三角函数综合(习题)

合集下载

九年级数学下册综合算式专项练习题三角函数运算

九年级数学下册综合算式专项练习题三角函数运算

九年级数学下册综合算式专项练习题三角函数运算在九年级数学下册中,我们经常会遇到综合算式的题目,其中也包括了三角函数运算的题目。

三角函数是三角学中的重要概念,涉及到了角的概念和三角比的计算。

通过练习这些综合算式专项练习题,我们可以更好地理解和掌握三角函数的相关知识,提高数学解题的能力。

一、已知三角函数的值求角的大小1. 已知正弦函数sin(x) = 0.5,其中x为锐角,求x的大小。

解析:根据正弦函数的定义可知,sin(x) = 对边/斜边。

已知sin(x) = 0.5,代入得对边/斜边 = 0.5,假设斜边为2,那么对边就是1。

根据勾股定理可计算出邻边的长度,再利用三角函数的定义计算出角的大小。

2. 已知余弦函数cos(y) = 0.8,其中y为钝角,求y的大小。

解析:与上一题类似,根据余弦函数的定义可知,cos(y) = 邻边/斜边。

已知cos(y) = 0.8,代入得邻边/斜边 = 0.8,假设斜边为5,那么邻边就是4。

根据勾股定理可计算出对边的长度,再利用三角函数的定义计算出角的大小。

二、已知角的大小求三角函数的值1. 已知角A的大小为30°,求sin(A)的值。

解析:根据三角函数的定义可知,sin(A) = 对边/斜边。

已知角A的大小为30°,可通过构造一个30-60-90的特殊三角形,根据比例关系计算出对边与斜边的比值,进而计算出sin(A)的值。

2. 已知角B的大小为45°,求tan(B)的值。

解析:根据三角函数的定义可知,tan(B) = 对边/邻边。

已知角B的大小为45°,可通过构造一个45-45-90的特殊三角形,根据比例关系计算出对边与邻边的比值,进而计算出tan(B)的值。

三、综合运算题1. 若sin(x) = 0.6,cos(y) = 0.8,求sin(x+y)的值。

解析:根据三角函数的和差公式,sin(x+y) = sin(x)·cos(y) +cos(x)·sin(y)。

数学综合算式专项练习题三角函数的计算

数学综合算式专项练习题三角函数的计算

数学综合算式专项练习题三角函数的计算正文:数学综合算式专项练习题:三角函数的计算一、简介三角函数是数学中重要的一部分,广泛应用于科学、工程以及其他领域。

在本文中,我们将提供一些关于三角函数计算的练习题,以帮助读者更好地理解和掌握该知识点。

以下是一些具体的题目和解答。

二、练习题1. 计算 sin(30°) 的值。

解析:根据三角函数表,我们可以知道 sin(30°) 的值为 0.5。

2. 计算 cos(45°) 的值。

解析:根据三角函数表,我们可以知道 cos(45°) 的值为 0.7071。

3. 计算 tan(60°) 的值。

解析:根据三角函数表,我们可以知道 tan(60°) 的值为 1.7321。

4. 计算 sec(60°) 的值。

解析:sec(60°) 的值可以通过倒数公式来计算,即 sec(60°) =1/cos(60°)。

根据三角函数表,我们可以知道 cos(60°) 的值为 0.5,所以sec(60°) 的值为 2。

5. 计算 csc(45°) 的值。

解析:csc(45°) 的值可以通过倒数公式来计算,即 csc(45°) =1/sin(45°)。

根据三角函数表,我们可以知道 sin(45°) 的值为 0.7071,所以 csc(45°) 的值为 1.4142。

6. 计算 cot(30°) 的值。

解析:cot(30°) 的值可以通过倒数公式来计算,即 cot(30°) =1/tan(30°)。

根据三角函数表,我们可以知道 tan(30°) 的值为 0.5774,所以 cot(30°) 的值为 1.7321。

三、总结通过以上练习题,我们了解了三角函数的计算方法,并通过具体的例子进行了实践。

三角函数练习题及解析

三角函数练习题及解析

三角函数练习题及解析一、单选题1. 已知直角三角形ABC,角A的对边BC=5,斜边AC=13,则角B 的邻边AB等于:A) 5B) 12C) 4D) 3解析:根据勾股定理,$AB=\sqrt{AC^2-BC^2}=\sqrt{13^2-5^2}=\sqrt{144}=12$,因此选项B) 12.2. 在单位圆上,点A的坐标为$(\frac{\sqrt{3}}{2}, \frac{1}{2})$,则角A的度数为:A) 45°B) 60°C) 90°D) 120°解析:单位圆上的点A的坐标$(\frac{\sqrt{3}}{2}, \frac{1}{2})$对应的角A的度数为$60^\circ$,因此选项B) 60°.3. $\sin^2 30^\circ + \cos^2 60^\circ$的值等于:A) 0B) 1C) $\frac{3}{4}$D) $\frac{1}{2}$解析:$\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,$\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,因此$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$,因此选项D)$\frac{1}{2}$.二、填空题4. 对于任意角θ,$\sin(90^\circ - \theta)$的值等于 __________。

答案:$\cos \theta$解析:根据“余角公式”,$\sin (90^\circ - \theta) = \cos \theta$.5. $\cos(\frac{3\pi}{4})$的值等于 __________。

答案:$-\frac{\sqrt{2}}{2}$解析:根据单位圆上角度为 $\frac{3\pi}{4}$ 的点坐标为 $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$,因此 $\cos(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2}$.三、解答题6. 解方程 $\sin x = \frac{1}{2}$,其中 $0 \leq x < 2\pi$。

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)一、填空题1.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.4.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.5.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.6.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号). 8.已知当()0,x π∈时,不等式2cos 23sin 20cos 4sin 1x x x x +-≤--的解集为A ,若函数()()()sin 0f x x =+<<在x A ∈上只有一个极值点,则ϕ的取值范围为______.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.如图,在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足1222PA PC +=的点P 有__________个.二、单选题11.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( ) A 3B 5C 3D 512.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦13.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A 2 B 3C 3D 214.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭15.已知ABC 的内角分别为,,A B C ,23cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1216.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .3,32⎛⎤⎥ ⎝⎦B .3,32⎛⎤⎥⎝⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,32⎡⎤⎢⎥⎣⎦17.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>18.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .119.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .21B 3C .31D .220.将方程23sin cos 3x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .3B .2C .3D .2三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.23.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由. 24.已知函数1()1xf x x-=+. (1)证明函数()f x 在(1,)-+∞上为减函数;(2)求函数ln (tan )y f x =的定义域,并求其奇偶性;(3)若存在(,)42ππ,使得不等式(tan )tan 0f x a x +≤能成立,试求实数a 的取值范围.25.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围. 26.已知向量 22(2,22()),(,)22a xb ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数. 27.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且43sin sin 5B C +=,求ABC ∆的面积. 28.已知函数()()2cos 3sin cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.72.②④3.165384.28π5.⎝⎭6.07.②③8.2(0,)(,)33πππ⋃9 10.18二、单选题 11.D 12.A 13.A 14.A 15.A 16.A 17.A 18.C 19.D 20.C 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan 2θ∴=,sin θ∴=,故边长a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题.22.(1)最小正周期为π.(2)见解析(3)k =1008.(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题. 23.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题.24.(1)证明见解析;(2),,44k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭,奇函数;(3)(,3-∞-. 【解析】(1)利用单调性定义证明即可.(2)根据条件可得tan 1tan 1x x <⎧⎨>-⎩,其解集即为函数的定义域,可判断定义域关于原点对称,再根据奇偶性定义可判断函数的奇偶性. (3)令tan t x =,考虑101tat t-+<+在()1,+∞上有解即可,参变分离后利用基本不等式可求实数a 的取值范围. 【详解】(1)11x ∀>-,21x ∀>-,12x x <, 又()()()122212121211()()11112x x x x f x f x x x x x ----=-+-=+++, 因为11x >-,21x >-,12x x <,故110x +>,210x +>,120x x -<, 故12())0(f x f x ->即12()()f x f x >,所以函数()f x 在(1,)-+∞上为减函数.(2)((ln t )n )a y f x =的x 满足的不等关系有:1tan 01tan xx->+即()()1tan tan 10x x +-<,故tan 1tan 1x x <⎧⎨>-⎩,解得,44k x k k Z ππππ-+<<+∈,故函数的定义域为,44k k ππππ⎛⎫-++ ⎪⎝⎭,k Z ∈,该定义域关于原点对称.令()((ln ta )n )F x f x = 又()()()tan tan tan()tan tan 11ln lnln 11x xx x xF x f -+--===--+()()()tan ln x f F x =-=-,故ln (tan )y f x =为奇函数.(3)令tan t x =,因为(,)42x ππ∈,故1u >.故在(,)42ππ上不等式(tan )tan 0f x a x +≤能成立即为存在1t >,使得101tat t-+≤+,所以()11t a t t -≤+在()1,+∞上能成立, 令1s t =-,则0s >且()21121323t s t t s s s s-==+++++,由基本不等式有2s s+≥s 时等号成立, 所以()131t t t -≤=-+,当且仅当1t 时等号成立, 故()11t y t t -=+的最大值为3-,所以a的取值范围为(,3-∞-. 【点睛】本题考查与正切函数、对数函数有关的复合函数的性质的讨论,此类问题常用换元法把复合函数性质的讨论归结为常见函数性质的讨论,本题较综合,为难题. 25.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭ 2sin 216x π⎛⎫=+- ⎪⎝⎭, ∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭. 又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.26.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析.【解析】【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =(2,2cos2(ωx +φ)),b =(22,22-), ∴f (x )222222a b =⋅=⨯-⨯cos2(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.27.(1)(;(2 【解析】【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(. (2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.28.(I )1-;(II ;(III )10,3⎛⎤ ⎥⎝⎦ 【解析】【分析】 将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果.【详解】()2cos 2cos 12cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ (I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭ ()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1- (II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭ 2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭ cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭ ,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦ 2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

三角函数练习题(含答案)

三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

九年级数学上册综合算式专项练习题三角函数的运算

九年级数学上册综合算式专项练习题三角函数的运算

九年级数学上册综合算式专项练习题三角函数的运算在九年级数学上册中,综合算式是一个重要的学习内容,而其中涉及到的三角函数的运算是我们需要着重掌握的。

本文将通过专项练习题的形式,帮助同学们巩固和提升对三角函数运算的理解和应用能力。

以下是一些练习题及解答。

1. 已知$\sin A=\frac{1}{3}$,$\cos B=\frac{3}{5}$,且$A$和$B$都是锐角,求$\sin(A+B)$的值。

解答:根据三角函数的加法公式,有$\sin(A+B)=\sin A\cos B+\cosA\sin B$。

将已知的$\sin A$和$\cos B$代入,得到$\sin(A+B)=\frac{1}{3}\cdot\frac{3}{5}+\cos A\sin B$。

由于$\sinB=\sin(A+B)$,则$\sin(A+B)=\frac{1}{5}+\cos A\sin B$。

再利用单位圆上的关系,可得$\sin B=1-\cos^2 B=1-\left(\frac{3}{5}\right)^2=\frac{16}{25}$。

代入即可得到$\sin(A+B)=\frac{1}{5}+\frac{3}{5}\cdot\frac{16}{25}=\frac{4}{5}$。

2.已知$\tan A = \frac{3}{4}$,$0^\circ<A<90^\circ$,求$\cos A$的值。

解答:可以利用三角函数之间的关系来解题,$\tan A = \frac{\sinA}{\cos A}$,则$\frac{3}{4}=\frac{\sin A}{\cos A}$。

解方程得到$\sinA=\frac{3}{4}\cos A$,然后将等式两边都平方,可得$\sin^2 A =\left(\frac{3}{4}\cos A\right)^2$。

利用单位圆上的关系$\sin^2 A + \cos^2A =1$,代入,得到$\left(\frac{3}{4}\cos A\right)^2+\cos^2 A=1$。

三角函数练习题100题(Word版,含解析)

三角函数练习题100题(Word版,含解析)

三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。

其中1-55为选择题,56-70为填空题,71-100为解答题。

)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . cos xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1-A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 (每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值. 解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)三角函数综合练习题1.已知α是第二象限角,且3sin()5πα+=- ,则tan 2α的值为 ( )A .45B .237-C .247-D .83-)2(cos 2π+=x y 的单调增区间是( )(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Zx x y cos sin +=的图像,只需把x x y cos sin -=的图象上所有的点( ) (A )向左平移4π个单位长度(B )向右平移4π个单位长度(C )向左平移2π个单位长度(D )向右平移2π个单位长度4. 已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为( )(A )51-(B )57 (C )57- (D )435.已知函数()sin y x =ω+ϕ(0,0)2πω><ϕ≤的部分图象如图所示,则点P (),ωϕ的坐标为( ) (A )(2,)3π(B )(2,)6π (C )1(,)23π (D )1(,)26π①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是( )(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数 (D )两个函数的最小正周期相同7. 已知函数()x x x f cos sin 3-=,R x ∈,若()1≥x f ,则x 的取值范围为( ) A. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,3ππππ B . ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,232ππππC. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,656ππππ D. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ8.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 Ay(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9.如右上图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=__________. 10.在ABC 中,若5b =,4B π∠=,tan 2A =,则sin A =_______,a =______.11.已知,2)4tan(=+πx 则xx2tan tan 的值为__________.12.设sin1+=43πθ(),则sin 2θ=_________. 13.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=______.14.在ABC 中,60,3B AC ==2AB BC +的最大值为 。

三角函数习题及答案

三角函数习题及答案

三角函数习题及答案(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sincos22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角。

7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

§4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A )0 (B )1- (C )2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5. 的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C )一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

综合算式专项练习题带有三角函数的综合运算

综合算式专项练习题带有三角函数的综合运算

综合算式专项练习题带有三角函数的综合运算1. 题目描述:根据给定的综合算式,进行计算并给出结果。

其中,综合算式涉及到三角函数的乘除、加减运算。

2. 题目1:计算下列综合算式的结果:① 2sin(30°) + 3cos(45°)② tan(60°) + sin(45°) - cos(30°)③ cot(30°) - 2cos(60°)④ sec(45°) - csc(30°)⑤ 3sin(60°) + 2cos(30°) - 4tan(45°)解答:① 2sin(30°) + 3cos(45°) = 2 × 0.5 + 3 × 0.7071 = 1 + 2.1213 ≈ 3.1213② tan(60°) + sin(45°) - cos(30°) = √3 + 0.7071 - 0.866 ≈ 2.5731③ cot(30°) - 2cos(60°) = √3 - 2 × 0.5 = √3 - 1 ≈ 0.7321④ sec(45°) - csc(30°) = √2 - 2 ≈ -0.5858⑤ 3sin(60°) + 2cos(30°) - 4tan(45°) = 3 × √3/2 + 2 × √3/2 - 4 = 2.598 +1.7321 - 4 ≈ 0.33013. 题目2:计算下列综合算式的结果:① sin(60°) × cos(30°) / sin(45°)② tan(45°) + cot(60°) - csc(30°)③ cos(60°) × sec(45°)④ csc(60°) / sec(30°)⑤ tan(30°) - sin(45°) × cos(45°)解答:① sin(60°) × cos(30°) / sin(45°) = √3/2 × √3/2 / 0.7071 = 3/4 / 0.7071 ≈1.0607② tan(45°) + cot(60°) - csc(30°) = 1 + √3 - 2 = √3 - 1 ≈ 0.7321③ cos(60°) × sec(45°) = 0.5 × √2 = √2/4 ≈ 0.3536④ csc(60°) / sec(30°) = 2 / 2 = 1⑤ tan(30°) - sin(45°) × cos(45°) = 1/√3 - 0.7071 × 0.7071 = 1/√3 - 0.5 ≈ -0.1344. 题目3:计算下列综合算式的结果:① sin^2(60°) + cos^2(30°)② tan^2(45°) + cot^2(60°) + csc^2(30°)③ sin^2(45°) × (1 + cos^2(30°))④ sec^2(60°) - csc^2(45°)⑤ cos^2(60°) - 2sin^2(30°) + tan^2(45°)解答:① sin^2(60°) + cos^2(30°) = (1/2)^2 + (√3/2)^2 = 1/4 + 3/4 = 1② tan^2(45°) + cot^2(60°) + csc^2(30°) = 1 + 1 + 4/3 = 8/3③ sin^2(45°) × (1 + cos^2(30°)) = (1/√2)^2 × (1 + (√3/2)^2) = 1/2 × (1 + 3/4) = 5/8④ sec^2(60°) - csc^2(45°) = 4 - 2 = 2⑤ cos^2(60°) - 2sin^2(30°) + tan^2(45°) = (1/2)^2 - 2 × (1/2)^2 + 1 = 1/4 - 1/2 + 1 = 5/4总结:本文通过给出一系列综合算式,涉及三角函数的乘除、加减运算,通过计算给出了每个综合算式的结果。

三角公式综合(习题1)

三角公式综合(习题1)

一、三角公式综合(习题1)基础知识复习1、角α的终边上点P x y (,),点P 到原点的距离记为r ,则sin α= ,cos α= ,tan α= ,cot α= 。

2、同角三角函数的关系中,平方关系是: ;倒数关系是: ; 相除关系是: . 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:παsin(32)-= , -=παtan()3 。

4、αβsin()±= αβcos()±= .±=αβtan() .5、二倍角公式是:sin2α= .cos2α= = = .tan 2α= .6、升幂公式是:+=αcos 1 . -=αcos 1 .7、降幂公式是:=αsin 2. =αcos 2 .二、课前自测1. 已知 是第四象限角, ( ),则 的值为 .2. 在平面直角坐标系 中,角 与角 均以 为始边,它们的终边关于 轴对称,若,则 ( ) .3. .4. 点 从 ( ) 出发,沿单位圆按逆时针方向运动到点 ,若点 的坐标是 (),记 ,则 .5. 化简.三、典型例题1. 已知√,( ),( ),().(1)求和的值;(2)求()的值.2. 如图,在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点.已知,两点的横坐标分别为√,√.(1)求()的值;(2)求的值.答案一、基础知识复习1、角α的终边上点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tan α=xy ,cot α=y x。

2、同角三角函数的关系中,平方关系是:1cos sin22=+αα;倒数关系是:1tan cot αα⋅=; 相除关系是:sin tan cos ααα=. 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:=-)23sin(απαcos -, 3tan()πα-=tan α-。

4、=±)sin(βαβαβαsin cos cos sin ± =±)cos(βαβαβαsin sin cos cos μtan()αβ±=1tan tan tan tan αβαβ±⋅m5、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos-=1cos 22-α=α2sin 21-tan 2α=221tan tan αα-。

三角函数习题及答案

三角函数习题及答案

三角函数习题及答案习题一:1. 求下列三角函数的值:a) sin 30°b) cos 60°c) tan 45°d) cot 30°2. 判断下列等式是否成立:a) sin^2 θ + cos^2 θ = 1b) sec^2 θ - tan^2 θ = 13. 求解下列三角方程:a) sin θ = 0.5b) cos 2θ = sin θ习题二:1. 已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。

2. 已知一个角的正弦值为0.6,求该角的余弦值。

3. 一辆汽车以30km/h的速度行驶。

若汽车的速度与地面的夹角为30°,求汽车在水平方向上的速度以及垂直方向上的速度。

答案:习题一:1.a) sin 30° = 0.5b) cos 60° = 0.5c) tan 45° = 1d) cot 30° = √32.a) sin^2 θ + cos^2 θ = 1 (成立)b) sec^2 θ - tan^2 θ = 1 (成立)3.a) θ = 30° + k × 360°,其中 k 为整数b) θ = 45° + k × 180°,其中 k 为整数习题二:1. 由勾股定理可知,另一条直角边的长度为4cm。

2. 根据正弦函数的定义可知,该角的余弦值为√(1 - 0.6^2) ≈ 0.8。

3. 汽车在水平方向上的速度为30km/h × cos 30° ≈ 26.0 km/h,垂直方向上的速度为30km/h × sin 30° ≈ 15.0 km/h。

以上为三角函数习题及答案。

通过练习这些题目,可以加深对三角函数的理解,并提高解题能力。

在实际问题中,将三角函数运用到物理、工程等领域,能够帮助我们解决实际问题。

初中数学三角函数综合练习题(1)

初中数学三角函数综合练习题(1)

三角函数综合练习题一.选择题(共10小题)1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.二.解答题(共13小题)11.计算:(﹣)0+()﹣1﹣|tan45°﹣|12.计算:.13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.15.计算:sin45°+sin60°﹣2tan45°.16.计算:cos245°+tan60°•cos30°﹣3cot260°.17.如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)20.如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P 处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B 在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)21.如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).22.如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•安顺)如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、ABの长,根据正切函数の定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数の定义,先求出AC、ABの长,再求正切函数.2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数の定义;熟练掌握圆周角定理是解决问题の关键.3.(2016•三明)如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.【分析】根据正弦定义:把锐角Aの对边a与斜边cの比叫做∠Aの正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.【分析】先根据等腰三角形の性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形の性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosAの值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形の性质与判定,三角形内角和定理,线段垂直平分线の性质,相似三角形の判定与性质,难度适中.证明△BCE∽△ABC是解题の关键.5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【分析】根据等腰三角形の性质得到DC=BD=5米,在Rt△ABD中,利用∠Bの正切进行计算即可得到ADの长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形の应用.解决此问题の关键在于正确理解题意の基础上建立数学模型,把实际问题转化为数学问题.6.(2016•金华)一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BCの长度,由矩形の面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯の面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.【点评】本题考查了解直角三角形の应用、矩形面积の计算;由三角函数表示出BC是解决问题の关键.7.(2016•长沙)如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题の关键.8.(2016•南通)如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角の正切列式求出xの值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MNの高度等于8(+1)m;故选A.【点评】本题是解直角三角形の应用,考查了仰角和俯角の问题,要明确哪个角是仰角或俯角,知道仰角是向上看の视线与水平线の夹角;俯角是向下看の视线与水平线の夹角;并与三角函数相结合求边の长.9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A 处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AEの长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面ABの坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形の应用、勾股定理、三角函数;由勾股定理得出方程是解决问题の关键.10.(2016•广东模拟)如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得ABの长,又由余弦の定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1の长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.【点评】此题考查了锐角三角函数の定义以及勾股定理.此题比较简单,注意数形结合思想の应用.二.解答题(共13小题)11.(2016•成都模拟)计算:(﹣)0+()﹣1﹣|tan45°﹣|【分析】本题涉及零指数幂、负整数指数幂、特殊角の三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数の运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点の运算.12.(2016•顺义区二模)计算:.【分析】要根据负指数,绝对值の性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=.【解答】解:原式===2.【点评】本题考查实数の运算能力,解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点の运算.注意:负指数为正指数の倒数;任何非0数の0次幂等于1;二次根式の化简是根号下不能含有分母和能开方の数.13.(2016•天门模拟)计算:sin45°+cos230°﹣+2sin60°.【分析】先把各特殊角の三角函数值代入,再根据二次根式混合运算の法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查の是特殊角の三角函数值,熟记各特殊角度の三角函数值是解答此题の关键.14.(2016•黄浦区一模)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数の运算,根据实数の运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15.(2016•深圳校级模拟)计算:sin45°+sin60°﹣2tan45°.【分析】根据特殊角の三角函数值进行计算.【解答】解:原式=×+2×﹣2×1=+3﹣2=.【点评】本题考查了特殊角の三角函数值.特指30°、45°、60°角の各种三角函数值.sin30°=; cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=.16.(2016•虹口区一模)计算:cos245°+tan60°•cos30°﹣3cot260°.【分析】将特殊角の三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角の三角函数值,解答本题の关键是掌握几个特殊角の三角函数值.17.(2016•青海)如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼の高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间の距离约为48m【点评】此题主要考查了解直角三角形の应用,根据已知得出tan22°=是解题关键18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【分析】过C点作ABの垂线交ABの延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt △BDC中利用锐角三角函数の定义即可求出CDの值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置Cの深度约为3米.【点评】本题考查の是解直角三角形の应用,根据题意作出辅助线,构造出直角三角形是解答此题の关键.19.(2016•黄石)如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦の定义可计算出BHの长,从而得到EFの长;(2)先在Rt△CBE中利用∠CBEの正弦计算出CE,然后计算CE和EFの和即可.【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CFの高度约为541米.【点评】本题考查了解直角三角形の应用﹣坡度与坡角问题:坡度是坡面の铅直高度h和水平宽度lの比,又叫做坡比,它是一个比值,反映了斜坡の陡峭程度,一般用i表示,常写成i=1:mの形式.把坡面与水平面の夹角α叫做坡角,坡度i与坡角α之间の关系为:i ═tanα.20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间の关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OCの高度是200米,所在位置点Pの铅直高度是50(﹣1)米.【点评】考查了解直角三角形の应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2016•泸州)如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D 与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题の关键是添加辅助线构造直角三角形,记住坡度の定义,属于中考常考题型.22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DFの长度;通过解直角△DCE得到CEの长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间の距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.(2016•丹东模拟)某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得ACの长;在Rt △BFD中已知∠BDF与FBの长,进而得出ABの长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.【点评】此题考查了三角函数の基本概念,主要是正切函数の概念及运算,关键把实际问题转化为数学问题加以计算.。

三角函数综合练习1

三角函数综合练习1

三角函数综合练习题一、选择题1、若sin2α>0,且cos α<0,则角α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2、若tan α=2,则2sin α-cos αsin α+2cos α的值为( ) A .0 B.34 C .1 D.543、若△ABC 的内角A 满足sin2A =23,则sin A +cos A = ( ) A.153 B .-153 C.53 D .-534、下列各项中,值为32的是( ) A .2sin15°cos15° B .cos 215°-sin 215° C .2sin 215°-1 D .sin 215°+cos 215°5、已知tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)等于 ( ) A.2318 B.322 C.1322 D.3186、设A 、B 是△ABC 的内角,且cos A =35,sin B =513,则sin(A +B )的值为 ( ) A.6365或-1665 B.1665 C.1665或-6365 D.63657、函数f (x )=sin(π4-x )的一个单调增区间为 ( ) A .(3π4,7π4) B .(-π4,3π4) C .(-π2,π2) D .(-3π4,π4) 8、函数y =sin(2x +π3)的图象的对称轴方程可能是 ( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π129、将函数y =sin(6x +π4)的图象上各点的横坐标伸长到原来的3倍,再向右平移π8个单位,得到的函数的一个对称中心是 ( )A .(π2,0)B .(π4,0)C .(π9,0)D .(π16,0) 10、若定义在R 上的函数f (x )满足f (π3+x )=-f (x ),且f (-x )=f (x ),则f (x )可以是( ) A .f (x )=2sin 13x B .f (x )=2sin3x C .f (x )=2cos 13x D .f (x )=2cos3x 11、已知函数f (x )=sin(w x +π4)(x ∈R ,w >0)的最小正周期为π.将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是 ( ) A.π2 B.3π8 C.π4 D.π812、函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是( ) A .1 B.1+32 C.32D .1+ 3 13、若f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,则a 的值为 ( ) A .-6 B .4 C .-3 D .-414、已知函数f (x )=3sin w x +cos w x (w >0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是 ( )A .[kπ-π12,kπ+5π12],k ∈ZB .[kπ+5π12,kπ+11π12],,k ∈Z C .[kπ-π3,kπ+π6],k ∈Z D .[kπ+π6,kπ+2π3],k ∈Z 15、3-sin70°2-cos 210°=( ) A.12 B.22 C .2 D.32二、填空题1、已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 二2、若sin θ=-45,tan θ>0,则cos θ=________.答案:-353、已知点P (sin 34π,cos 34π)落在角θ的终边上,且0≤θ≤2π,则θ=________.答案:7π44、函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是_____答案:1<k <35、给出下列六个命题,其中正确的命题是__________.①存在α满足sin α+cos α=32;②y =sin(52π-2x )是偶函数;③x =π8是y =sin(2x +5π4)的一条对称轴; ④y =e sin2x 是以π为周期的(0,π2)上的增函数;⑤若α、β是第一象限角,且α>β,则tan α>tan β; ⑥函数y =3sin(2x +π3)的图象可由y =3sin2x 的图象向左平移π3个单位得到.答案:②③ 三、解答题1、已知cos2θ=725,π2<θ<π. 求: (1)tan θ的值; (2)2cos 2θ2-sin θ2sin(θ+π4)的值. 解析:(1)由cos2θ=725,得1-2sin 2θ=725,sin 2θ=925. ∵π2<θ<π,∴sin θ=35,cos θ=-45.∴tan θ=sin θcos θ=-34. (2)2cos 2θ2-sin θ2sin(θ+π4)=cos θ+1-sin θsin θ+cos θ=-45+1-3535-45=2. 2、已知3π4<α<π,tan α+cot α=-103. (1)求tan α的值; (2)求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin(α-π4)的值.解析:(1)∵tan α+cot α=-103,∴3tan 2α+10tan α+3=0.解得tan α=-13或tan α=-3. ∵3π4<α<π,∴-1<tan α<0.∴tan α=-13. (2)∵tan α=-13, ∴5sin 2α2+8sin α2cos α2+11cos 2α2-82sin(α-π4)=5(sin 2α2+cos 2α2)+4sin α+6·1+cos α2-8sin α-cos α =5+4sin α+3+3cos α-8sin α-cos α=4sin α+3cos αsin α-cos α=4tan α+3tan α-1=-54. 3、已知sin α=-55,tan β=-13且α、β∈(-π2,0). (1)求α+β的值; (2)求2sin(π4-α)+cos(π4+β)的值. 解析:(1)由sin α=-55及α∈(-π2,0),∴cos α=255.∴tan α=-12,∴tan(α+β)=tan α+tan β1-tan α·tan β=-1. 又∵-π<α+β<0,∴α+β=-π4. (2)由(1)知α+β=-π4, 2sin(π4-α)+cos(π4+β)=2sin(π4-α)+cos(π4-π4-α)=2sin(π4-α)+cos α=2cos α-sin α =2×255+55= 5. 4、已知函数f (x )=cos 2w x +sin w x cos w x -12(w >0)的最小正周期为π. (1)求f (x )在区间[-π2,π8]上的最小值; (2)求函数f (x )的图象上与坐标原点最近的对称中心的坐标.解析:(1)f (x )=cos 2w x +sin w x cos w x -12=12(cos2w x +1)+12sin2w x -12=22sin(2w x +π4). ∵T =2π2w =π,∴w =1,∴f (x )=22sin(2x +π4). ∵当-π2≤x ≤π8时,-3π4≤2x +π4≤π2, ∴当2x +π4=-π2时,f (x )=22sin(2x +π4)取得最小值为-22. (2)令2x +π4=kπ,得x =kπ-π42=kπ2-π8,k ∈Z , 当k =0时,x =-π8,当k =1时,x =3π8, ∴满足要求的对称中心为(-π8,0). 5、设函数f (x )=(sin w x +cos w x )2+2cos 2w x (w >0)的最小正周期为2π3. (1)求w 的值;(2)若函数y =g (x )的图象是由y =f (x )的图象向右平移π2个单位长度得到的.求y =g (x )的单调增区间. 解析:(1)f (x )=sin 2w x +cos 2w x +2sin w x cos w x +1+cos2w x =sin2w x +cos2w x +2=2sin(2w x +π4)+2,依题意得2π2w =2π3,故w =32. (2)依题意得g (x )=2sin[3(x -π2)+π4]+2=2sin(3x -5π4)+2. 由2kπ-π2≤3x -5π4≤2kπ+π2(k ∈Z)解得23kπ+π4≤x ≤23kπ+7π12(k ∈Z). 故g (x )的单调增区间为[23kπ+π4,23kπ+7π12](k ∈Z). 6、设函数f (x )=sin(π4x -π6)-2cos 2π8x +1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值. 解析:(1)由f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3), 故f (x )的最小正周期为T =2ππ4=8. (2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,从而g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3). 当0≤x ≤43时,π3≤π4x +π3≤2π3,因此 y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32. 解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x =1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值. 由(1)知f (x )=3sin(π4x -π3), 当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32. 7、已知函数f (x )=2cos x cos(π6-x )-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π2],求f (x )的值域. 解析:(1)∵f (x )=cos x (3cos x +sin x )-3sin 2x +sin x cos x =3(cos 2x -sin 2x )+2sin x cos x =3cos2x +sin2x=2sin(2x +π3), ∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π2],∴-π3≤2x +π3≤4π3. 又∵f (x )=2sin(2x +π3), ∴f (x )∈[-3,2].∴f (x )的值域为[-3,2].8、已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12(x ∈R) (1)求函数f (x )的最小正周期;(2)求函数f (x )取得最大值的所有x 组成的集合.解析:(1)f (x )=3sin ⎝⎛⎭⎫2x -π6+1-cos2⎝⎛⎭⎫x -π12 =3sin ⎝⎛⎭⎫2x -π6-cos ⎝⎛⎭⎫2x -π6+1 =2⎣⎡⎦⎤32sin ⎝⎛⎭⎫2x -π6-12cos ⎝⎛⎭⎫2x -π6+1=2sin ⎣⎡⎦⎤⎝⎛⎭⎫2x -π6-π6+1=2sin ⎝⎛⎭⎫2x -π3+1, ∴函数f (x )的最小正周期为T =2π2=π. (2)当f (x )取最大值时,sin ⎝⎛⎭⎫2x -π3=1,此时有2x -π3=2kπ+π2, 即x =kπ+5π12(k ∈Z). ∴所求x 的集合为⎩⎨⎧⎭⎬⎫x |x =kπ+5π12,k ∈Z . 9、已知α∈(0,π2),β∈(π2,π)且sin(α+β)=3365,cos β=-513.求sin α. 解析:∵β∈(π2,π),cos β=-513,∴sin β=1213. 又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365,∴π2<α+β<π, cos(α+β)=-1-sin 2(α+β)=-1-(3365)2=-5665,∴sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β=3365·(-513)-(-5665)·1213=35. 10、已知f (x )=sin 2w x +32sin2w x -12(x ∈R ,w >0),若f (x )的最小正周期为2π. (1)求f (x )的表达式和f (x )的单调递增区间;(2)求f (x )在区间[-π6,5π6]上的最大值和最小值. 解析:(1)由已知f (x )=sin 2w x +32sin2w x -12=12(1-cos2w x )+32sin2w x -12=32sin2w x -12cos2w x =sin(2w x -π6). 又由f (x )的周期为2π,则2π=2π2w ⇒2w =1⇒w =12, ⇒f (x )=sin(x -π6), 2kπ-π2≤x -π6≤2kπ+π2(k ∈Z)⇒2kπ-π3≤x ≤2kπ+2π3(k ∈Z), 即f (x )的单调递增区间为[2kπ-π3,2kπ+2π3](k ∈Z). (2)由x ∈[-π6,5π6]⇒-π6≤x ≤5π6⇒-π6-π6≤x -π6≤5π6-π6⇒-π3≤x -π6≤2π3⇒sin(-π3)≤sin(x -π6)≤sin π2.∴-32≤sin(x -π6)≤1. 故f (x )在区间[-π6,5π6]的最大值和最小值分别为1和-32.11、已知A 、B 、C 三点的坐标分别是A (3,0)、B (0,3),C (cos α,sin α),其中π2<α<3π2. (1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin2α1+tan α的值. 解析:(1)AC →=(cos α-3,sin α),BC →=(cos α,sin α-3),∵|AC →|=|BC →|,∴|AC →|2=|BC →|2,即(cos α-3)2+sin 2α=cos 2α+(sin α-3)2,化简得sin α=cos α.∵π2<α<3π2,∴α=5π4. (2)-1=AC →·BC →=cos α(cos α-3)+sin α(sin α-3)=1-3(sin α+cos α),∴sin α+cos α=23. 于是2sin α·cos α=(sin α+cos α)2-1=-59, 故2sin 2α+sin2α1+tan α=2sin α(sin α+cos α)cos α+sin αcos α=2sin α·cos α=-59.。

三角函数练习题(含答案)

三角函数练习题(含答案)

点后观察到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为 ___________结果保留根号). 7.求值:sin260°+cos260°=___________. 8.在直角三角形 ABC 中,∠A= 900 ,BC=13,AB=12,那么
tan B ___________.
9.根据图中所给的数据,求得避雷针 CD 的长约为_______m(结果精 确的到 0.01m).(可用计算器求,也可用下列参考数据 求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈ 0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°
地,此时王英同学离 A 地 ( )
(A) 50 3 m (B)100 m (C)150m (D)100 3 m
11、如图 1,在高楼前 D 点测得楼顶的仰角为 300,向高楼前进 60 米到 C 点,又测得仰角
为 450,则该高楼的高度大约为(

A.82 米 B.163 米
C.52 米 D.70 米
≈0.8391)
10.如图,自动扶梯 AB 段的长度为 20 米,倾斜 角 A 为α,高度 BC 为___________米(结果用含 α的三角比表示).
11.如图 2 所示,太阳光线与地面成 60°角,一 棵倾斜的大树与地面成 30°角,这时测得大树在 地面上的影子约为 10 米,则大树的高约为________米.(保
6 2
据供解题使用:sin15°=,cos15°= 4 )
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的 走向是北偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接 通,则乙地所修公路的走向是南偏西___________度.

三角函数的图象与性质综合练习题(基础、好用、值得收藏)

三角函数的图象与性质综合练习题(基础、好用、值得收藏)

三角函数的图象与性质综合练习题一、选择题1.下列函数中,最小正周期为π,且图象关于直线x=π3对称的函数是()A.y=2sin(2x+π3) B.y=2sin(2x-π6)C.y=2sin(x2+π3) D.y=2sin(2x-π3)2.函数y=tan(π4-x)的定义域是()A.{x|x≠π4} B.{x|x≠kπ+π4,k∈Z}C.{x|x≠-π4} D.{x|x≠kπ+3π4,k∈Z}3.设函数f(x)=sin 3x+|sin 3x|,则f(x)为()A.周期函数,最小正周期为2π3B.周期函数,最小正周期为π3C.周期函数,最小正周期为2πD.非周期函数4.已知函数f(x)=sin x+3cos x,设a=f(π7),b=f(π6),c=f(π3),则a,b,c的大小关系是()A.a<b<c B.c<a<bC.b<a<c D.b<c<a5.已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期为6π,,且当x=π2时,f(x)取得最大值,则()A.f(x)在区间[-2π,0]上是增函数B.f(x)在区间[-3π,-π]上是增函数C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数二、填空题6. 已知f (x )=A sin(ωx +φ),f (α)=A ,f (β)=0,|α-β|的最小值为π3,则正数ω=________.7.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f (x )的取值范围是________.8.已知函数f (x )=cos x sin x (x ∈R),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.三、解答题9.已知函数f (x )=sin x cos x +sin 2x ,(1)求f (π4)的值;(2)若x ∈[0,π2],求f (x )的最大值及相应的x 值.10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8,(1)求φ;(2)求函数y =f (x )的单调增区间.11.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg g (x )>0,求g (x )的单调区间.解析及答案一、选择题1.【解析】 函数的最小正周期为π,排除C.又图象关于直线x =π3对称,则f (π3)=2或f (π3)=-2.代入检验知选B.【答案】 B2.【解析】 y =tan(π4-x )=-tan(x -π4),由x -π4≠π2+k π,k ∈Z 得x ≠k π+3π4,k ∈Z.【答案】 D3.【解析】 f (x )=sin 3x +|sin 3x |=⎩⎨⎧2sin 3x ,sin 3x ≥0,0,sin 3x <0,周期不变. 【答案】 A4.【解析】 ∵f (x )=sin x +3cos x =2sin(x +π3),∴函数f (x )的图象关于直线x =π6对称,从而f (π3)=f (0), 又f (x )在[0,π6]上是增函数,∴f (0)<f (π7)<f (π6),即c <a <b . 【答案】 B5.【解析】 ∵T =6π,∴ω=2πT =2π6π=13, ∴13×π2+φ=2k π+π2,∴φ=2k π+π3(k ∈Z).∵-π<φ≤π,∴令k =0得φ=π3.∴f (x )=2sin(x 3+π3).令2k π-π2≤x 3+π3≤2k π+π2,k ∈Z ,则6k π-5π2≤x ≤6k π+π2,k ∈Z.易知f (x )在区间[-2π,0]上是增函数.【答案】 A二、填空题6.【解析】 由于|α-β|的最小值为π3,∴函数f (x )的周期T =43π,∴ω=2πT =32.【答案】 327.【解析】 依题意得ω=2,所以f (x )=3sin(2x -π6).由x ∈[0,π2],得2x -π6∈[-π6,56π],所以sin(2x -π6)∈[-12,1],所以f (x )∈[-32,3].【答案】 [-32,3]8.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④三、解答题9.【解】 (1)∵f (x )=sin x cos x +sin 2x ,∴f (π4)=sin π4cos π4+sin 2π4=(22)2+(22)2=1.(2)f (x )=sin x cos x +sin 2x =12sin 2x +1-cos 2x 2=12(sin 2x -cos 2x )+12=22sin(2x -π4)+12,由x ∈[0,π2],得2x -π4∈[-π4,3π4],所以,当2x -π4=π2,即x =38π时,f (x )取到最大值为2+12.10.【解】 (1)∵直线x =π8是函数f (x )图象的一条对称轴, ∴2×π8+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z.又-π<φ<0, ∴φ=-34π. (2)由(1)知f (x )=sin(2x -34π),令-π2+2k π≤2x -34π≤π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z.因此y =f (x )的单调增区间为[π8+k π,58π+k π],k ∈Z.11.【解】(1)由x∈[0,π2],得2x+π6∈[π6,7π6].∴sin(2x+π6)∈[-12,1],从而b≤f(x)≤3a+b.又∵-5≤f(x)≤1,∴b=-5,3a+b=1,因此a=2,b=-5.(2)由(1)得f(x)=-4sin(2x+π6)-1,∴g(x)=f(x+π2)=-4sin(2x+7π6)-1=4sin(2x+π6)-1,又由lg g(x)>0得g(x)>1,∴4sin(2x+π6)-1>1,∴sin(2x+π6)>12,∴2kπ+π6<2x+π6<2kπ+5π6,k∈Z,其中当2kπ+π6<2x+π6≤2kπ+π2,k∈Z 时,g(x)单调递增,即kπ<x≤kπ+π6,k∈Z,∴g(x)的单调增区间为(kπ,kπ+π6],k∈Z.又∵当2kπ+π2<2x+π6<2kπ+5π6,k∈Z时,g(x)单调递减,即kπ+π6<x<kπ+π3,k∈Z.∴g(x)的单调减区间为(kπ+π6,kπ+π3),k∈Z.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数综合(习题)
1.
1
cos
2
αα可化为()
A.
π
sin()
6
α
-B.
π
sin()
3
α
-C.
π
sin()
6
α
+D.
π
sin()
3
α
+
2.
若3sin)(ππ)
x x xϕϕ
=-∈-
,,,则=
ϕ()A.
π
6
-B.
π
6
C.

6
D.

6
-
3.
已知函数()cos
f x x x x
=-∈R
(),若()1
f x≥,则x的取值范围为()
A.
π
{πππ}
3
x
x|k k k
++∈Z
≤≤,
B.
π
{2π2ππ}
3
x
x|k k k
++∈Z
≤≤,
C.
π5π
{ππ}
66
x
x|k k k
++∈Z
≤≤,
D.
π5π
{2π2π}
66
x
x|k k k
++∈Z
≤≤,
4.
若02πsin
ααα
>
≤≤,,则α的取值范围是()A.
ππ
()
32
,B.
π
(π)
3
,C.
π4π
()
33
,D.
π3π
()
32

5.方程sin2sin
x x
=在区间(0,2π)内解的个数是()A.1 B.2 C.3 D.4
6.
若函数
π
()(1)cos0
2
f x x x x
=<

,,则f (x)的最大值为()A.1 B.2 C
1D
2
7. 函数12sin cos y x x =
++的最大值是( )
A .
12- B .12+ C .12- D .12
--
8. 将函数sin y x x =的图象向右平移了n 个单位,所得图象关于y 轴对
称,则n 的最小正值是( )
A .7π6
B .π3
C .π6
D .π2
9. 函数ππsin()cos()26
y x x =+-的最大值为______.
10. 若方程sin x x c =有实数解,则c 的取值范围是_____.
11. 函数2π()sin(2)4
f x x x =--的最小正周期是______.
12. 函数2()5sin cos f x x x x x =-∈R )的单调递增区间为__________.
13. 设函数2πππ()sin()2cos 1468
x x f x =--+. (1)求()f x 的最小正周期. (2)若函数()y g x =与()y f x =的图象关于直线1x =对称,求当4[0]3
x ∈,
时,()y g x =的最大值.
14. 已知x 0,0π2x +是函数22π()cos ()sin 06
f x x x ωωω=-->()的两个相邻的零点.
(1)求π()12
f 的值; (2)若对7π[0]12
x ∀∈-,,都有()1f x m -≤,求实数m 的取值范围.
15. 已知函数2ππ()sin()sin()2cos 0662
x f x x x x ωωωω=++--∈>R (,), (1)求函数()f x 的值域;
(2)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线y =-1有且只有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x =,x ∈R 的增区间.
【参考答案】
1.A
2.B
3.B
4.C
5.C
6.B
7.B
8.C
9.4
10.[]22-,
11.π
12.51212k k k ππ⎛⎫-+π+π∈ ⎪⎝⎭
Z ,,
13.(1)T =8;(2)2
14.(1(2)114m --≤≤ 15.(1)[]31-,;(2)263k k k ωππ⎛⎫=-+π+π∈ ⎪⎝⎭
Z ,增区间为,,。

相关文档
最新文档