传感器的分类 及特性以及选择
各种温度传感器分类及其原理
![各种温度传感器分类及其原理](https://img.taocdn.com/s3/m/150a2f56c4da50e2524de518964bcf84b9d52df5.png)
各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
传感器的分类_传感器的原理与分类_传感器的定义和分类
![传感器的分类_传感器的原理与分类_传感器的定义和分类](https://img.taocdn.com/s3/m/f98db09e680203d8ce2f2484.png)
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
传感器的概念、分类及其使用
![传感器的概念、分类及其使用](https://img.taocdn.com/s3/m/72dd194d5022aaea998f0ffb.png)
传感器总结一、概念传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。
它是实现自动检测和自动控制的首要环节。
传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。
通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
二、传感器1.3mm/5mm红绿双色LED(共阴)模块:可以用于电子词典、PDA、MP3、耳机、数码相机、VCD、DVD、汽车音响等等。
2.3色LED模块(RGB):用Arduino控制。
有三个颜色。
3.7彩自动闪烁LED模块:5mm圆头高亮度发光二极管,发光颜色:粉、黄、绿(高亮度)。
4.继电器模块:继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中。
可以:a.扩大控制范围,b.放大,c.综合信号,d.自动、遥控、监测。
5.按键开关模块:按键开关模块和数字13 接口自带LED 搭建简单电路,制作按键提示灯利用数字13 接口自带的LED,将按键开关传感器接入数字3接口,当按键开关传感器感测到有按键信号时,LED 亮,反之则灭。
6.磁簧模块:磁环模块和数字13 接口自带LED 搭建简单电路,制作磁场提示灯利用数字13 接口自带的LED,将磁环传感器接入数字3接口,当磁环传感器感测到有按键信号时,LED 亮,反之则灭。
7.高感度声音检测模块:用于声音检测。
8.光敏电阻:光敏电阻属半导体光敏器件,除具灵敏度高,反应速度快,光谱特性及r 值一致性好等特点外,在高温,多湿的恶劣环境下,还能保持高度的稳定性和可靠性,可广泛应用于照相机,太阳能庭院灯,草坪灯,验钞机,石英钟,音乐杯,礼品盒,迷你小夜灯,光声控开关,路灯自动开关以及各种光控玩具,光控灯饰,灯具等光自动开关控制领域。
传感器设计方案
![传感器设计方案](https://img.taocdn.com/s3/m/7f399090ac51f01dc281e53a580216fc700a53f9.png)
引言概述:传感器设计方案是在物联网和智能系统中起关键作用的一部分。
传感器作为感知物理环境并将其转化为可量化信号的设备,广泛应用于工业、农业、医疗、交通等领域。
本文将深入探讨传感器设计的关键方案和技术,以便为读者提供了解传感器设计过程的详细信息。
正文内容:一、传感器类型的选择1.1传感器的分类和特点1.2传感器应用领域的需求分析1.3选择合适的传感器类型1.4传感器性能参数的评估1.5传感器成本和可靠性的考虑二、传感器材料和制造工艺2.1传感器材料的选择2.2材料制备和特性测试2.3制造工艺的选择2.4传感器的封装和保护措施2.5制造成本和可扩展性的评估三、传感器电路设计3.1传感器信号的放大与处理3.2传感器电源电路设计3.3信号滤波和噪声抑制3.4传感器与控制单元的接口设计3.5电路的可靠性和功耗的考虑四、传感器数据的采集与处理4.1传感器数据采集系统设计4.2数据传输和存储策略4.3数据的处理算法和模型4.4实时监测与反馈控制4.5数据安全和隐私保护的考虑五、传感器系统的测试和验证5.1传感器系统的功能测试5.2传感器性能参数的实验验证5.3环境适应性和稳定性测试5.4传感器系统的可靠性和安全性评估5.5系统修正和优化策略总结:传感器设计方案是一个涉及多个领域知识和技术的复杂过程。
选择适合应用场景的传感器类型和材料、合理设计传感器电路、科学采集和处理传感器数据以及全面测试和验证传感器系统的性能,是确保传感器系统可靠运行的关键。
通过本文的讨论,读者能够获得传感器设计的基本原则和技术要点,以便更好地应用于实际工程中,并不断完善和优化传感器系统的性能。
传感器教案中器件的分类
![传感器教案中器件的分类](https://img.taocdn.com/s3/m/7269a12859fafab069dc5022aaea998fcc2240ec.png)
传感器教案中器件的分类引言本文将介绍传感器教案中常见的器件分类。
在传感器教学中,了解不同种类的器件及其特点对于学生研究和实际应用有着重要的意义。
分类一:模拟传感器模拟传感器是一类将物理量转换为模拟电信号输出的器件。
常见的模拟传感器包括温度传感器、压力传感器、光敏传感器等。
模拟传感器的输出信号是连续变化的,一般为电压或电流。
它们通常需要与模拟电路配合使用,以将模拟信号转换为数字信号进行处理或显示。
分类二:数字传感器数字传感器是一类将物理量转换为数字信号输出的器件。
与模拟传感器不同,数字传感器的输出信号是离散的数字值。
常见的数字传感器有温湿度传感器、气体传感器、陀螺仪等。
数字传感器通常具有较高的精确度和抗干扰能力,并且可以直接与数字电路进行连接,方便数字信号的处理和存储。
分类三:智能传感器智能传感器是集成了处理器和存储器的传感器。
它们具有自主处理和决策的能力,能够对采集到的数据进行实时分析和反馈。
智能传感器可以通过通信接口与其他设备或系统进行数据交换,实现更复杂的功能。
例如,智能温度传感器可通过网络上传温度数据到云平台,实现远程监测和控制。
分类四:功率传感器功率传感器是一类用于测量电力系统中功率参数的器件。
常见的功率传感器有电流传感器和电压传感器。
电流传感器用于测量电流大小,而电压传感器用于测量电压值。
功率传感器在电力系统的维护和管理中起着重要的作用,可以帮助提高能源利用效率和保障电力系统的安全运行。
结论通过对传感器教案中器件的分类介绍,我们可以更好地理解不同种类的传感器及其特点。
模拟传感器、数字传感器、智能传感器和功率传感器在实际应用中各具优势,适用于不同的场景和需求。
传感器与检测技术(重点知识点总结)
![传感器与检测技术(重点知识点总结)](https://img.taocdn.com/s3/m/1a9f7a69c1c708a1294a44b2.png)
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器种类大全
![传感器种类大全](https://img.taocdn.com/s3/m/8123819e29ea81c758f5f61fb7360b4c2e3f2aa3.png)
传感器种类大全传感器是一种能够感知和检测某种特定物理量并将其转化为可识别信号的装置。
根据其感知的物理量不同,传感器可以分为多种不同类型。
下面我们将介绍一些常见的传感器种类,以便大家对传感器有更深入的了解。
1. 光学传感器。
光学传感器是一种利用光学原理来检测物体位置、颜色、亮度等特征的传感器。
常见的光学传感器包括光电开关、光电传感器、光电编码器等。
光学传感器在工业自动化、电子产品、医疗设备等领域有着广泛的应用。
2. 声学传感器。
声学传感器是一种利用声波进行检测和测量的传感器。
例如,超声波传感器可以用来测距、探测障碍物等,应用于汽车倒车雷达、物体测距等领域。
声学传感器在环境监测、医学影像、通信等领域也有着重要的应用。
3. 温度传感器。
温度传感器是一种用来测量温度的传感器。
常见的温度传感器包括热电偶、热敏电阻、红外线温度传感器等。
温度传感器在工业生产、家用电器、医疗设备等领域都有着广泛的应用。
4. 湿度传感器。
湿度传感器是一种用来测量空气湿度的传感器。
它可以帮助人们了解周围环境的湿度情况,从而采取相应的措施。
湿度传感器在气象观测、农业生产、仓储管理等领域都有着重要的应用。
5. 气体传感器。
气体传感器是一种用来检测和测量气体浓度的传感器。
例如,二氧化碳传感器可以用来监测室内空气质量,可燃气体传感器可以用来检测可燃气体泄漏等。
气体传感器在环境监测、工业安全、家用安全等领域都有着广泛的应用。
6. 压力传感器。
压力传感器是一种用来测量压力的传感器。
它可以将受力物体的压力转化为电信号输出,常用于工业自动化、汽车制造、航空航天等领域。
7. 加速度传感器。
加速度传感器是一种用来测量物体加速度的传感器。
它可以帮助人们了解物体的运动状态,常用于智能手机、运动追踪、车辆安全等领域。
8. 位移传感器。
位移传感器是一种用来测量物体位移的传感器。
它可以帮助人们了解物体的位置变化,常用于机械加工、机器人控制、航空航天等领域。
以上就是一些常见的传感器种类,每种传感器都有着特定的应用领域和工作原理。
传感器的分类_传感器的原理与分类_传感器的定义和分类
![传感器的分类_传感器的原理与分类_传感器的定义和分类](https://img.taocdn.com/s3/m/6d411ffd162ded630b1c59eef8c75fbfc77d94cc.png)
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类_传感器的原理与分类_传感器的定义与分类传感器的分类⽅法很多.主要有如下⼏种:(1)按被测量分类,可分为⼒学量、光学量、磁学量、⼏何学量、运动学量、流速与流量、液⾯、热学量、化学量、⽣物量传感器等。
这种分类有利于选择传感器、应⽤传感器(2)按照⼯作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的⼯作原理进⾏阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、⽯英传感器、光导纤推传感器、⾦属传感器、有机材料传感器、⾼分⼦材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便⼲与计算机联⽤,且坑⼲扰性较强,例如脉冲盘式⾓度数字传感器、光栅传感器等。
传感器数字化就是今后的发展趋势。
(5)按应⽤场合不同分为⼯业⽤,农⽤、军⽤、医⽤、科研⽤、环保⽤与家电⽤传感器等。
若按具体便⽤场合,还可分为汽车⽤、船舰⽤、飞机⽤、宇宙飞船⽤、防灾⽤传感器等。
(6)根据使⽤⽬的的不同,⼜可分为计测⽤、监视⽤,位查⽤、诊断⽤,控制⽤与分析⽤传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、⽹络化,它不仅促进了传统产业的改造与更新换代,⽽且还可能建⽴新型⼯业,从⽽成为21世纪新的经济增长点。
微型化就是建⽴在微电⼦机械系统(MEMS)技术基础上的,已成功应⽤在硅器件上做成硅压⼒传感器。
主要功能常将传感器的功能与⼈类5⼤感觉器官相⽐拟:光敏传感器——视觉声敏传感器——听觉⽓敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于⼒、热、光、电、磁与声等物理效应。
化学类,基于化学反应的原理。
⽣物类,基于酶、抗体、与激素等分⼦识别功能。
五种常用的传感器原理及应用
![五种常用的传感器原理及应用](https://img.taocdn.com/s3/m/f1b6e550a9114431b90d6c85ec3a87c241288a54.png)
五种常用的传感器原理及应用目录1.序言 (1)2.传感器定义 (3)3.传感器选择的标准 (3)4.传感器分类的标准 (3)5.五种常用的传感器类型及其特点 (5)5.1.温度传感器 (5)1.2.红外传感器 (5)1.3.紫外线传感器 (7)1.4.触摸传感器 (8)1.5.接近传感器 (8)6.传感器选用原则 (9)7.先进的传感器技术 (10)7.1.条形码识别 (10)7.2.转发器 (11)7.3.制造部件的电磁识别 (11)7.4.表面声波 (11)7.5.光学字符识别(OCR) (11)1.序言一台设备所采用的的传感器是否先进、可靠有时直接决定了设备的先进性和可靠性。
图1传感器工作原理很多机械工程师在观念上有一个误区:机械工程师只负责机构的东西,传感器、电气元件选用及控制方案是电气工程师或系统工程师的事。
如果你是某个项目的总设计工程师,在方案构想阶段就要考虑到选用哪些类型的传感器以及设备的动作流程和控制方式。
生物信息:是反映生物运动状态和方式的信息。
碱基序列便是生物信息。
自然界经过漫长时期的演变,产生了生物,逐渐形成了复杂的生物世界。
生物信息形形色色,千变万化,不同类的生物发出不同的信息。
,人们对生物信息的研究已取得了一些可观的成果,人们发现,鸟有“鸟语”,兽有“兽语”,甚至花也有“花语”。
人们还发现生物信息与非生物信息之间有着某种必然的联系,如燕子、大雁的飞来飞去,预示着季节的变换和气温的升降;鱼儿浮出水面预示着大雨即将来临;动物的某些反常现象,预示着地震即将发生的信[息、******。
物理信息:包括声、光、颜色等。
这些物理信息往往表达了吸引异性、种间识别、威吓和警告等作用。
比如,毒蜂身上斑斓的花纹、猛兽的吼叫都表达了警告、威胁的意思。
萤火虫通过闪光来识别同伴。
红三叶草花的色彩和形状就是传递给当地土蜂和其它昆虫的信息。
化学信息:生物依靠自身代谢产生的化学物质,如酶、生长素、性诱激素等来传递信息。
传感器技术手册
![传感器技术手册](https://img.taocdn.com/s3/m/2cc4dfaa988fcc22bcd126fff705cc1754275f77.png)
传感器技术手册随着科技的不断发展,传感器技术在各个领域中扮演着越来越重要的角色。
传感器是一种能够感知并转换物理量、化学量或生物量的设备,它们广泛应用于自动化工业控制、环境监测、医疗诊断、智能交通等众多领域。
本手册将为读者提供关于传感器技术的全面介绍和详细内容。
第一章:传感器基础知识1.1 传感器的定义与分类1.2 传感器的工作原理1.3 传感器的特性参数1.4 传感器的选择与应用第二章:传感器应用领域2.1 工业自动化领域的传感器应用- 温度传感器的应用- 压力传感器的应用- 液位传感器的应用2.2 环境监测领域的传感器应用- 气体传感器的应用- 光学传感器的应用- 水质传感器的应用2.3 医疗诊断领域的传感器应用 - 心电传感器的应用- 血糖传感器的应用- 呼吸传感器的应用2.4 智能交通领域的传感器应用 - 路面传感器的应用- 车速传感器的应用- 道路监控传感器的应用第三章:传感器技术的发展趋势 3.1 微型化与集成化3.2 智能化与自适应性3.3 高灵敏度与高精度3.4 高可靠性与长寿命第四章:传感器技术的挑战与应对 4.1 跨学科融合4.2 信号处理与数据分析4.3 能源供给与节能技术4.4 新材料与新工艺第五章:传感器技术的前景展望5.1 人工智能与传感器技术的结合5.2 物联网与传感器技术的发展5.3 生物传感器与医疗应用的突破5.4 可穿戴设备与传感器技术的融合通过阅读本手册,读者将能够深入了解传感器技术的基础知识、应用领域、发展趋势以及面临的挑战和应对措施。
传感器技术的持续创新与发展将为各个行业带来巨大的改变和机遇,期待读者通过本手册对传感器技术有更为全面的认识和理解,为相关领域的研究和应用提供参考和指导。
第一章传感器技术基础知识
![第一章传感器技术基础知识](https://img.taocdn.com/s3/m/649a4bbcdbef5ef7ba0d4a7302768e9951e76ec9.png)
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X
温度传感器分类与特点
![温度传感器分类与特点](https://img.taocdn.com/s3/m/25cb3302842458fb770bf78a6529647d2728343a.png)
温度传感器分类与特点1.热电阻温度传感器(RTD):热电阻温度传感器是一种基于电阻值随温度变化的原理工作的传感器。
常见的热电阻材料有铂(Pt100、Pt1000)、镍(Ni100、Ni1000)等。
热电阻温度传感器具有较高的精度、较宽的测量范围和较好的线性特性。
但是,它们的响应时间较慢,对环境干扰较为敏感。
2.热敏电阻温度传感器(NTC):热敏电阻温度传感器是一种采用热敏电阻材料工作的传感器,其电阻值随温度变化。
常见的热敏电阻材料有氧化锡(SnO2)、氧化镁(MgO)等。
热敏电阻温度传感器具有较高的灵敏度和较低的成本,适用于大量应用场合。
但是,由于其非线性特性,需要进行校准和补偿,测量精度相对较低。
3.热电偶温度传感器:热电偶温度传感器是基于两种不同金属的电动势随温度变化的原理工作的传感器。
常见的热电偶有铜-铜镍(Type T)、铁-铜镍(Type J)等。
热电偶温度传感器具有较大的测量范围、良好的线性特性和较快的响应速度。
但是,由于热电偶两端的接触材料不同,容易受到外界电磁干扰的影响。
4.热电堆温度传感器:热电堆温度传感器是一种由多个热电偶组成的传感器,用于测量较高温度下的温度变化。
热电堆温度传感器具有较高的测量精度和较大的温度范围,适用于高温环境。
但是,由于需要多个热电偶的组合,造成了较高的成本。
5.红外温度传感器:红外温度传感器是一种基于物体放射出的红外线辐射功率与其温度成正比的原理工作的传感器。
红外温度传感器具有非接触式测量、快速响应和长测量距离等特点。
但是,其测量精度受到环境因素的影响较大,同时需要针对不同物体进行校准。
总的来说,不同类型的温度传感器各具特点,适用于不同的应用场合。
选择合适的温度传感器需要根据测量范围、精度要求、响应速度以及环境干扰等因素综合考虑。
传感器的主要知识点
![传感器的主要知识点](https://img.taocdn.com/s3/m/4357841aa6c30c2259019e60.png)
绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。
如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。
物理型传感器又可分为物性型传感器和结构型传感器。
按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。
1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。
二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。
课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。
通常由敏感元件和转换元件组成。
敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。
转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。
信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。
第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。
传感器的分类 及特性以及选择
![传感器的分类 及特性以及选择](https://img.taocdn.com/s3/m/b8f6e41833687e21ae45a91d.png)
一、传感器地定义国家标准对传感器下地定义是:“能感受规定地被测量并按照一定地规律转换成可用信号地器件或装置,通常由敏感元件和转换元件组成”.传感器是一种检测装置,能感受到被测量地信息,并能将检测感受到地信息,按一定规律变换成为电信号或其他所需形式地信息输出,以满足信息地传输、处理、存储、显示、记录和控制等要求.它是实现自动检测和自动控制地首要环节.二、传感器地分类目前对传感器尚无一个统一地分类方法,但比较常用地有如下三种:、按传感器地物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器.、按传感器输出信号地性质分类,可分为:输出为开关量(“”和"”或“开”和“关”)地开关型传感器;输出为模拟型传感器;输出为脉冲或代码地数字型传感器. b5E2R。
三、传感器地静态特性传感器地静态特性是指对静态地输入信号,传感器地输出量与输入量之间所具有相互关系.因为这时输入量和输出量都和时间无关,所以它们之间地关系,即传感器地静态特性可用一个不含时间变量地代数方程,或以输入量作横坐标,把与其对应地输出量作纵坐标而画出地特性曲线来描述.表征传感器静态特性地主要参数有:线性度、灵敏度、分辨力和迟滞等. p1Ean。
四、传感器地动态特性所谓动态特性,是指传感器在输入变化时,它地输出地特性.在实际工作中,传感器地动态特性常用它对某些标准输入信号地响应来表示.这是因为传感器对标准输入信号地响应容易用实验方法求得,并且它对标准输入信号地响应与它对任意输入信号地响应之间存在一定地关系,往往知道了前者就能推定后者.最常用地标准输入信号有阶跃信号和正弦信号两种,所以传感器地动态特性也常用阶跃响应和频率响应来表示. DXDiT。
五、传感器地线性度通常情况下,传感器地实际静态特性输出是条曲线而非直线.在实际工作中,为使仪表具有均匀刻度地读数,常用一条拟合直线近似地代表实际地特性曲线、线性度(非线性误差)就是这个近似程度地一个性能指标. RTCrp。
传感器的分类及特点
![传感器的分类及特点](https://img.taocdn.com/s3/m/c20f65221fd9ad51f01dc281e53a580216fc502c.png)
传感器的分类及特点传感器是用于将感知到的信息转化成可供人和机器理解的信号或者用于探微仪器、感知器、研究装置、计量器及其他设备上的核心部件。
根据其工作原理和应用领域不同,传感器可以分为多种类型,并具有各自独特的特点。
1.分类1.1根据感知物理量的种类按照传感器所感知的物理量的种类,传感器可以分为以下几类:(1)温度传感器:用于感知环境的温度变化,常用的有热敏电阻、热电偶和红外温度传感器等。
(2)压力传感器:用于感知物体所受外力的大小,常见的有压力电阻、压电传感器和电容式压力传感器等。
(3)湿度传感器:用于感知环境的湿度变化,常见的有电容湿度传感器和电导湿度传感器等。
(4)光电传感器:用于感知光的强度和光的频率,常见的有光敏电阻、光敏二极管和光敏三极管等。
(5)气体传感器:用于感知气体浓度和成分,常见的有化学传感器和电化学传感器等。
(6)加速度传感器:用于感知物体的加速度和震动,常见的有压电加速度传感器和惯性式加速度传感器等。
(7)位置传感器:用于感知物体的位置和位移,常见的有旋转编码器、线性位移传感器和倾角传感器等。
(8)流量传感器:用于感知流体的流量,常见的有电磁流量传感器和热式流量传感器等。
(9)生物传感器:用于感知生物体的生理特征,常见的有心率传感器和脑电传感器等。
(10)运动传感器:用于感知人体的运动特征,常见的有加速度计和陀螺仪等。
(11)声音传感器:用于感知声波的压力、振动或声级,常见的有麦克风和声强传感器等。
(12)化学传感器:用于感知化学物质的浓度和成分,常见的有气敏电阻和化学发光传感器等。
1.2根据工作原理的不同按照传感器的工作原理不同,传感器可以分为以下几类:(1)电阻型传感器:根据电阻值的变化来感知物理量的变化,常见的有热敏电阻和力敏电阻等。
(2)电容型传感器:根据电容值的变化来感知物理量的变化,常见的有电容湿度传感器和电容位移传感器等。
(3)电感型传感器:根据电感值的变化来感知物理量的变化,常见的有磁感应式流量传感器和接近开关等。
传感器的主要学习知识重点
![传感器的主要学习知识重点](https://img.taocdn.com/s3/m/3c30222dddccda38376baf65.png)
绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。
如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。
物理型传感器又可分为物性型传感器和结构型传感器。
按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。
1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。
二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。
课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。
通常由敏感元件和转换元件组成。
敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。
转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。
信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。
第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。
五种常用的传感器的原理和应用
![五种常用的传感器的原理和应用](https://img.taocdn.com/s3/m/b041a17f76eeaeaad0f3306d.png)
五种常用的传感器的原理和应用当今社会,传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。
可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
今天带大家来全面了解传感器!一、传感器定义传感器是复杂的设备,经常被用来检测和响应电信号或光信号。
传感器将物理参数(例如:温度、血压、湿度、速度等)转换成可以用电测量的信号。
我们可以先来解释一下温度的例子,玻璃温度计中的水银使液体膨胀和收缩,从而将测量到的温度转换为可被校准玻璃管上的观察者读取的温度。
二、传感器选择标准在选择传感器时,必须考虑某些特性,具体如下:1.准确性2.环境条件——通常对温度/湿度有限制3.范围——传感器的测量极限4.校准——对于大多数测量设备而言必不可少,因为读数会随时间变化5.分辨率——传感器检测到的最小增量6.费用7.重复性——在相同环境下重复测量变化的读数三、传感器分类标准传感器分为以下标准:1.主要输入数量(被测量者)2.转导原理(利用物理和化学作用)3.材料与技术4.财产5.应用程序转导原理是有效方法所遵循的基本标准。
通常,材料和技术标准由开发工程小组选择。
根据属性分类如下:·温度传感器——热敏电阻、热电偶、RTD、IC等。
·压力传感器——光纤、真空、弹性液体压力计、LVDT、电子。
·流量传感器——电磁、压差、位置位移、热质量等。
·液位传感器——压差、超声波射频、雷达、热位移等。
·接近和位移传感器——LVDT、光电、电容、磁、超声波。
·生物传感器——共振镜、电化学、表面等离子体共振、光寻址电位测量。
·图像——电荷耦合器件、CMOS·气体和化学传感器——半导体、红外、电导、电化学。
·加速度传感器——陀螺仪、加速度计。
传感器基础知识
![传感器基础知识](https://img.taocdn.com/s3/m/9af3a24b02d8ce2f0066f5335a8102d276a26192.png)
一阶传感器
二阶传感器
⑶ 瞬态响应特性指标
各指标定义如下:
① 时间常数τ 一阶传感器的上升到63.2%所需的时间,称为时
间常数。 ② 延迟时间td 输出达到稳态值的50%所用的时间。
③上升时间tr 输出达到稳态值的90%所用的时间。
⑶ 瞬态响应特性指标
④峰值时间tp 阶跃响应曲线达到第一个峰 值所需时间。
1.1.2 传感器的组成和分类
1.传感器的组成
传感器是由敏感元件、转换元件和测量电路 组成。
2024/2/9
1
直接感受被测量的变化,并输出与被测量成确 定关系的某一物理量的元件。
敏感元件是传感器的核心
2024/2/9
2
转换元件: 将敏感元件输出的物理量转换成 适于传输或测量电信号的元件。
2024/2/9
B、结构型传感器是依靠传感器结构参数的变化实 现信号变换,如:电容式传感器。
2024/2/9
6
1.1.3 传感器基本特性
传感器的基本特性是指系统的输入与输出关系特性, 即传感器系统的输出信号y(t)和输入信号(被测量) x(t)之间的关系,
传感器系统示意图
当传感器的输入信号是常量,不随时间变化 时,其输入输出关系特性称为静态特性。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量 4) 静态测量与动态测量
2024/2/9
45
1.2. 3 检测系统
1、检测系统的构成
检测系统是由被测对象、传感器、数据传输环节、 数据处理环节和数据显示环节构成。 (P9)
2024/2/9
46
1.2. 3 检测系统
检测系统又分:开环检测系统与闭环检测系统
传感器的种类及选用原则
![传感器的种类及选用原则](https://img.taocdn.com/s3/m/fabae8ed29ea81c758f5f61fb7360b4c2e3f2a27.png)
传感器的种类及选用原则一、传感器的种类国家标准GB/T 7665-2005对传感器的定义为“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”它是一种检测装置,能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。
常用传感器的分类有以下4种:1.按传感器的物理量分类按传感器的物理量可分为位移、力、速度、温度、流量和气体成分等传感器。
2.按传感器工作原理分类按传感器工作原理可分为电阻、电容、电感、电压、霍尔、光电、光栅和热电偶等传感器。
3.按传感器输出信号的性质分类按传感器输出信号的性质可分为:输出为开关量(“1”和“0”)的开关型传感器;输出为模拟量的模拟型传感器;输出为脉冲或代码的数字型传感器。
4.按其用途分类1)压力检测。
压力传感器、触力传感器、微压传感器、压差传感器等。
2)温度检测。
热电阻温度传感器、热电偶温度传感器等。
3)液位检测。
光电式液位传感器、机械浮子液位传感器、伸缩液位传感器等。
4)电流检测。
电磁式电流传感器、霍尔磁平衡式电流传感器等。
5)速度检测。
脉冲编码速度传感器、永磁发电速度传感器等。
6)位置检测。
电位计位置传感器、编码器位置传感器等。
二、传感器选用的一般原则现代传感器在原理和结构上千差万别,如何根据具体的测量对象、测量目的以及测量环境合理地选用传感器。
1.根据测量对象与测量环境确定传感器类型即使是测量同一物理量,也有多种原理的传感器可供选用。
哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件加以考虑。
2.灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声就容易混入,也会被传感器放大,影响测量精度。
因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入干扰信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、传感器的定义
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类
目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:
1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器
2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”
或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
三、传感器的静态特性
传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
四、传感器的动态特性
所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。
最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
五、传感器的线性度
通常情况下,传感器的实际静态特性输出是条曲线而非直线。
在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
拟合直线的选取有多种方法。
如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
六、传感器的灵敏度
灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x 的比值。
它是输出一输入特性曲线的斜率。
如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。
否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。
例如,某位移传感器,在位
移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。
但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
七、传感器的分辨力
分辨力是指传感器可能感受到的被测量的最小变化的能力。
也就是说,如果输入量从某一非零值缓慢地变化。
当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。
只有当输入量的变化超过分辨力时,其输出才会发生变化。
通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。
上述指标若用满量程的百分比表示,则称为分辨率。
八、电阻式传感器
电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。
主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。
九、电阻应变式传感器
传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。
电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。
半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
十、压阻式传感器
压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。
其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。
当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测
量压力和速度的固态压阻式传感器应用最为普遍。
十一、热电阻传感器
热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。
在温度检测精度要求比较高的场合,这种传感器比较适用。
目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。
用于测量-200℃~+500℃范围内的温度。
十二、传感器的迟滞特性
迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。
迟滞可由传感器内部元件存在能量的吸收造成。
我们在提供解决方案的时候,选择合适的产品是很重要的一个环节,就传感器而言,种类就有很多,一旦选的不好,就会给后期工作带来很多的麻烦,下面总结几种选择传感器的简单方法.
1、根据测量对象与测量环境确定传感器的类型
要进行—个具体的测量工作,首先要考虑采用何种原理的传感器MC2838-T12-2,这需要分析多方面的因素之后才能确定。
因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量.在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。
2、灵敏度的选择
通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界
噪声也容易混入,也会被放大系统放大,影响测量精度。
3、频率响应特性
传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。
传感器的频率响应高,可测的信号频率LTCK004CG范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。
在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。
4、线性范围
传感器TP001C的线形范围是指输出与输入成正比的范围。
以理论上讲,在此范围内,灵敏度保持定值。
传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。
在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。
但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。
当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。
5、稳定性
传感器使用一段时间后,其性能保持不变化的能力称为稳定性。
影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。
因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。
在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。
传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器KBJ204的性能是否发生变化。
在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。
6、精度
精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。
传感器TL431-ACD的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。
这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。
如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得
精确的测量值,就需选用精度等级能满足要求的传感器。
对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。
自制传感器的性能应满足使用要求。
在一般情况下,如果考虑到了上面几点,就可以选择到合适的传感器了.。