2020届江苏高考数学原卷版含附加题

合集下载

2020年江苏省高考数学试卷 试题+答案详解

2020年江苏省高考数学试卷 试题+答案详解
24.在三棱锥 A—BCD 中,已知 CB=CD= 5 ,BD=2,O 为 BD 的中点,AO⊥平面 BCD,AO=2,
E 为 AC 的中点. (1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,
4
设二面角 F—DE—C 的大小为θ,求 sinθ的值.
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任 取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个 黑球的概率为 pn,恰有 1 个黑球的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1 的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .
a1
d 2
q 2
1
aq120
,∴
d
q
4
.
b1 1 q
1
b1 1
12【答案】 4 5
【解析】∵
5x2
y2
y4
1,∴
y
0

x2
1 y4 5y2

x2
y2
1 y4 5y2
y2
1 5y2
+
4y2 5
2
1 4y2 4 , 5y2 5 5
当且仅当
1 5y2
4y2 5
,即
x2
3 , y2 10
等差数列 an 的前 n 项和公式为 Pn
na1
nn 1
d 2
d n2 2
a1
d 2
n

等比数列bn 的前
n

解析-2020年江苏省高考数学试卷(原卷版)

解析-2020年江苏省高考数学试卷(原卷版)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).。

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10. 将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共6小题,共90.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d 2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800), y′=k 800(3x 2−60x)=3k 800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减;当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12, 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)=0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+ x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4, 则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.。

2020年江苏卷数学高考试题(详细解析版)

2020年江苏卷数学高考试题(详细解析版)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = ▲.答案:{02},解析:因为A ,B 的公共元素有0,2,由交集的定义可知{02},A B = 2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是▲.答案:3解析:(1i)(2i)12(1)(12)i =3+i z =+-=⨯--+-+,故z 的实部为33.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲.答案:2解析:由平均数的定义可得42(3)5645a a ++-++=,解得2a =4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲.答案:19解析:点数和为5可能的情况有,{1,4},{2,3},{3,2},{4,1},共有4种,样本空间中样本点的个数为36,故点数和为5的概率是41369=5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲.答案:3-解析:因为20x >,而输出的y 的值为负数,故输出的是1x +,即12x +=-,故3x =-6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是▲.答案:32解析:设题中双曲线的焦距为2c ,虚半轴长为b ,则由双曲线的一条渐近线方程可得52b a =,故此双曲心的离心率32c e a ===7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是▲.答案:4-解析:因为y =f (x )是奇函数,所以23(8)(8)84f f -=-=-=-8.已知2sin ()4απ+=23,则sin 2α的值是▲.答案:13解析:因为sin sin cos cos sin (sin cos )4442πππααααα⎛⎫+=+=+⎪⎝⎭,所以22112sin (sin cos )(1sin 2)4223παααα⎛⎫+=+=+= ⎪⎝⎭.所以1sin 23α=.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm 3.答案:2π-解析:正六棱柱的底面面积为cm ,高为2cm ,故正棱柱的体积为cm 3,圆柱的体积为20.522ππ⨯⨯=,故此六角螺帽毛坯的体积是(2π-)cm 310.将函数πsin(32)4y x =+的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲.答案:524πx =-解析:将函数πsin(324y x =+的图象向右平移π6个单位长度,得到函数3sin 2()3sin 26412πππy x x ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭的图象,由2122ππx kπ-=+(k ∈Z )可得7224kππx =+,当1k =-时,对称轴离y 轴最近,此时对称轴方程为524πx =-11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和*221()n n S n n n =-+-∈N ,则d +q 的值是▲.答案:4解析:1111a b S +==,当2n ≥时,22111(21)[(1)(1)21]2(1)2n n n n n n n a b S S n n n n n ---+=-=-+-----+-=-+.当n=1时,上式也成立,对任意正整数n ,都有12(1)2n n n a b n -+=-+,因为1(1)n a a n d =+-,11n n b b q -=,。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2020年高考数学试题-江苏卷(参考答案)

2020年高考数学试题-江苏卷(参考答案)
x
所以 u(x)min u(1) 0 .则 x 1 ln x 恒成立, 所以当且仅当 k 0 时, f (x) g(x) 恒成立. 另一方面, f (x) h(x) 恒成立,即 x2 x 1 kx k 恒成立, 也即 x2 (1 k)x 1 +k 0 恒成立. 因为 k 0 ,对称轴为 x 1 k 0 ,
(2)在
△ADC
中,因为
cos ADC 4 5
,所以
ADC
为钝角,而
ADC C CAD 180 , 所 以 C 为 锐 角 . 故 cos C 1 sin 2 C 2 5 , 则 5
tan C sin C 1 . 因 为 cos ADC 4 , 所 以 sin ADC 1 cos2 ADC 3 ,
(2)因为 B1C 平面 ABC , AB 平面 ABC ,所以 B1C AB 。又 AB AC ,B1C 平
面 AB1C1 , AC 平面 AB1C , B1C AC C ,所以 AB 平面 AB1C 。又因为 AB 平
面 ABB1 ,所以平面 AB1C 平面 ABB1 。
16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等 基础知识,考查运算求解能力。满分 14 分。
Sn1 1 3
Sn
3
Sn1 1 . Sn

Sn1 Sn
bn ,则 bn
1
3 3
bn2
1 ,即 (bn
1)2
1 3
(bn2
1)(bn
1) .
解得 bn 2 ,即
Sn1 Sn
2
,也即
Sn1 Sn
4,
所以数列{Sn} 是公比为4的等比数列.
因为
S1

2020年高考卷理科数学(江苏卷)附答案

2020年高考卷理科数学(江苏卷)附答案

2. 3. 4.已知集合如{一顷封如{M3}则刀口=已知i是虚数单位,贝愎数z=(E)(2t)的实部是已知一组数据4,2a.3・a ,5,6的平均数为4,则a的值是.将一颗质地均匀的正方体骰子先后抛掷2次观察向上的点数,则点数和为5的概率是o4. S.右图是一个算法流程图,若输出y的值为2则输入x的值为ago6.2在平面宜角坐标系xOy中若以仙线/5=l(a>0)的一条渐近线方w程为'一2二则该双曲线的离心率是—o27.已知y=f(x>是奇函数,当x>0时,/⑴二F,则,(一8)的值是。

sin2(—+«)=—.8.已知43,则sm2a的值是_。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,己知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm\* = 3sin 2x + —10.将函数 I 4的图像向右平移M 个单位长度,则T 移后的图像与*轴最近的对称轴方程是—0U.设{■}是公差为〃的等差数列,{如}是公比为q 的等比数列,己知数列 {"心的前项和&顼-"1*^),则d+g 的值是—。

12.已知5xy +/=l(W e/e)t 则x 2+/的最小值是。

13.在△此中,t !B = 4, 4C=3.匕助C=90。

,。

在边AC 延长血坦炉,使得如=9,若是一 O后=血而专_』无(S 为常数),则co 的於度«㈣■14 .在平面直角坐标系H 夕中尸修。

已知I z 4、B 是圆 2)=36上的两个动点,满足PA=PB ,则△ "8的面积的最大值是15.在三棱柱如C —44G 中,ABLAC. B X CL 平面"分别是AC> %7的中点<1)求证:£少〃平面"MG :< 2)求证:平面^C±平面“时16.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=3,c=旧,B=45。

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)(1)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)(1)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B I ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。

记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数2()6f x x x =+-的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}n a 的各项均为实数,其前n 项的和为S n ,已知36763,44S S ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是11.已知函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。

2020年江苏省高考数学试卷含答案

2020年江苏省高考数学试卷含答案

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是________cm2.10. 将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是________.11. 设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),则d+q的值是________.12. 已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是________.13. 在△ABC中,AB=4,AC=3,∠BAC=90∘,D在边BC上,延长AD到P,使得AP=9.若PA→=mPB→+(32−m)PC→(m为常数),则CD的长度是________.14. 在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y−12)2=36上的两个动点,满足PA=PB,则△PAB面积的最大值是________.二、解答题在三棱柱ABC−A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF//平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示.谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k万元,桥墩CD每米造价32k万元(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP→⋅QP→的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.已知关于x的函数y=f(x),y=g(x)与ℎ(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥ℎ(x)≥g(x). (1)若f(x)=x2+2x,g(x)=−x2+2x,D=(−∞,+∞),求ℎ(x)的表达式;(2)若f(x)=x2−x+1,g(x)=k ln x,ℎ(x)=kx−k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4−2x2,g(x)=4x2−8,ℎ(x)=4(t3−t)x−3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n−m≤√7.已知数列{a n}(n∈N∗)的首项a1=1,前n项和为S n.设λ和k为常数,若对一切正整数n,均有S n+11k−S n1k=λan+11k成立,则称此数列为“λ−k”数列.(1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n}是“√33−2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ−3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.平面上的点A(2,−1)在矩阵M=(a1−1b)对应的变换作用下得到点B(3,−4).(1)求实数a,b的值;(2)求矩阵M的逆矩阵M−1.设x∈R,解不等式2|x+1|+|x|<4.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n−1+q n−1的递推关系式和X n的数学期望E(X n) (用n表示).参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.2.【答案】3【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.3.【答案】2【解答】解:由4+2a+(3−a)+5+65=4,可知a=2.故答案为:2.4.【答案】19【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.5.【答案】−3【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3.故答案为:−3.6.【答案】3【解答】解:由x2a−y25=1得渐近线方程为y=±√5ax.∵a>0,∴a=2,∴c2=a2+5=9,∴c=3,∴离心率e=ca=32.故答案为:32.7.【答案】−4【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)=−f(8)=−823=−4.故答案为:−4.8.【答案】13【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.10.【答案】x=−5π24【解答】解:设平移后的图象为g(x). 因为y=3sin(2x+π4),将函数y=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=3sin(2x−π3+π4)=3sin(2x−π12),则g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,所以平移后的图象中与y轴最近的对称轴的方程是x=−5π24.故答案为:x=−5π24.11.【答案】4【解答】解:因为{a n+b n}的前n项和为:S n=n2−n+2n−1(n∈N∗),当n=1时,a1+b1=1,当n≥2时,a n+b n=S n−S n−1=2n−2+2n−1,所以当n≥2时,a n=2(n−1),b n=2n−1,且当n=1时,a1+b1=0+1=1成立,则d=a2−a1=2−0=2,q=b2b1=21=2,则d+q=4.故答案为:4.12.【答案】45【解答】解:4=(5x2+y2)⋅4y2≤[(5x2+y2)+4y22]2=254(x2+y2)2,故x2+y2≥45,当且仅当5x2+y2=4y2=2,即x2=310,y2=12时取(x2+y2)min=45.故答案为:45.13.【答案】185【解答】解:由向量系数m+(32−m)=32为常数,结合等和线性质可知|PA→||PD→|=321,故PD=23PA=6,AD=PA−PD=3=AC,故∠C=∠CDA,故∠CAD=π−2C.在△ABC中,cos C=ACBC=35.在△ADC,由正弦定理CDsin∠CAD=ADsin C,即CD=sin(π−2C)sin C⋅AD=sin2Csin C⋅AD=2AD cos C=2×35×3=185.故答案为:185.14.【答案】10√5【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵ PA =PB ,CA =CB =R =6, ∴ PC ⊥AB .∵ EF 为直径,要使面积S △PAB 最大,则P ,D 位于C 点两侧,并设CD=x , 计算可知PC =1,故PD =1+x, AB =2BD =2√36−x 2, 故S △PAB =12AB ⋅PD =(1+x )⋅√36−x 2.令x =6cos θ,其中θ∈(0, π2),S △PAB =(1+x )√36−x 2=(1+6cos θ)⋅6sin θ =6sin θ+18sin 2θ.记函数f (θ)=6sin θ+18sin 2θ,则f ′(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ−6). 令f ′(θ)=6(12cos 2θ+cos θ−6)=0, 解得cos θ=23或cos θ=−34<0(舍去),显然,当0<cos θ<23时, f ′(θ)<0, f (θ)单调递减;当23<cos θ<1时,f ′(θ)>0,f (θ)单调递增. 结合cos θ在(0,π2)递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△PAB 面积的最大值是10√5. 故答案为:10√5. 二、解答题【答案】证明:(1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF//AB 1.因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1.(2)因为B 1C ⊥平面ABC , AB ⊂面ABC , 所以B 1C ⊥AB .又因为AB ⊥AC , AC ∩B 1C =C ,AC ⊂面AB 1C ,B 1C ⊂面AB 1C , 所以AB ⊥面AB 1C . 因为AB ⊂面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解答】证明:(1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF//AB 1.因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1.(2)因为B 1C ⊥平面ABC , AB ⊂面ABC , 所以B 1C ⊥AB .又因为AB ⊥AC , AC ∩B 1C =C ,AC ⊂面AB 1C ,B 1C ⊂面AB 1C , 所以AB ⊥面AB 1C . 因为AB ⊂面ABB 1,所以平面AB 1C ⊥平面ABB 1. 【答案】解:(1)由余弦定理,得cos B =cos 45∘=a 2+c 2−b 22ac=262=√22, 因此b 2=5,即b =√5. 由正弦定理c sin C =b sin B,得√2sin C=√5√22,因此sin C =√55. (2)因为cos ∠ADC =−45<0 ,所以sin ∠ADC =√1−cos 2∠ADC =35,∠ADC ∈(π2, π), 所以∠C ∈(0, π2),所以cos ∠C =√1−sin 2∠C =2√55, 所以sin ∠DAC =sin (π−∠DAC)=sin (∠ADC +∠C) =sin ∠ADC cos ∠C +cos ∠ADC sin ∠C =2√525. 因为∠DAC ∈(0, π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin ∠DACcos ∠DAC =211 .【解答】解:(1)由余弦定理,得cos B =cos 45∘=a 2+c 2−b 22ac=26√2=√22, 因此b 2=5,即b =√5. 由正弦定理c sin C =b sin B,得√2sin C=√5√22, 因此sin C =√55. (2)因为cos ∠ADC =−45<0 ,所以sin ∠ADC =√1−cos 2∠ADC =35,∠ADC ∈(π2, π),所以∠C ∈(0, π2),所以cos ∠C =√1−sin 2∠C =2√55, 所以sin ∠DAC =sin (π−∠DAC)=sin (∠ADC +∠C) =sin ∠ADC cos ∠C +cos ∠ADC sin ∠C =2√525. 因为∠DAC ∈(0, π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin ∠DAC cos ∠DAC=211.【答案】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80米,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x ,由{0<x <40,0<80−x <80, 解得:0<x <40,则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k 800(3x 2−60x )=3k 800x (x −20).因为k >0,所以令y ′=0,得x =0或20,所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80米,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x ,由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k800(x 3−30x 2+160×800)(0<x <40),则y ′=k 800(3x 2−60x )=3k 800x (x −20). 因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OP →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12.当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OP →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12.当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【答案】(1)解:由f (x )=g (x ),得x =0, f ′(x )=2x +2,g ′(x )=−2x +2, 所以f ′(0)=g ′(0)=2,所以,函数ℎ(x )的图像为过原点,斜率为2的直线, 所以ℎ(x )=2x ,经检验:ℎ(x )=2x 符合题意.(2)解:ℎ(x )−g (x )=k (x −1−ln x ), 设φ(x )=x −1−ln x , 则φ′(x )=1−1x =x−1x,可得φ(x )≥φ(1)=0,所以当ℎ(x )−g (x )≥0时, k ≥0.令p(x)=f (x )−ℎ(x )=x 2−x +1−(kx −k ) =x 2−(k +1)x +(1+k )≥0, 得当x =k +1≤0时, f (x )在(0,+∞)上递增,所以p (x )>p (0)=1+k ≥0, 所以k =−1;当k +1>0时, Δ≤0, 即(k +1)2−4(k +1)≤0, (k +1)(k −3)≤0, −1<k ≤3.综上, k ∈[0,3].(3)证明:因为f (x )=x 4−2x 2,所以f ′(x )=4x 3−4x =4x (x +1)(x −1), 所以函数y =f (x )的图像在x =x 0处的切线为y =(4x 03−4x 0)(x −x 0)+(x 04−2x 02) =(4x 03−4x 0)x −3x 04+2x 02,可见直线y =ℎ(x )为函数y =f (x )的图像 在x =t(0<|t|≤√2)处的切线. 又因为当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√33√a n+1,a n+1=S n+1−S n=√33√a n+1(√S n+1+√S n),因此√S n+1+√S n=√3√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n),所以S n+1=4S n.又S1=a1=1,S n=4n−1,a n=S n−S n−1=3⋅4n−2,n≥2.综上,a n={1,n=1,3⋅4n−2,n≥2.(n∈N∗)(3)若存在三个不同的数列{a n}为“λ−3”数列,则Sn+113−S n13=λa n+113,则S n+1−3S n+123S n13+3S n+113S n23−S n=λ3a n+1=λ3(S n+1−S n).由a1=1,a n≥0,且S n>0,令p n=(S n+1S n)13>0,则(1−λ3)p n3−3p n2+3p n−(1−λ3)=0,λ=1时,p n=p n2,由p n>0可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯一,不存在三个不同的数列{a n};λ≠1时,令t=31−λ3,则p n3−tp n2+tp n−1=0,则(p n−1)[p n2+(1−t)p n+1]=0,①t≤1时,p n2+(1−t)p n+1>0,则p n=1,同理不存在三个不同的数列{a n};②1<t<3时,Δ=(1−t)2−4<0,p n2+(1−t)p n+1=0无解,则p n=1,同理不存在三个不同的数列{a n};③t=3时,(p n−1)3=0,则p n=1,同理不存在三个不同的数列{a n};④t>3即0<λ<1时,Δ=(1−t)2−4>0,p n2+(1−t)p n+1=0有两解α,β.设α<β,α+β=t−1>2,αβ=1>0,则0<α<1<β,则对任意n∈N∗,S n+1S n=1或S n+1S n=α3(舍去)或S n+1S n=β3,由于数列{S n}从任何一项求其后一项均有两种不同的结果,所以这样的数列{S n}有无数多个,则对应的数列{a n}有无数多个,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1. (2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1,a n =S n −S n−1=3⋅4n−2,n ≥2. 综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗)(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1, 则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n };λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解, 则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0,则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β.设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3(舍去)或S n+1S n=β3,由于数列{S n }从任何一项求其后一项均有两种不同的结果, 所以这样的数列{S n }有无数多个, 则对应的数列{a n }有无数多个,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1. 【答案】解:(1)由题意,知(a 1−1b )⋅(2−1)=(2a −1−2−b )=(3−4),则{2a −1=3,−2−b =−4,解得a =2,b =2. (2)有(1)知,矩阵M =(21−12),设矩阵M 的逆矩阵为M −1=(mn p q ),∴ M ⋅M −1=(21−12)⋅(m n pq )=(2m +p 2n +q −m +2p −n +2q )=(1001), {2m +p =1,2n +q =0,−m +2p =0,−n +2q =1,解得m =25,n =−15,p =15,q =25,∴ M −1=(25−151525).【解答】解:(1)由题意,知(a 1−1b )⋅(2−1)=(2a −1−2−b )=(3−4),则{2a −1=3,−2−b =−4,解得a =2,b =2. (2)有(1)知,矩阵M =(21−12),设矩阵M 的逆矩阵为M −1=(mn pq ),∴ M ⋅M −1=(21−12)⋅(m n pq )=(2m +p 2n +q −m +2p −n +2q )=(1001), 即{2m +p =1,2n +q =0,−m +2p =0,−n +2q =1,解得m =25,n =−15,p =15,q =25,∴ M −1=(25−151525).【答案】解: 2|x +1|+|x|={3x +2, x >0,x +2, −1≤x ≤0,−3x −2, x <−1,∵ 2|x +1|+|x|<4,∴ {3x +2<4,x >0或{x +2<4,−1≤x ≤0或{−3x −2<4,x <−1,解得0<x <23或−1≤x ≤0或−2<x <−1,∴ −2<x <23,∴ 不等式的解集为{x|−2<x <23}. 【解答】解: 2|x +1|+|x|={3x +2, x >0,x +2, −1≤x ≤0,−3x −2, x <−1,∵ 2|x +1|+|x|<4,∴ {3x +2<4,x >0或{x +2<4,−1≤x ≤0或{−3x −2<4,x <−1,解得0<x <23或−1≤x ≤0或−2<x <−1, ∴ −2<x <23,∴ 不等式的解集为{x|−2<x <23}. 【答案】解:(1)由题意可知:p 1=13,q 1=23,则p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13) q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n ,q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23,两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23,则:2p n +q n =13(2p n−1+q n−1)+23,所以,2p n +q n −1=13(2p n−1+q n−1−1).因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n , 即2p n +q n =(13)n+1,所以E (X n )=2p n +q n +0×(1−p n −q n )=(13)n+1.【解答】解:(1)由题意可知:p 1=13 ,q 1=23,则p 2=13p 1+23×13q 1=727,q 2=23p 1+(23×23+13×13) q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n ,q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23, 两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23, 则:2p n +q n =13(2p n−1+q n−1)+23,所以,2p n +q n −1=13(2p n−1+q n−1−1).因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n ,即2p n +q n =(13)n+1,所以E (X n )=2p n +q n +0×(1−p n −q n )=(13)n+1.。

2020届江苏高考数学原卷版含附加题

2020届江苏高考数学原卷版含附加题

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题1.已知集合{1,0,1,2}A =-,{0,2,3}B =,则A B = __________.2.已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是__________.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是__________.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是__________.5.右图是一个算法流程图.若输出y 值为2-,则输入x 的值是__________.6.在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为y x =则该双曲线的离心率是__________.7.已知()y f x =是奇函数,当0x ≥时,23()f x x =,则(8)f -的值是__________.8.已知22sin 43πα⎛⎫+= ⎪⎝⎭,则sin 2α的值是__________.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半径为0.5cm ,则此六角螺帽毛坯的体积是__________cm 3.10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是__________.11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知{}n n a b +的前n 项和()2*21n n S n n n =-+-∈ ,则d q +的值是__________.12.已知()22451,x y y x y +=∈ ,则22x y +的最小值是__________.13.在ABC △中,4AB =,3AC =,90BAC ∠= ,D 在边BC 上,延长AD 到P ,使得9AP =.若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是__________.14.在平面直角坐标系xOy 中,已知2P ⎫⎪⎪⎝⎭,A B 、是圆221:362C x y ⎛⎫+-= ⎪⎝⎭上的两个动点,满足PA PB =,则PAB △面积的最大值是__________.二、解答题15.在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .16.在ABC △中,角A B C 、、的对边分别为a b c 、、.已知3a =,c =45B = .(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,'OO 为铅垂线('O 在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到'OO 的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到'OO 的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到'OO 的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于'OO 的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(0k >),问'O E 为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为1F ,2F 点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为1S ,2S ,若213S S =,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(),h x kx b k b =+∈ 在区间D 上恒有()()()f x h x g x ≥≥.(1)若2()2f x x x =+,2()2g x x x =-+,(),D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()ln g x k x =,()h x kx k =-,()0,D =+∞,求k 的取值范围;(3)42()2f x x x =-,2()48g x x =-,()(342()4320||h x t t x t t t =--+<≤,[,][D m n =⊆,求证:n m -≤20.已知数列{}n a 的首项11a =,前n 项和为n S ,设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为"~"k λ数列.(1)若等差数列{}n a 是"~1"λ数列,求λ的值;(2)若数列{}n a 是~2"数列,且0n a >,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为"~3"λ数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】A.[选修4-2:矩阵与变换]平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1-M .B.[选修4-4:坐标系与参数方程]在极坐标系中,已知点1,3A πρ⎛⎫ ⎪⎝⎭在直线:cos 2l ρθ=上,点2,6B πρ⎛⎫ ⎪⎝⎭在圆:4sin C ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标.C.[选修4-5:不等式选讲]设x ∈R ,解不等式2|1|||4x x ++<.22.在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q .(1)求1p ,1q 和2p ,2q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).。

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)参考公式:样本数据12,,,n x x x L 的方差221111(),n n i i i i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置........上..1.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 ▲ 。

【解析】考查复数的减法、乘法运算,以及实部的概念。

-202.已知向量a r 和向量b r 的夹角为30o,||2,||3a b ==r r ,则向量a r 和向量b r 的数量积a b ⋅r r = ▲。

【解析】 考查数量积的运算。

32332a b ⋅=⋅⋅=r r 3.函数32()15336f x x x x =--+的单调减区间为 ▲ .【解析】 考查利用导数判断函数的单调性。

2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。

亦可填写闭区间或半开半闭区间。

4.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= ▲ .【解析】 考查三角函数的周期知识。

注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。

1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。

2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。

3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。

4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。

5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。

6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。

7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。

8.已知22sin +=43πα(),则sin 2α的值是。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。

10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。

11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。

12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。

13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。

【2020高 考江苏卷数学真题】2020年普通高等学校招生全国统一考试(江苏卷)数学试卷含答案解析

【2020高 考江苏卷数学真题】2020年普通高等学校招生全国统一考试(江苏卷)数学试卷含答案解析

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积,其中是柱体的底面积,是柱体的高.V Sh =S h 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合,则_____.{1,0,1,2},{0,2,3}A B =-=A B = 2.已知是虚数单位,则复数的实部是_____.i (1i)(2i)z =+-3.已知一组数据的平均数为4,则的值是_____.4,2,3,5,6a a -a 4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 5.如图是一个算法流程图,若输出的值为,则输入的值是_____.y 2-x6.在平面直角坐标系xOy 中,若双曲线﹣=1(a >0)的一条渐近线方程为,则该双曲线的离心22x a 25y 率是____.7.已知y =f (x )是奇函数,当x ≥0时, ,则f (-8)的值是____.()23f x x =8.已知 =,则的值是____. 2sin ()4πα+23sin 2α9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =的图象向右平移个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是πsin(2)43x ﹢π6____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和,则d +q 的值是_______.221()n n S n n n +=-+-∈N 12.已知,则的最小值是_______.22451(,)x y y x y R +=∈22x y +13.在△ABC 中,D 在边BC 上,延长AD 到P ,使得AP =9,若43=90AB AC BAC ==︒,,∠,(m 为常数),则CD 的长度是________. 3()2PA mPB m PC =+-14.在平面直角坐标系xOy 中,已知,A ,B 是圆C :上的两个动点,满足0)P 221()362x y +-=,则△PAB 面积的最大值是__________.PA PB =二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.。

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

学科@网4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数()f x 的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x xx π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[来源学科11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x =.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2 10.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分. 解:(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以, 因此.因为,所以,因此,.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y ==. 因此,点P 的坐标为. ②因为三角形OAB ,所以1 2AB OP ⋅=AB =. 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即,即当时,d 满足.因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值().①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n mq q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅.因此,异面直线BP 与AC 1所成角的余弦值为20.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.学科¥网 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a 的值为______▲________ 2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x),x ∈R ,是偶函数,则实数a 的值为_______▲_________6、在平面直角坐标系xOy 中,已知双曲线112422=-y x 上一点M 的横坐标是3,则M 到双曲线右焦点的距离为___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数2(0)y x x =>的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为1k a +,其中k N +∈,若116a =,则135a a a ++的值是____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线1250x y c -+=的距离为1,O长度m组距0.050.040.030.01403530252015105则实数c 的取值范围是______▲____ 10、设定义在区间⎪⎭⎫⎝⎛20π,上的函数6cos y x =的图像与5tan y x =的图像的交点为P ,过点P 作x 轴的垂线,垂足为1P ,直线1PP 与函数sin y x =的图像交于点2P ,则线段12P P 的长为_______▲_____11、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的取值范围是____▲____12、设实数,x y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲___13、在锐角ABC ∆中,角A B C 、、的对边分别为a b c 、、.若6cos b a C a b +=,则tan tan tan tan C CA B+的值是_____▲____14、将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记S=梯形的面积梯形的周长)2(,则S 的最小值是_______▲_______二、解答题15、(14分)在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ---- (1)求以线段,AB AC 为邻边的平行四边形两条对角线的长(2)设实数t 满足()0AB tOC OC -=u u u r u u u r u u u rg,求t 的值16、(14分)如图,四棱锥P ABCD -中,PD ⊥平面ABCD ,1,2,,90PD DC BC AB AB DC BCD ====∠=︒∥(1)求证:PC BC ⊥ (2)求点A 到平面PBC 的距离17、(14分)某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图,垂直放置的标杆BC 高度h =4m ,仰角∠ABE=α,∠DCBAPβαdDBEAADE=β(1)该小组已经测得一组α、β的值,tan α =1.24,tan β=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精度,若电视塔实际高度为125m ,试问d 为多少时,α-β最大18.(16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A B 、,右焦点为F ,设过点T (m t ,)的直线TA TB 、与此椭圆分别交于点M ),(11y x ,),(22y x N ,其中0m >,0,021<>y y (1)设动点P 满足422=-PB PF ,求点P 的轨迹 (2)设31,221==x x ,求点T 的坐标 (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)19.(16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示)(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立。

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正________cm 2.10. 将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是________.12. 已知5x 2y 2+y 4=1(x,y ∈R ),则x 2+y 2的最小值是________.13. 在△ABC 中,AB =4, AC =3, ∠BAC =90∘,D 在边BC 上,延长AD 到P ,使得AP =9.若PA →=mPB →+(32−m)PC →(m 为常数),则CD 的长度是________.14. 在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C:x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________. 二、解答题15. 在三棱柱ABC −A 1B 1C 1中, AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证: EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC中,角A,B,C的对边分别为a,b,c,己知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF. 且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18. 在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →⋅QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f (x ) ,y =g (x )与ℎ(x )=kx +b (k,b ∈R )在区间D 上恒有f (x )≥ℎ(x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=−x 2+2x ,D =(−∞,+∞),求ℎ(x )的表达式;(2)若f (x )=x 2−x +1,g (x )=k ln x ,ℎ(x )=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4−2x 2,g (x )=4x 2−8,ℎ(x )=4(t 3−t )x −3t 4+2t 2(0<|t|≤√2),D =[m,n ]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【考点】交集及其运算【解析】集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素组成的集合,叫做集合A与集合B的交集,记作A∩B.【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.【点评】此题暂无点评2.【答案】3【考点】复数代数形式的混合运算复数的基本概念【解析】此题暂无解析【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.【点评】此题暂无点评3.【答案】2【考点】众数、中位数、平均数【解析】此题暂无解析【解答】=4,解:由4+2a+(3−a)+5+65可知a=2.故答案为:2.此题暂无点评4.【答案】19【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.【点评】此题暂无点评5.【答案】−3【考点】程序框图【解析】此题暂无解析【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3. 故答案为:−3.【点评】此题暂无点评6.【答案】32【考点】双曲线的渐近线双曲线的离心率【解析】此题暂无解析【解答】解:由x 2a2−y25=1得渐近线方程为y=±√5ax.∴c2=a2+5=9,∴c=3,∴离心率e=ca =32.故答案为:32. 【点评】此题暂无点评7.【答案】−4【考点】函数奇偶性的性质函数的求值【解析】此题暂无解析【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x 2 3,则f(−8)=−f(8)=−823=−4.故答案为:−4.【点评】此题暂无点评8.【答案】13【考点】二倍角的余弦公式运用诱导公式化简求值【解析】此题暂无解析【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.【点评】此题暂无点评10.【答案】x=−5π24【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的对称性【解析】此题暂无解析【解答】解:因为f(x)=3sin(2x+π4),将函数f(x)=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,故答案为:x =−5π24. 【点评】 此题暂无点评 11.【答案】 4【考点】等差数列与等比数列的综合 数列的求和【解析】 此题暂无解析 【解答】解:因为{a n +b n }的前n 项和为: S n =n 2−n +2n −1(n ∈N ∗), 当n =1时,a 1+b 1=1,当n ≥2时,a n +b n =S n −S n−1 =2n −2+2n−1, 所以当n ≥2时,a n =2(n −1),b n =2n−1,且当n =1时,a 1+b 1=0+1=1成立, 则d =a 2−a 1=2−0=2, q =b 2b 1=21=2,则d +q =4. 故答案为:4. 【点评】 此题暂无点评 12. 【答案】45【考点】基本不等式在最值问题中的应用 【解析】 此题暂无解析 【解答】解:4=(5x 2+y 2)⋅4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2, 即x 2=310,y 2=12时取(x 2+y 2)min =45.【点评】 此题暂无点评 13. 【答案】 185【考点】二倍角的正弦公式 正弦定理 向量的共线定理 【解析】 此题暂无解析 【解答】解:由向量系数m +(32−m)=32为常数, 结合等和线性质可知|PA →||PD →|=321,故PD =23PA =6,AD =PA −PD =3=AC ,故∠C =∠CDA ,故∠CAD =π−2C . 在△ABC 中,cos C =ACBC =35.在△ADC ,由正弦定理CDsin ∠CAD =ADsin C , 即CD =sin (π−2C)sin C⋅AD =sin 2C sin C⋅AD =2AD cos C=2×35×3=185.故答案为:185. 【点评】 此题暂无点评 14. 【答案】10√5 【考点】与圆有关的最值问题 利用导数研究函数的最值【解析】 此题暂无解析 【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵PA=PB,CA=CB=R=6,∴PC⊥AB.∵EF为直径,要使面积S△PAB最大,则P,D位于C点两侧,并设CD=x,计算可知PC=1,故PD=1+x, AB=2BD=2√36−x2,故S△PAB=12AB⋅PD=(1+x)⋅√36−x2.令x=6cosθ,其中θ∈(0, π2),S△PAB=(1+x)√36−x2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ.记函数f(θ)=6sinθ+18sin2θ,则f′(θ)=6cosθ+36cos2θ=6(12cos2θ+cosθ−6).令f′(θ)=6(12cos2θ+cosθ−6)=0,解得cosθ=23或cosθ=−34<0(舍去),显然,当0≤cosθ<23时,f′(θ)<0,f(θ)单调递减;当23<cosθ<1时,f′(θ)>0,f(θ)单调递增.结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos2θ=√53,故f(θ)max=6×√53+36×√53×23=10√5,即△PAB面积的最大值是10√5.故答案为:10√5.【点评】此题暂无点评二、解答题15.【答案】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】此题暂无解析【解答】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【点评】此题暂无点评16.【答案】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【考点】两角和与差的正弦公式余弦定理正弦定理同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【点评】此题暂无点评17.【答案】解:(1)过A,B分别作MN的垂线,垂足为A1,B1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【考点】利用导数研究函数的最值 函数模型的选择与应用【解析】 此题暂无解析 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【点评】 此题暂无点评 18.【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点.设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M =−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【考点】圆锥曲线中的定点与定值问题 椭圆中的平面几何问题 直线与椭圆结合的最值问题【解析】 此题暂无解析 【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127). 【点评】 此题暂无点评 19. 【答案】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为由函数y=f x的图像可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【考点】利用导数研究不等式恒成立问题函数与方程的综合运用利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】此题暂无解析【解答】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【点评】此题暂无点评20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√3√a n+1,3a n+1=S n+1−S n=√3√a n+1(√S n+1+√S n),3因此√S n+1+√S n=√3√a n+1,√3a n+1,即√S n+1=23S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【考点】数列递推式一元二次方程的根的分布与系数的关系 等比数列的通项公式等差数列的性质【解析】此题暂无解析【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1.(2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n };④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β,则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【点评】此题暂无点评。

(精校版)2020年江苏卷数学高考试题文档版(含答案)

(精校版)2020年江苏卷数学高考试题文档版(含答案)
(3)设点 M 在椭圆 E 上,记 △OAB 与 △MAB 的面积分别为 S1,S2,若 S2 = 3S1 ,求点 M 的坐标. 19.(本小题满分 16 分)
已知关于 x 的函数 y = f (x), y = g(x) 与 h(x) = kx + b(k,b R) 在区间 D 上恒有 f (x) h(x) g(x) .
绝密★启用前
2020 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。
考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题11.设{an}是公差为 d 的等差数列,{bn}是公比为 q 的等比数列.已知数列{an+bn}的前 n 项和
Sn = n2 − n + 2n −1(n N+ ) ,则 d+q 的值是 ▲ .
12.已知 5x2 y2 + y4 = 1(x, y R) ,则 x2 + y2 的最小值是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
柱体的体积V = Sh ,其中 S 是柱体的底面积, h 是柱体的高. 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.置.上..

2020年江苏省高考数学试卷(含详细解析)

2020年江苏省高考数学试卷(含详细解析)

保密★启用前2020年江苏省高考数学试卷—.■总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分1.已知集合A=(—l,0,l,2},g=(0,2,3},则AC\B=.2.己知i是虚数单位,则复数Z=(l+i)(2-i)的实部.3.己知一组数据4.2劣3—",5,6的平均数为4,则。

的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图.若输出)'的值为-2,则输入.1的值是•6.在平而直角坐标系X。

),中,若双曲线竺-22=l(a>0)的一条渐近线方程为y=2^/52 x,则该双曲线的离心率是—・7.己知.汽心)是奇函数,当官时,门刁=指,则直罚的值是8.已知sin'U+a)=二.则sin2tz的值是____.439.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.己知螺帽的底面正六边形边长为2cm.高为2cm.内孔半轻为0.5cm.则此六角螺帽右坯的体枳是—cm.10,将函数y=3sin(2wf)的图象向右平移兰个单位长度,则平移后的图象中与y轴最46近的对称轴的方程是—.11.设{叫}是公差为,的等差数列,(加J是公比为g的等比数列.已知数列{”〃+“}的前〃项和/一〃+2〃一1(〃£FT),则d+q的值是12.已知5亍八寸=1(矽苗),则J2的最小值是________.13.在△ABC中,仙=4AC=3,ZBAC=90°,D在边8C上,延长AO到F,使得AP=9.14.在平而直角坐标系xOy中.己知,0),1△是圆G”+。

-或)・=36上的两个动点,满足PA=PB,则△用8而积的最大值是二、解答题评卷人得分15.在三棱柱ABC-A\B\C}中,AB1AC.&C1平而ABC,E,F分别是AC,3C的中点......O...........O.....I-.....O.....滨......O............O ※※寒※※即※※田※※s?I※※II※※堞※※I※※群※※点※※军浓※(1)求证:段〃平而/IF i C i:(2)求证:平面AB.CL平而ABB,.16.在△ABC中,角A. B.C的对边分别为〃,b,c,己知”=3.c=JI b=45Q.1)⑴求sinC的值:4(2)在边8C上取一点。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2020年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
一、填空题
1.已知集合{1,0,1,2}A =-,{0,2,3}B =,则A B = __________.
2.已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是__________.
3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是__________.
4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则
点数和为5的概率是__________.
5.右图是一个算法流程图.若输出y 值为2-,则输入x 的值是
__________.
6.在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为y x =则该双曲线的离心率是__________.
7.已知()y f x =是奇函数,当0x ≥时,2
3()f x x =,则(8)f -的值是__________.
8.已知22sin 43
πα⎛⎫+= ⎪⎝⎭,则sin 2α的值是__________.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半径为0.5cm ,则此六角螺帽毛坯的体积是__________cm 3.
10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是__________.
11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知{}n n a b +的前n 项和()2*21n n S n n n =-+-∈ ,则d q +的值是__________.
12.已知()22451,x y y x y +=∈ ,则22x y +的最小值是__________.
13.在ABC △中,4AB =,3AC =,90BAC ∠= ,D 在边BC 上,延长AD 到P ,使得9AP =.若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭
(m 为常数),则CD 的长度是__________.
14.在平面直角坐标系xOy 中,已知2P ⎫⎪⎪⎝⎭
,A B 、是圆221:362C x y ⎛⎫+-= ⎪⎝⎭上的两个动点,满足PA PB =,则PAB △面积的最大值是__________.
二、解答题
15.在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.
(1)求证://EF 平面11AB C ;
(2)求证:平面1AB C ⊥平面1ABB .。

相关文档
最新文档