以太网的环路检测技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网的环路检测技术

作者:吴少勇甘玉玺张翰之

来源:《中兴通讯技术》2012年第01期

摘要:以太网在局域网中取得了巨大的成功,但是在城域网应用领域中仍需要解决网络环路的相关问题。根据不同的以太网应用领域,文章分析了几种环路检测的解决方案,包括生成树协议(STP)、以太网环路保护切换协议(ERPS)、环回检测和成环点定位技术。其中,成环点定位技术新颖实用,非常适合各种以太网局域网和城域网,对于以太网的运行和维护都有很大的意义。目前,全球的标准组织均正在积极对以太网环路检测技术进行标准化,随着标准的不断成熟,以太网的环路检测技术将逐步降低以太网的环路风险,提高以太网的可靠性,便于网络的管理。

关键词:以太网;环路;检测;可靠性

1以太网和网络环路

在城域网和局域网中广泛采用的是以太网组网技术,网络中90%以上的接人数量也都由以太网承载。以太网的突出优势是可以封装任何协议数据、易于使用、成本低、灵活性好、兼容性强、标准化成熟,对于用户而言可以做到即插即用,网络的管理和维护都非常简单。然而,以太网本质上是一种局域网技术,对可靠性要求不高的微型局域网是非常适用的,但当网络规模扩大时,以太网本身存在的一些局限性会给网络带来致命的故障,其中网络环路就很容易导致以太网区域内的所有网络的瘫痪。

根据以太网的原理,当以太网交换机节点收到一个广播帧或未知单播帧时,会向其他所有端口泛洪该帧。在局域网中,以太网的这种转发方式非常简单实用,交换机节点通过泛洪的方式,很容易将广播帧或未知单播帧转发给目的主机。但是当网络中有环路存在时,广播帧会在环路中的各个交换机节点上依次进行泛洪和转发,最终回到源交换机节点,而源交换机节点收到该广播帧后,并不会丢弃,而是继续按照广播帧的转发方式进行泛洪,因此广播帧会永无休止地在环路的各个交换机节点上进行转发,最终流量越来越大,耗尽带宽。以太网交换机节点还会将广播帧向环路之外的端口泛洪,发送给局域网中的主机,随着泛洪流量的增大,主机将难以承受收到的泛洪流量,从而导致整个局域网及其主机瘫痪,造成严重的网络故障,这种场景也称为“网络风暴”。

在无环路的网络中,新连接的一条链路如果导致了环路,则称这条链路为成环点。在局域网中,通常网络中以太网交换机节点数量较少,网络结构简单,不易形成环路,即使新增加链路形成环路,也很容易定位出成环点,造成网络故障范围较小,维护难度不大。但是当网络范围扩大时,特别是在城域网中,通常有数十台以太网交换机,承载着成千上万的用户,网络拓

扑非常复杂,一旦新增加链路形成环路,则很难定位到成环点,而且故障的影响范围都是非常大的。因此随着以太网应用范围越来越大,各种以太网的环路探测技术应运而生。

2基于STP的以太网环路检测技术

生成树协议(STP)是在IEEE802.1D标准中定义的一种提供路径冗余和环路切换的技术,其主要目的是在任何以太网拓扑中。自动发现一个树状无环路的逻辑拓扑。其主要原理是:在网络的各个以太网交换机节点上运行STP,首先所有节点的端口都为阻塞状态,节点周期(默认为2s)通过网桥协议数据单元(BPDU)帧和其他节点之间协商,再比较节点的优先级从而选出根节点,其余的非根节点则根据路径花费选择一个通向根节点的最优端口(又称为“根端口”);然后在每个网段选择一个指派端口,将非指派端口设置为阻塞状态,其他端口设置为转发状态;按照STP的算法,最终在以太网中建立一个树状的逻辑拓扑。当以太网中有环路存在时,由于STP阻塞了其中的非指派端口,数据帧则不能从阻塞端口通过,节点之间的数据帧传输路径为树状拓扑,网络中任何两个以太网交换机节点之间只有唯一的数据帧传输路径,因此不会形成所谓的“网络风暴”。

此外,当网络中链路发生故障时,STP还能检测故障,并重新进行运算,建立新的树状逻辑拓扑,节点之间的数据帧能够通过新的路径进行传输,起到了链路保护的作用。

图1为STP的环路检测示意图,在图1(a)所示的存在环路的以太网中,通过STP的算法,阻塞冗余端口(如图中节点3端口2),最终将网络收敛为树状无环路的逻辑拓扑;当网络

中发生链路故障时,如图1(b)中节点3和4之间的链路发生故障,STP则会重新运算出新的树状逻辑拓扑,打开原先阻塞的节点3端口2,提高了网络的可靠性。

但是STP的算法比较复杂,而且收敛时间非常长,并随着网络的增加收敛时间越来越大。例如对于以太网交换机节点在5个左右的网络,STP的收敛时间通常在30 s以上,虽然快速生成树协议(RsTP)对STP进行了优化,但是收敛时间通常也要3s以上。当网络规模扩大、可靠性要求增加后,STP变得非常复杂,而且收敛时间也变得很长。此外,STP的阻塞端口的选择是基于路径花费值,而在无环路的网络中,当新增加一条链路导致环路时,该新加链路的路径花费值可以和其他链路相同,也可以和它们不同。从路径花费上并不能识别出成环点的位置,因而STP选择的阻塞端口并不一定是成环点,STP无法实现成环点的定位。因此STP主要适用于对可靠性要求不高、节点数量比较少的以太网局域网络。

3基于ERPS的以太网环路检测技术

以太网环路保护切换协议(ERPS)是在国际电信联盟电信标准化部(ITU-T)G.8032标准中定义的一种以太网环路保护切换技术。其主要目的是对环路的以太网络进行保护,主要原理是:在网络正常时,阻塞一个端口防止环路,该端口称为环保护链路(RPL)端口。在网络出现故障时,打开RPL端口可以使得数据帧能够通过,从而实现网络的保护。ERPS最大的一个优点是保护切换时间小于50ms,满足电信级的高可靠性要求,而且与环路中节点数量无关。此外,由于ERPS的网络拓扑本身就是环路,存在冗余链路,ERPS通过阻塞RPL端口的方式,不仅仅在逻辑上将环路解除,防止了数据帧形成“网络风暴”,而且还设置了备份链路。因此当网络出现故障时,ERPS可以启用阻塞的RPL端口对网络进行保护。图2为ERPS在网络链路正常状态和发生故障时的环路保护切换示意图。在图2(a)中,节点1为RPL节点,在网络正常时阻塞RPL端口2,防止网络出现环路;当网络中出现链路故障时,如图2(b)所示,节点3和4之间出现链路故障,故障链路相邻节点向环上发送故障协议帧,RPL节点收到故障协议帧后则会打开RPL端口,数据帧能够通过RPL端口传输,网络重新连通。

ERPS本质上是一种环路保护切换技术,对于已知的以太网环路拓扑是非常适用的,而且能够运用环路中的冗余路径进行保护切换,提高网络的可靠性。但是对于非环路拓扑,只能针对特定的、可能的成环点进行预先设置。当网络没有形成环路时,相当于EPRS的链路处于故

相关文档
最新文档