次方程组的解等知识点,能够整体代入是解此题的关键.24.【答案】5 1【解析】解:(1)|a-5|+(b-1)2=0,∴a-5=0,b-1=0,∴a=5,b=1,故答案为:5,1;(2)设至少旋转t秒时,射线AM、射线BQ互相垂直.如图,设旋转后的射线AM、射线BQ交于点O,则BO⊥AO,∴∠ABO+∠BAO=90°,∵PQ∥MN,∴∠ABQ+∠BAM=180°,∴∠OBQ+∠OAM=90°,又∵∠OBQ=t°,∠OAM=5t°,∴t°+5t°=90°,∴t=15(s);(3)设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18×5=90°,分两种情况:①当9<t<18时,∠QBQ'=t°,∠M'AM“=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM“=5t-45°,当∠ABQ'=∠BAM“时,BQ'∥AM“,此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,∠QBQ'=t°,∠NAM“=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM“=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM“时,BQ'∥AM“,此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM、射线BQ互相平行.(1)依据|a-5|+(b-1)2=0,即可得到a,b的值;(2)依据∠ABO+∠BAO=90°,∠ABQ+∠BAM=180°,即可得到射线AM、射线BQ第一次互相垂直的时间;(3)分两种情况讨论,依据∠ABQ'=∠BAM“时,BQ'∥AM“,列出方程即可得到射线AM、射线BQ互相平行时的时间.本题主要考查了平行线的性质,非负数的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:若两个非负数的和为0,则这两个非负数均等于0.。
2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题
人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。
七年级第二学期初一数学期中考试试卷
2022-2023学年第二学期期中考试试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相对应的位置上)1.下列生活现象中,属于平移的是()A.卫星绕地球运动B.钟表指针的运动C.电梯从底楼升到顶楼D.教室门从开到关2.下列运算正确的是()A.x 2+x 3=x 6B.x 2·x 3=x 6C.(3x )3÷3x =9x 2D.(-xy 2)2=-x 2y 43.下列计算正确的是()A.(x -y )2=x 2+2xy -y 2B.(x +y )2=x 2+y 2C.(x +y )(x -y )=x 2-y 2D.(-x +y )(x -y )=x 2-y 24.下列各组线段能组成三角形的是()A.3cm 、4cm 、5cmB.4cm 、6cm 、10cmC.3cm 、3cm 、6cmD.5cm 、12cm 、18cm5.下列由左边到右边的变形,属于因式分解的是()A.a 2+2a +1=a (a +2)+1B.(x +1)(x -1)=x 2-1C.a 2+2a +4=(a +2)2D.-a 2+4a -4=-(a -2)26.当x 2-3x =1时,代数式2x 2-6x +3的值为()A.2B.3C.4D.57.下列图形中,由∠1+∠2=180°能推理得到AB ∥CD 的是()8.如图,长为y ,宽为x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5,下列说法中正确的是()①小长方形的较长边为y -15;②阴影A 的较短边和阴影B 的较短边之和为x -y +5:③若x 为定值,则阴影A 和阴影B 的周长和为定值:④当x =15时,阴影A 和阴影B 的面积和为定值.A.①③④ B.②④C.①③D.①④二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)9.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,则0.0000002cm 用科学记数法可表示为cm .10.计算:3-2=.A B CD12A.AB CD12B.ABCD12C.12D.y x5第8题图11.因式分解:x 2-6x +9=.12.若一个多边形的每个外角都相同且为72°,则这个多边形有条边.13.若3m =8,3n =2,则3m +n =.14.如图所示,直线a 、直线b 被直线c 所截,且直线a ∥b ,∠1=125°,则∠2=°.15.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连接MD 和ME .设AP =a ,BP =b ,如果a +b =10, ab =15.则阴影部分的面积为.16.阅读材料:求1+2+22+23+24+⋯+22013的值.解:设S =1+2+22+23+24+⋯+22012+22013,将等式两边同时乘以2得:2S =2+22+23+2425+⋯+22013+22014将下式减去上式得2S -S =22014-1即S =22014-1即1+2+22+23+24+⋯+22013=22014-1请你仿照上述方法,计算1+2-1+2-2+2-3+2-4+2-5+2-6=.三、三、解答题(本大题共11小题,共82分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)17.(本题共3小题,每小题4分,共12分)计算(1)(-1)2-32+(π-3.14)0(2)(-3a 3)2-2a 2·a 4+(a 2)3(3)(x +6)2+(1+x )(1-x )18.(本题共2题,每小题4分,共8分)因式分解(1)ax 2+5a(2)3x 2+6xy +3y 219.(本题共4分)先化简,再求值:(x +4)(x -4)+(x -3)2,其中x =1.abc 12第14题图A BC DEFP M 第15题图20.(本题共6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 与点D 重合,点E 、F 分别是B 、C 的对应点.(1)请画出平移后的△DEF ,并画出AB 边上的中线CG ;(2)若连接AD 、BE ,则这两条线段之间的关系是_________;(3)△DEF 的面积为_________;21.(本题共6分)如图,已知∠1+∠4=180°,∠3=∠B ,试证明DE ∥BC .完成以下解答过程中的空缺部分:解:∵∠1+∠4=180°(已知)∠1=∠2( )∴_______=180°(等量代换)∴EG ∥AB ( )∴∠B =∠EGC ( )∵∠3=∠B (已知)∴∠3=∠EGC ( )∴________(内错角相等,两直线平行)22.(本题共6分)在ax +1与bx +1的乘积中,x 2的系数为-3,x 的系数为-6,求a 2+b 2的值.23.(本题共6分)我们可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,例如x 2+4x -5=x 2+4x +22-22-5=(x +2)2-9,我们把这样的变形叫做多项式ax 2+bx +c (a ≠0)的配方法;已知关于a ,b 的代数式满足a 2+b 2+2a -4b +5=0,请你利用配方法求a +b 的值.A BCD24.(本题共7分)如图,长方形ABCD 中,∠BAD =∠B =∠D =∠C =90°,AD ∥BC ,E 为边BC 上一点,将长方形沿AE 折叠(AE 为折痕),使点B 与点F 重合, EG 平分∠CEF 交CD 于点G ,过点G 作HG ⊥EG 交AD 于点H .(1)请判断HG 与AE 的位置关系,并说明理由.(2)若∠CEG =20°,求∠DHG 的度数.25.(本题共7分)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(-2,-8)=;(2)有同学在研究这种运算时发现一个现象:(3n ,4n )=(3,4),他给出了如下的证明:设(3n ,4n )=x ,∴(3n )x =4n 即(3x )n =4n ∵3x >0∴3x =4即(3,4)=x ,∴(3n ,4n )=(3,4).①若(4,5)=a ,(4,6)=b ,(4,30)=c ,请你尝试运用上述这种方法证明a +b =c .②猜想[(x -1)n ,(y +1)n +[(x -1)n ,(y -2)n =(,)(结果化成最简形式).ABCDEFGH26.(本题共10分)在几何问题中,当求几个角之间的等量关系时,可以设未知数,通过“设而不解”的方法,以它们为中间量,结合三角形的性质和已知条件,构建所求角之间的等量关系;当需要求出某个角的具体度数时,我们可以通过设未知数的方式,根据问题中的等量关系列方程,并将方程进行求解,最后得到所求角的度数。
2022-2023学年福建省泉州市永春第二中学七年级上学期12月月考数学试卷带讲解
∴这个角的度数为 ,
∴这个角的补角的度数为 ,
故答案为: .
【点睛】本题主要考查了余角与补角的计算,熟知余角与补角的定义是解题的关键.
15.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于_________度.
30
【分析】由图象可知,两个三角板直角组成∠AOD,其中∠COB为重合部分,故有∠AOD=∠AOB+∠COD-∠COB,易求得∠COB=30°.
23.如图是某居民小区的一块长为a米,宽为2b米的长方形空地为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.
(1)求美化这块空地共需多少元?(用含有a,b,π的式子表示)
(2)当a=6,b=2,π取3.14时,美化这块空地共需多少元?
4.已知 , 是2的相反数,则 的值为()
A. B.3C. 或3D. 或
D
【分析】先分别求出a、b的值,然后代入 计算即可.
【详解】∵ , 是2的相反数,
∴ 或 , ,
当 时, ;
当 时, ;
综上, 的值为 或 ,
故选:D.
【点睛】本题考查了绝对值的意义、相反数的意义及求代数式的值,熟练掌握绝对值和相反数的意义是解答本题的关键.绝对值等于一个正数的数有2个,它们是互为相反数的关系.
10.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中:①90°﹣∠α;②∠β﹣90°;③ (∠α+∠β);④ (∠β﹣∠α).其中正确的有( )
A.1个B.2个C.3个D.4个
七年级数学二单元试卷
七年级数学二单元试卷一、选择题(每题3分,共30分)1. 下列式子中,是单项式的是()A. x + yB. -2xC. (2)/(x)D. x^2+2x + 12. 单项式-frac{3π x^2y}{5}的系数是()A. -(3)/(5)B. -(3π)/(5)C. (3)/(5)D. (3π)/(5)3. 下列关于单项式-3xy^2的说法中,正确的是()A. 系数是-3,次数是2。
B. 系数是3,次数是3。
C. 系数是-3,次数是3。
D. 系数是3,次数是2。
4. 多项式3x^2-2x - 1的各项分别是()A. 3x^2,2x,1C. -3x^2,2x,1D. -3x^2, - 2x,-15. 多项式2x^3-x^2y^2+3y^2是()A. 三次三项式。
B. 四次三项式。
C. 三次四项式。
D. 四次四项式。
6. 下面运算正确的是()A. 3a + 2b = 5abB. 3a^2b - 3ba^2=0C. 3x^2+2x^3=5x^5D. 3y^2-2y^2=17. 化简m - n-(m + n)的结果是()A. 0B. 2mC. -2nD. 2m - 2n8. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3C. x^2-5x + 3D. x^2-x + 19. 当a = - 2,b = 1时,代数式(1)/(2)a - b的值是()A. -2B. 0C. 2D. -110. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. -2x^2-x + 1C. 2x^2-x - 1D. 2x^2+x + 1二、填空题(每题3分,共18分)1. 单项式5x^2y的次数是_____。
2. 多项式2x^2-3x + 1是_____次_____项式。
3. 化简:3(a - b)+2(b - a)=_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七 年 级 数 学 试 卷
一、你一定能选对!(每小题只有一个正确的选项,每小题3分,共27分) 1.4的相反数是( )
A .1
4
-
B .
1
4
C .-4
D .4 2.方程2x+6=0的解是( )
A .3
B .-3
C .2
D .0
3.2010年第16届广州亚运会主会场占地30万平方米,可容纳观众80012人,是规模最大、参赛人数
最多的一届亚运会。
30万平方米用科学记数法表示为( )平方米。
A . 3×105 B .30×104 C .3×10 D .3×104 4.化简-2(m -n)的结果为( )
A .-2 m -n
B .-2 m + n
C . 2 m -2 n
D .-2 m +2 n 5.代数式-x 2y 的系数是( )
A .3
B .0
C .-1
D .1
6.下列去括号正确的是( )
A .()a b c a b c +-=++
B .()a b c a b c --=--
C .()a b c a b c --=-+
D .()a b c a b c +-=-+ 7.下列说法中,正确的是( )
A .直线是平角
B .经过一点可以画两条直线
C .平角是一条直线
D .两点之间的所有连线中,线段最短 8.把方程12
125
x x x -+-
=-去分母,正确的是( ) A .105(1)12(2)x x x --=-+ B .105(1)102(2)x x x --=-+
C . 105(1)10(2)x x x --=-+
D .10(1)10(2)x x x --=-+
9.小明做了以下4道计算题:
① 2010
(1)2010-= ② 011--=-()
③ 111
236
-
+=- ④ 11122÷-=-() 请你帮他检查一下,他一共做对了( )
A .1题
B .2题
C .3题
D . 4题 二、你能填得又快又准吗?(每小题3分,共30分) 10.-2的倒数是 .
11.如果收入50元记作+50,那么-80表示 .
12.大于-3且小于等于2的所有整数是 .
13.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 元. 14.1.45° 等于 秒.
16.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理
是 . 17.若23b a
m
与n ab 32是同类项,则 1
2
m n - = .
19.观察下面一列数,按某种规律在横线上填上适当的数:
1,
43,95,16
7, , ,…… 则第n 个数为 . 三、请你来算一算、做一做,千万别出错哟! (共60分)
20.计算:(每小题5分,共10分)
(1)4(2)(8)2⨯---÷ (2)2
1
4(3)
()()3
9⎡⎤-⨯-+-⎢⎥⎣⎦
21.解方程:(每小题5分,共10分) (1) 6234y y +=- (2)
151
136
x x +--=
22.(本小题6分)
先化简,再求值:)441()34(22
a a a a +--- 其中2a =-.
23.(8分)如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在
该位置的小立方体的个数,请你画出它的主视图与左视图
24、应用题(10分):
某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
25.如右图,∠AOC和∠BOD都是直角,。
(1)如果∠DOC=28O,求∠AOB的度数。
(2)若∠DOC变小,∠AOB如何变化?
还有哪些题未
完成,仔细检
查不要漏掉
哟!
O B
C
D
A
2010-2011学年上学期期末综合素质测评
七年级数学 参考答案
一、你一定能选对!(每小题只有一个正确的选项,每题3分,共30分)
1.C 2.B 3.A 4.D 5.C
6.C 7.D 8.B 9.B 10.B 二、你能填得又快又准吗?(每小题3分,共30分)
11.12- 12.
支出80元 13.-2、-1、0、1、2 14.2a +10 15.5220 16.152° 17.经过两点有且只有一条直线 18.0 19.大
20.925 1136 2
21n n
- 三、请你来算一算、做一做,千万别出错哟!(共60分) 21.计算:(每小题5分,共10分)
4(2)(8)2
844
⨯---÷=-+=-(1) 21
42(3)()()3914
9()9()39
347⎡⎤-⨯-+-⎢⎥
⎣⎦=⨯-+⨯-=--=-()
22.解方程:(每小题5分,共10分)
1 62346342
36
32
y y y y y y +=--=--=-=-()解:移项,得
合并同类项,得
方程两边同除于,得 151
2136
2(1)651
2265133
31
x x x x x x x x +--=+-=-+-=--=-=-()
解:去分母,得去括号,得
移项、合并同类项,得方程两边同除以,得
23.(本小题6分)
解:)441()34(22a a a a +---=2244134a a a a -+-- =1-a
当2-=a 时, 1-a = -2-1 = -3
24.(本小题6分)
主视图左视图俯视图
25.(本小题9分)
解:(1)第一次购物用了134元时,不超过200元不给优惠,
因此,第一次购物其物品不打折值134元。
设第二次用了468元购物的原价为x元,则:
(1-10%)x=468 解得x=520(元)
134+520=654(元)
所以,此人两次购物其物品不打折值654元
(2)因为134+468=602(元)654-602=52(元)另解:520-468=52(元)所以,在这次活动中他节省了52元
(3)是节省,且节省了70.4元
因为两次的钱合起来是602元,且超过500元
所以两次的钱合起来共优惠602-(500×0.9+102×0.8)=70.4(元)
所以此人将这两次的钱合起来购同一商品是更节省
26.(本小题9分)
27.(本小题10分)
解:(1) 设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x-6 x+x+6+ x-6=39 解得x=13
这9个数的和=5+6+7+12+13+14+19+20+21=162(3分)
(2) 不能,因为这9个数的和只可能是162 (3分)
(3) a=b-1=c-6= d-7,或b= a+1= c-5= d-6,
或c= a+6= b+7= d-1,或d= a+7= b+6= c+1 (4分)。