基于逆向工程的快速成型技术应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于逆向工程的快速成型技术应用探讨

作者:机电学院工业设计雾蒙蒙

【摘要】本文主要介绍了逆向工程的快速成型技术应用流程,并重点对导流罩作为实物原形,分析了快速成型技术及快速制模在逆向工程中的应用,以及零件快速成型和模具加工制造等关键技术的研究与探讨。

【关键词】逆向工程导流罩模具加工制造质量评析

逆向工程是对产品设计过程的一种描述。在工程技术人员的一般概念中,产品设计过程是一个从设计到产品的过程,即设计人员首先在大脑中构思产品的外形、性能和大致的技术参数等,然后在详细设计阶段完成各类数据模型,最终将这个模型转入到研发流程中,完成产品的整个设计研发周期。这样的产品设计过程我们称为“正向设计”过程。逆向工程产品设计可以认为是一个从产品到设计的过程。简单地说,逆向工程产品设计就是根据已经存在的产品,反向推出产品设计数据(包括各类设计图或数据模型)的过程。从这个意义上说,逆向工程在工业设计中的应用已经很久了。比如早期的船舶工业中常用的船体放样设计就是逆向工程的很好实例。随着计算机技术在各个领域的广泛应用,特别是软件开发技术的迅猛发展,基于某个软件,以反汇编阅读源码的方式去推断其数据结构、体系结构和程序设计信息成为软件逆向工程技术关注的主要对象。软件逆向技术的目的是用

来研究和学习先进的技术,特别是当手里没有合适的文档资料,而你又很需要实现某个软件的功能的时候。也正因为这样,很多软件为了垄断技术,在软件安装之前,要求用户同意不去逆向研究。逆向工程的实施过程是多领域、多学科的协同过程。

本文以导流罩作为实物原形,分析了快速成型技术及快速制模在逆向工程中的应用。该项技术大大缩短了新产品的开发和上市周期,实现了产品质量和实际效益的双提高。逆向工程又称为反求工程,通常用于仿制没有设计图样文件的产品,是对存在的实物模型进行测量,并根据测得的数据重构出数据模型,从而进行分析、修改、检验、加工,然后制造出产品的过程。传统设计和制造是从图样到零件,而逆向工程的设计是从零件或实物原形到图样。在产品开发过程中,由于形状复杂,其中包含许多空间曲面很难直接建立数据模型,常常需要以实物模型(样件)为依据或参考原型进行仿型、改型或造型设计。

导流罩是具有复杂空间曲面的对称配合塑料零件,其材质为ABS。由于零件没有图样和数据模型,同时需要检验对称两个零件的配合情况是否满足使用要求,以及产品设计合格后需要进行模具的设计制造和零件的批量生产。在只有零件的一个样件的情况下,采用逆向工程的思路,应用快速成型技术及快速制模技术修整零件模型,在零件的形状、尺寸确定之后进行模具的设计制造,再利用模具进行零件的批量生产。

一、零件快速成型

快速成型(RP)技术是20世纪90年代发展起来的一项先进制造技术。是为制造业企业新产品开发服务的一项关键共性技术,它对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

快速成型(RP)技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的,不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是“分层制造,逐层叠加”。形象地讲,快速成形系统就像是一台“立体打印机”。快速成型(RP)技术可以在无需准备任何模具、刀具和工装夹具的情况下,直接接受产品设计(CAD)数模的数据,快速制造出新产品的样件、模具或模型等,由传统的“去除法”到“增长法”,由有模制造到无模制造,快速直接地实现零件的单件生产。每次制作一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体零件,整个过程是在计算机的控制下,由快速成型系统自动完成。这种工艺可以形象地叫做“增长法”或“加法”。自美国3D公司1988年推出第一台商品SLA快速成型机以来,现在已经有了十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOH和FDH等方法。快速成型(RP)技术具有制造复杂零件的能力、提高新产品投产的一次成功率、支持同步(并行)工程的实施、支持技术创新并改进产品外观设计以及成倍降低新产品研发成本等优点,可迅速实现单件及小批量生

产,使新产品上市时间大大提前,迅速占领市场。

利用Z—Printer 310快速成型机对零件进行快速成型,快速成型系统操作过程体现了快速成型的特点,通过分层制造、逐层叠加的过程,快速成型系统自动将零件的高度尺寸分成若干层,每一层叠加的厚度为0.01mm,经过分层制造成零件的实物;通过两个对称零件的组合装配,进行零件的实际使用实验:通过使用实物发现其局部形状尺寸的配合存在一些问题,之后对零件的三维数据模型进行修整,确定最终的产品零件模型。

二、模具加工制造

根据最终确定的产品零件模型,进行模具的设计及加工制造,利用三维加工软件对模具的阴模和阳模进行模拟加工,生成NC程序,进行数控加工。模具满足工作条件要求:

1、耐磨性坯料在模具型腔中塑性变性时,沿型腔表面既流动又滑动,使型腔表面与坯料间产生剧烈的摩擦,从而导致模具因磨损而失效。模具零件的硬度越高,磨损量越小,耐磨性也越好。另外,耐磨性还与材料中碳化物的种类、数量、形态、大小及分布有关。

2、强韧性:模具的工作条件大多十分恶劣,有些常承受较大的冲击负荷,从而导致脆性断裂。为防止模具零件在工作时突然脆断,模具要具有较高的强度和韧性。模具的韧性主要取决于材料的含碳量、晶粒度及组织状态。

3、疲劳断裂性能:模具工作过程中,在循环应力的长期作用下,往往导致疲劳断裂。其形式有小能量多次冲击疲劳断裂、拉伸疲劳断裂接触疲劳断裂及弯曲疲劳断裂。模具的疲劳断裂性能主要取决于其强度、韧性、硬度、以及材料中夹杂物的含量。

4、高温性能:当模具的工作温度较高进,会使硬度和强度下降,导致模具早期磨损或产生塑性变形而失效。因此,模具材料应具有较高的抗回火稳定性,以保证模具在工作温度下有较高的硬度和强度。

5、耐冷热疲劳性能:有些模具在工作过程中处于反复加热和冷却的状态,使型腔表面受拉、压力变应力的作用,引起表面龟裂和剥落,增大摩擦力,阻碍塑性变形,降低了尺寸精度,从而导致模具失效。冷热疲劳是热作模具失效的主要形式之一,帮这类模具应具有较高的耐冷热疲劳性能。

6、耐蚀性:有些模具如塑料模在工作时,由于塑料中存在氯、氟等元素,受热后分解析出HCI、HF等强侵蚀性气体,侵蚀模具型腔表面,加大其表面粗糙度,加剧磨损失效。

模具的制造一般都要经过锻造、切削加工、热处理等几道工序。为保证模具的制造质量,降低生产成本,其材料应具有良好的可锻性、切削加工性、淬硬性、淬透性及可磨削性;还应具有小的氧化、脱碳敏感性和淬火变形开裂倾向。

最后将模具组装,进行零件的正式批量生产。

相关文档
最新文档