第4章频率域滤波【数字图像处理课程精品PPT】
数字图像处理中的频域滤波数学原理探索
数字图像处理中的频域滤波数学原理探索数字图像处理是一门涉及图像获取、图像处理和图像分析的学科,其中频域滤波是其中一个重要的技术。
频域滤波通过将图像从空域转换到频域,利用频域的特性对图像进行处理。
本文将探索数字图像处理中的频域滤波的数学原理。
一、傅里叶变换傅里叶变换是频域滤波的基础,它将一个函数表示为正弦和余弦函数的和。
对于一维信号,傅里叶变换可以表示为以下公式:F(u) = ∫[f(x)e^(-i2πux)]dx其中F(u)表示信号f(x)在频率域的表示,u表示频率,x表示空间位置。
对于二维图像,傅里叶变换可以表示为以下公式:F(u,v) = ∬[f(x,y)e^(-i2π(ux+vy))]dxdy其中F(u,v)表示图像f(x,y)在频率域的表示,u和v表示频率,x和y表示图像的空间位置。
二、频域滤波在频域中,对图像进行滤波意味着对图像的频率分量进行操作。
常见的频域滤波操作包括低通滤波和高通滤波。
1. 低通滤波低通滤波器允许通过低频分量,并抑制高频分量。
在图像中,低频分量通常表示图像的平滑部分,而高频分量则表示图像的细节部分。
低通滤波器可以用于去除图像中的噪声和细节,使图像变得更加平滑。
2. 高通滤波高通滤波器允许通过高频分量,并抑制低频分量。
在图像中,高频分量通常表示图像的边缘和纹理部分,而低频分量则表示图像的整体亮度分布。
高通滤波器可以用于增强图像的边缘和纹理特征。
三、频域滤波的步骤频域滤波的一般步骤包括图像的傅里叶变换、滤波器的设计、滤波器与图像的乘积、逆傅里叶变换。
1. 图像的傅里叶变换首先,将原始图像转换为频域表示。
通过对图像进行傅里叶变换,可以得到图像在频率域中的表示。
2. 滤波器的设计根据需要进行滤波器的设计。
滤波器可以是低通滤波器或高通滤波器,具体设计方法可以根据应用需求选择。
3. 滤波器与图像的乘积将滤波器与图像在频域中的表示进行乘积操作。
乘积的结果是滤波后的频域图像。
4. 逆傅里叶变换对滤波后的频域图像进行逆傅里叶变换,将其转换回空域表示。
数字图像处理课件ppt
06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
数字图像处理图像滤波ppt课件
47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)
x
s 2
y
t
2
范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的
数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT
F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
遥感数字图像处理:遥感图像处理-图像滤波
Mean 11x11
1.2 中值滤波器
在邻域平均法中,是将n×n局部区域中的灰度的平
均值作为区域中央象元的灰度值。而在中值滤波中,是 把局部区域中灰度的中央值作为区域中央象元的值。
g(x, y) median(of (x, y))
如,在3×3区域内进行中值滤波,是将区域内9个 灰度值按由小到大排列,从小的一方开始的第5个值即 为中央象元的值。
矢量微分----梯度
二元函数f(x,y)在坐标点(x,y)处的梯度向量的定义:
f
G[
f
( x,
y)]
x f
y
梯度的幅度:
G[ f (x, y)] ( f )2 ( f ) 2
x
y
梯度的幅角:
M
tg 1[ f / f ] y x
连续域的微分----离散域的差分
x f (i, j) f (i 1, j) f (i, j) y f (i, j) f (i, j 1) f (i, j)
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果r(i,j) 放在窗口中心的像 元位置,成为新像 元的灰度值。然后 活动窗口向右移动 一个像元,再按公 式做同样的运算, 仍旧把计算结果放 在移动后的窗口中 心位置上,依次进 行,逐行扫描,直 到全幅图像扫描一 遍结束,则新图像 生成。
数字图像处理-频域滤波-高通低通滤波
数字图像处理-频域滤波-⾼通低通滤波频域滤波频域滤波是在频率域对图像做处理的⼀种⽅法。
步骤如下:滤波器⼤⼩和频谱⼤⼩相同,相乘即可得到新的频谱。
滤波后结果显⽰,低通滤波去掉了⾼频信息,即细节信息,留下的低频信息代表了概貌。
常⽤的例⼦,⽐如美图秀秀的磨⽪,去掉了脸部细节信息(痘坑,痘印,暗斑等)。
⾼通滤波则相反。
⾼通/低通滤波1.理想的⾼/低通滤波顾名思义,⾼通滤波器为:让⾼频信息通过,过滤低频信息;低通滤波相反。
理想的低通滤波器模板为:其中,D0表⽰通带半径,D(u,v)是到频谱中⼼的距离(欧式距离),计算公式如下:M和N表⽰频谱图像的⼤⼩,(M/2,N/2)即为频谱中⼼理想的⾼通滤波器与此相反,1减去低通滤波模板即可。
部分代码:# 定义函数,显⽰滤波器模板def showTemplate(template):temp = np.uint8(template*255)cv2.imshow('Template', temp)return# 定义函数,显⽰滤波函数def showFunction(template):row, col = template.shaperow = np.uint16(row/2)col = np.uint16(col/2)y = template[row, col:]x = np.arange(len(y))plt.plot(x, y, 'b-', linewidth=2)plt.axis([0, len(x), -0.2, 1.2])plt.show()return# 定义函数,理想的低通/⾼通滤波模板def Ideal(src, d0, ftype):template = np.zeros(src.shape, dtype=np.float32) # 构建滤波器 r, c = src.shapefor i in range(r):for j in range(c):distance = np.sqrt((i - r/2)**2 + (j - c/2)**2)if distance < d0:template[i, j] = 1else:template[i, j] = 0if ftype == 'high':template = 1 - templatereturn templateIdeal2. Butterworth⾼/低通滤波Butterworth低通滤波器函数为:从函数图上看,更圆滑,⽤幂系数n可以改变滤波器的形状。
数字图像处理实验四
福建农林大学计算机与信息学院实验报告
系:计算机与信息学院专业:电子信息工程年级:2014级
:吕志缘学号:3146004063 实验室号__明南附203 计算机号
实验时间:20170507 指导教师签字:成绩:
报告退发(订正、重做)
实验四频率域滤波
1.实验目的和要求
掌握二维离散傅立叶变换的计算;
掌握频率域图像的平滑和锐化方法;
2.实验内容和原理
✧根据二维离散傅立叶变换公式计算傅立叶谱,并显示相应的傅立叶谱图
像。
✧利用matlab工具包,实现高斯低通滤波和高通滤波。
3.实验环境
硬件:一般PC机
操作系统:WindowsXP
编程平台:MATLAB 或高级语言
4.算法描述及实验步骤
实验结果
5.
6. 总结
傅立叶变换是线性系统分析的一个有力工具,它能够定量分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪声等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,学习好傅立叶变换很有必要。
其公式如下:。
精品文档-数字图像处理系统导论(郭宝龙)-第4章
2 f (x, y) f (x 1, y) f (x-1, y) f (x, y 1) f (x, y-1)-4 f (x, y)
下面以一幅3×2像素的简单图片(见图4-5)为例,来说明 灰度直方图均衡化的算法。
图 4-4 直方图变化
图 4-5 原图像灰度值分布
求出每个色阶的百分比之后,再乘255,就可以求出与其 对应的灰度值来。表4-1所示为对应灰度值转换。
表4-1 对应灰度值转换
根据每个色阶的百分比的对应关系组成一个灰度映射表, 然后根据映射表来修改原来图像每个像素的灰度值。对于图45,用128替换50,用212替换100,用255替换200。这样,灰 度直方图的均衡化就完成了,如图4-6所示。
2. 图像中的均匀与不均匀反映了频率高低不同,抑制低频 (增强高频)对应于锐化滤波器,而抑制高频(增强低频)对应 于平滑滤波器。以下讨论考虑对F(u,v)的实部、虚部影响完 全相同的滤波转移函数——零相移滤波器。 1) 理想低通滤波器 理想低通滤波器的传递函数为
1 H (u, v) 0
D(u, v) D0 D(u, v) D0
图 4-10 原始图像及其傅里叶频谱图
1. 假定原图像为f(x,y),经傅里叶变换为F(u,v)。频率 域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分 进行处理G(u,v)=H(u,v)F(u,v),然后经逆傅里叶变换得 到增强的图像g(x,y)=F-1({G(u,v)} 假设f(x,y)和h(x,y)的大小分别为A×B和C×D。如果 直接进行傅里叶变换和乘积,会产生折叠误差(卷绕)。为解决 这一问题,需通过对f和h补零,构造两个大小均为P×Q的函 数,使其满足
数字图像处理(冈萨雷斯)-4 频域平滑及锐化滤波
频域图像增强
——图像的频域分析 频率域滤波
频率域平滑(低通)滤波器
频率域锐化(高通)滤波器
4.8 频率域平滑滤波
第4章 频率域滤波
• 图像的平滑除了在空间域中进行外,也可以在频率域中进
行。由于噪声主要集中在高频部分,为去除噪声改善图像 质量,滤波器采用低通滤波器 H 可达到平滑图像的目的
2 2 2 2
H (u, v) 4 (u v ) (4.9 5)
2 2 2
原点从(0,0)移到(P/2,Q/2),所以,滤波函数平移为
H (u, v) 4 2 (u P 2) 2 (v Q 2) 2 4 2 D 2 (u, v) (4.9 6)
(u P 2)2 (v Q 2) 2 F (u, v) f ( x, y) 4
2 2
从原始图像中减去拉普拉斯算子部分,形成
g(x,y)的增强图像
g ( x, y ) f ( x, y ) f ( x, y ) (4.9 8)
4.8 频率域平滑滤波
理想低通滤波器 总图像功率值PT
P 1 Q 1 u 0 v 0
PT P ( u, v ) (4.8 3)
2
其中:
P (u, v ) F (u, v ) R2 (u, v ) I 2 (u, v )
原点在频率域的中心,半径为D0的圆包含%的功率
圆环具有半径5,15,30,80和230个像素
图像功率为92.0%,94.6%,96.4%,98.0%和99.5%
4.8
频率域平滑滤波
理想低通滤波器举例4.16——具有振铃现象
原图
数字图像处理课程内容
对于三角形,设双线性方程为:
f ( x, y ) = ax + by + c
带入3点灰度坐标可求:a,b,c
灰度级:L = 2 k 图像比特数:b = M × N × k
像素基本关系
相邻关系 N4,N8,ND 邻接、连通
4邻接,8邻接,m邻接 通路:相邻像素相互邻接,形成通路。
距离
D4(街区距离),D8(棋盘距离)
3/4/6章. 图像增强
基本灰度变换
灰度区间拉伸与压缩
线性变换 斜率(k>1) 非线性变换 曲线凹凸 上凸,拉伸;如对数 下凹,压缩;如指数
三种平滑滤波器比较
模糊比较(平滑作用) 模糊比较(平滑作用) 模糊小:高斯低通>巴特沃思>理想低通 平滑效果最好:巴特沃思 消除振铃:高斯低通,一阶巴特沃思
5. 图像复原
空间滤波复原
均值滤波器
算术均值滤波器:图像模糊, 算术均值滤波器:图像模糊,减少噪声 几何均值滤波器:线变粗,丢失细节 只一像素0,均值0 丢失细节; 几何均值滤波器:线变粗 丢失细节;只一像素 ,均值 谐波均值滤波器:适用高斯噪声,盐噪声 盐噪声,不适用胡椒噪声 谐波均值滤波器:适用高斯噪声 盐噪声 不适用胡椒噪声 逆谐波均值滤波器: 正 胡椒噪声; 负 盐噪声; 逆谐波均值滤波器:Q正,胡椒噪声;Q负,盐噪声; Q=0,算术均值滤波器 , 修正α均值滤波器:适用多种噪声; 修正α均值滤波器:适用多种噪声; d=0,算术均值滤波器;d=MN-1,中值均值滤波器 算术均值滤波器; 算术均值滤波器 - 中值均值滤波器
数字图像处理 第四章图像增强
Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r
)
i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
相位_正弦分量关于原点位移的角度
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
F(M/2,N/2)=:0
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Chapter 4
Filtering in the Frequency Domain
c→d:在空间域扩展周期后的变换效果
IDFT
© 1992–2008 R. C. Gonzalez & R. E. Woods
a与d比较
Digital Image Processing, 3rd ed.
Chapter 4
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
一个简单函数的二维傅立叶谱
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
Filtering in the Frequency Domain
周期信号引起卷积混叠的现象:
© 1992–2008 R. C. Gonzalez & R. E. Woods
j图实际上是由 e图的梯形复制 平移后叠加
Digital Image Processing, 3rd ed.
Chapter 4
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
一个简单函数的傅立叶变换
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
Chapter 4
Filtering in the Frequency Domain
只使用相位重建
只使用谱重建
© 1992–2008 R. C. Gonzalez & R. E. Woods
用矩形的谱+ 妇女的相位重建
Digital Image Processing, 3rd ed.
Chapter 4
Chapter 4
Filtering in the Frequency Domain
4.7 频率域滤波基础
Page 161
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
取样
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
不同取样后的变换结果
© 1992–2008 R. C. Gonzalez & R. E. Woods
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
第四章 频率域滤波
© 1992–2008 R. C. Gonzalez & R. E. Woods
下面的函数曲线是
上面4条函数曲线之和。 Fourier在1807年认为: 周期函数可以表示为
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Filtering in the Frequency Domain
2D傅立叶变换性质小结
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.
Chapter 4
Filtering in the Frequency Domain
© 1992–2008 R. C. Gonzalez & R. E. Woods
Digital Image Processing, 3rd ed.