高层建筑结构设计高层建筑结构荷载
高层建筑结构计算的基本假定和荷载效应组合设计要求
3
内力与位移计算的一般原则
在自身平面内的刚度很大
平面外刚度很小, 可以忽略
平面外的刚度 很小,可忽略,
4
2020/3/3
可以抵抗在本身平面 内的侧向力
1、平面抗侧力结构假定
一片框架或简力墙在自身平面内刚度很大, 可以抵抗在本身平面内的侧向力; 而在平面外的刚度很小,可忽略, 即垂直该平面的方向不能抵抗侧向力 ——整个结构可分不同方向的平面抗侧力结
按刚度和变形分配
(2)计算每片平面抗侧力结构分到的水平作用下 的内力和位移
7
4.2 荷载效应组合
荷载效应
指结构或构件在某种荷载作用下的结构的内力和 位移。
荷载效应组合
指在所有可能同时出现的诸荷载组合下,确定结 构或构件内产生的效应。其中最不利组合是指所 有可能产生的荷载组合中,对结构构件产生总效 应为最不利的一组
(b)7~9度设防、高度较大且沿高度的刚度和质量分 布很不均匀的高层建筑
(c)特别重要的建筑(甲类建筑)
(2)薄弱层的位置
(a)楼层屈服强度系数沿高度分布均匀的结构,可取 底层
(b)楼层屈服强度系数沿高度分布不均匀的结构,可 取屈服系数最小的楼层及相对较小的楼层,一般不超 过2~3处
16
2020/3/3
➢ 不考虑地震作用组合:
0S R
➢ 考虑地震作用组合:
SE RE / RE
0 结构重要性系数,分别取1.1、1.0、0.9
RE 承载力抗震调整系数
14
2020/3/3
结构设计要求
2) 侧向(水平)位移限制和舒适度要求
➢ 弹性方法计算:
高层建筑结构设计荷载和地震作用
结构地震反应分析
结构地震反应分析是研究结构在地震作用下的反应,包括位移、速度、加速 度和内力等反应。通过结构地震反应分析,可以确定结构的动力特性、地震 作用效应以及结构薄弱环节。
抗震设计
抗震设计是根据结构地震反应分析和建筑物的使用要求,采取相应的抗震措 施,包括场地选择、地基处理、结构体系选择、构造措施等,以满足建筑物 在地震作用下的安全性和可靠性要求。
采用有限元分析法对结构进行离散化分析, 得到各种荷载作用下的应力、应变、位移等 响应,并进行组合计算。
03
地震作用分析
地震作用特点及影响因素
地震作用随震源深度的增加而减小; 地震作用随场地土质的承载能力增加而减小;
地震作用随震中距离的增加而减小; 地震作用随建筑物高度增加而增加。
地震烈度指标和地震动参数
04
高层建筑结构荷载和地震作用精细化设计
基于性能的设计理念和原则
基于性能的设计理念
强调结构设计的安全性、适用性和耐久性,以结构性能为核心,综合考虑结构安 全性、使用性能和耐久性等多方面因素。
基于性能的设计原则
采用合理、有效的设计方法和措施,提高结构性能指标,降低结构安全风险和经 济成本,实现结构设计的高效、经济和安全。
可变荷载
包括楼面活荷载、风荷载、雪荷 载等,其数值随时间变化且与结 构使用性能有关。
偶然荷载
包括地震作用、爆炸力、撞击力等 ,其数值巨大、作用时间短暂,具 有随机性和不可预测性。
结构荷载效应组合
承载能力极限状态
结构或构件达到最大承载能力或出现不适于继续承载的变形状态,需要进行承载 能力极限状态计算。
《高层建筑结构设计荷载和地震作 用》
高层建筑结构设计中的风荷载
高层建筑结构设计中的风荷载随着现在建筑美学的发展和使用功能的要求,现代建筑结构朝着高层和大跨度的方向发展。
因此在结构设计中风荷载越来越重要,有时至起决定性的作用。
该文主要阐述作用在结构上的风压、风力和风振系数、高层建筑结构风振系数和风振响应的精确方法,并介绍了高层建筑的风振控制的多种方法。
目前世界上正在经历着史无前例的高层、超高层建筑建设高峰。
芝加哥西尔斯大厦(Sears tower)曾以443m的高度稳坐世界最高建筑物宝座26年。
而现在世界上,拟建、在建和已建的400m以上的结构有37栋,尤以正在建造且已超过700m的迪拜大厦(Burj Dubai)为首。
发达国家甚至提出了千米高度量级的“空中城市”的概念。
随着结构高度的增加和高强材料的使用,低阻尼、高柔结构的风振响应更加显著,使得强风作用下的结构风荷载成为结构安全性和舒适性设计的控制荷载。
从Davenport最早将随机概念和方法引入建筑结构的抗风研究30多年以来,在建筑结构的顺风向荷载及响应的研究方面,已逐渐形成比较完善的计算理论和方法,主要成果也反映在多数国家的建筑结构荷载规范中。
风的特征及风压风是空气相对于地面的运动。
由于太阳对地球上大气加热和温度上升的不均匀性,从而在地球相同高度的两点之间产生压力差,这样使不同压力差的地区产生了趋于平衡的空气流动,便形成了风。
大量的统计资料表明,近地风的平均风速随着高度的升高而增大,同时对应于不同的地面粗糙度具有不同的变化规律。
通常可采用风速剖面来描述平均风。
平均风剖面是微气象学研究风速变化的一种方法。
目前,气象学家认为用对数律表示大气底层强风风速廓线比较理想,其表达式为式中——大气底层内高度处的平均风速;——摩擦速度或流动剪切速度;K——卡曼(Karman)常数,k 0.40;——地面粗糙长度(m);——有效高度(m):=,其中z——离地高度(m);——零平均位移(m)。
风压是建筑结构设计中的基本设计依据之一,其取值的大小对高层(高耸)和大跨度结构的安全性、适用性、耐久性及是否经济有密切的关系.基本风压系以当地比较空旷平坦地面上离地比较离地10m 高统计所得的50年一遇10min平均最大风速、按确定的风压。
高层建筑结构的荷载讲解
国内主要风洞
TJ-2 :实验段高2.5 米×宽3.0米×长15m ,风速3~67 米/秒。
TJ-3 :实验段 2.0 米高×15米宽× 15米长 ,风速
0.5~17 米/秒。
4、风振系数 z 1)风速特点:
风速的变化可分为两部分:一种是长周期的成分,其值一般在 10min以上;另一种是短周期成分,一般只有几秒左右。因此, 为便于分析,通常把实际风分解为平均风(稳定风)和脉动风两 部分。稳定风周期长,对结构影响小;脉动风周期短,对结构影 响大。
(3)局部风压体型系数 在计算风荷载对建筑物某个局部表面的作用时,要采用 局部风荷载体型系数,用于验算表面围护结构及玻璃等强度和 构件连接强度。檐口、雨蓬、遮阳板、阳台等水平构件计算局 部上浮风荷载时,风荷载体型系数不宜小于2.0。设计建筑幕 墙时,应按有关的标准规定采用。
(1)风洞试验目的
• 结构抗风研究与设计时需要结构的体形系数和风振系数, 但仅依靠荷载规范,往往很难精确得到。在实际中,常采 用风洞试验来准确获得体形复杂结构的体型系数和风振系 数。
(2)模拟方法
• 自然形成法和人工形成法。
(1)自然形成法:在均匀粗糙壁上自然形成模拟的 大气边界层,所需试验段非常长,一般要求20米 以上,而且通常还需加上一定的人工紊流装置, 目前很少采用。
(2)人工形成法:当前国际上主要采用的大气边界 层模拟方法。方法有:曲网法、棍栅法、曲线切 面蜂窝法、1/4椭圆尖劈+挡板+粗糙元法、大孔眼 格网法、尖塔旋涡发生器法和孔板速度车法。
离地高度(m)
梯度风 100
89 77 61
城市
梯度风 100
90
76 59 49
乡村
梯度风 100
高层建筑结构设计要求及荷载效应组合
结构的继续使用需要修复。
从抗震角度来看,出现超过设防烈度的地震是不可避 免的,结构应该具备足够的塑性变形能力。
但是结构过早地出现塑性变形也是十分不利的。结构 在小震、甚至风荷载作用下就出现塑性变形,必然导致裂 缝和变形过大,将影响到建筑物的正常使用。
② 短暂设计状况:适用于结构出现的临时情况,包括 结构施工和维修时的情况等;
③ 偶然设计状况:适用于结构出现的异常情况,包括结 构遭受火灾、爆炸、撞击时的情况等;
④ 地震设计状况:适用于结构遭受地震时的情况,在抗 震设防地区必须考虑地震设计状况。
1.1、持久设计状况和短暂设计状况下(无地震作用组合) 当荷载与荷载效应按线性关系考虑时,按下式:
结构顶点最大加速度
使用功能 住宅、公寓 办公、旅馆
alim (m / s盖竖向振动加速度限值
《高层规程》中规定楼盖结构的竖向振动频率不宜小于3Hz, 竖向振动加速度不应超过下表的限值。
2.4、稳定性与抗倾覆
结构整体稳定性是高层建筑设计的基本要求。研究表 明,高层建筑混凝土结构仅在竖向重力荷载作用下产生整 体丧失稳定的可能性很小。稳定性设计主要是控制在风荷 载或水平地震力作用下,重力荷载产生的二阶效应(P-Δ) 不致过大,以免引起结构的失稳、倒塌。
n—结构总层数。
2、高层建筑结构的稳定应符合下列规定
1)剪力墙、框架—剪力墙结构、筒体结构
n
EJd 1.4H 2 Gi i 1
2)框架结构:
n
Di 10 G j / hi j i
(i=1,2,…,n)
3、抗倾覆控制: ⑴、控制高宽比H/B; ⑵、控制基底零应力区面积,<15%总面积。
《高层结构设计》 02高层建筑结构的荷载计算
高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。
本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。
第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。
风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。
垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。
1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。
荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。
2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。
在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。
表1列出了各种情况下的风压高度变化系数。
高层建筑结构荷载作用与结构设计原则
3.2 风荷载的计算
(4)高层建筑的风振系数βz
z 1 (3.26) 《荷载》:7.4.1 对z 于基本自振周期T1 大于0.25s 的工程结构,如房屋、屋盖及各种高耸结构,以及对 于高度大于30m且高宽比大于1.5 z的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。
计算:它可由构件和装修的尺寸和材料的重量直接计算,材料的自重可按荷载规范阿取值。
注意:在高层建筑结构设计中,恒荷载计算时不要漏项。
3.1 竖向荷载的计算
3.1.2 活荷载 相对恒荷载,活荷载种类较多,计算也复杂。 1)取值:楼面均布活荷载可按《荷载》规范取; 2)折减:设计楼面梁、墙、柱及基础时,楼面荷载在标准值应乘以《荷载》规定的折减系数。 3)施工或检修荷载:一般取1.0~1.52。 4.5.1 设计屋面板、檩条、钢筋砼挑檐、雨篷和预制小梁时,施工或检修集中荷载(人和小工具的自重) 应取1.0,并应在最不利位置处进行验算。
3.2 风荷载的计算
3.2.1 风荷载标准值和基本风压 《高规》:3.2.1 主体结构计算时,垂直于建筑物表面的风荷载标准值应按(3.2.1)式计算,风荷载 作用面积应取垂直于风向的最大投影面积。
(3.2.1) 式中:ωk—风荷载标准值(); ωo—基本风压(2);μz—风压高度变化系数; μs—风荷载体型系数;βz—z度处的风振系数。
G H 式中:、—分别为i集中i 于质点i、j的重力荷载代表值;
F F 1 、—质i点i、j的n 计算高度; Ek
n
G H δn—顶部附加地震作用系数,可按表采用。 jj
《高层建筑结构设计》第2章_高层建筑结
际风压与基本风压的比值,它表示不同体型建筑物表面
风力的大小。 • 当风流经过建筑物时, 通常在迎风面产生压力(风荷
载体型系数用+表示),在侧风面及背风面产生吸力
(风荷载体型系数用-表示)。
• 风压值沿建筑物表面
的分布并不均匀, 如
右图所示, 迎风面的
风压力在建筑物的中
部最大, 侧风面和背
风面的风吸力在建筑
2021/8/30
16
2.1 高层建筑结构上的荷载与作用
三、地震作用
2. 三水准抗震设计目标及一般计算原则
④ 一般计算原则
a) 一般情况下, 应至少在结构两个主轴方向分别考虑水平 地震作用计算;有斜交抗侧力构件的结构,当相交角度 大于15°时,应分别计算各抗侧力构件方向的水平地震 作用。
b) 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响。其他情况,应计算单向 水平地震作用下的扭转影响。
周期应根据场地类别和设计地震分组按附表8.5 采用,
计算8、9 度罕遇地震作用时, 特征周期应增加0.05s。
2021/8/30
20
2.1 高层建筑结构上的荷载与作用
三、地震作用 4. 反应谱理论
2021/8/30
21
2.1 高层建筑结构上的荷载与作用
4. 反应谱理论
附表8.4 水平地震影响系数最大值
② 当建筑结构的阻尼比不等于0.05时,地震影响系数曲线
的形状参数和阻尼比调整应符合下列要求:
a) 曲线水平段地震影响系数应取
。
b) 曲线下降段的衰减指数应按下式确定:
γ=0.9+(0.05 - ζ)/(0.3+6ζ)
式中 γ ——曲线下降段的衰减指数;ζ ——阻尼比。
高层建筑混凝土结构设计规范
高层建筑混凝土结构设计规范一、引言高层建筑是城市中的重要组成部分,其结构设计对于建筑的安全和稳定性具有重要意义。
本规范旨在规范高层建筑混凝土结构的设计,保障建筑的安全和稳定性。
二、适用范围本规范适用于高层建筑混凝土结构的设计,包括楼板、柱子、梁和墙体等。
三、基本要求1、建筑物的结构设计应符合国家相关法律法规和规范要求。
2、建筑物的结构应具有足够的强度和刚度,能够承受设计荷载,并满足使用要求。
3、建筑物的结构应具有良好的耐久性和抗震性能。
4、建筑物的结构应符合施工、安装、调试和维修要求,便于施工和维护。
5、建筑物的结构应尽量采用标准化、模块化和集成化的设计方法,以降低成本、提高施工效率和质量。
四、设计荷载1、荷载标准建筑物的设计荷载应符合国家相关规范和标准要求,包括自重、活荷载、风荷载、地震荷载等。
2、自重建筑物的自重应按照设计要求计算,包括混凝土、钢筋、砖墙、地基等的自重。
3、活荷载建筑物的活荷载应按照设计要求计算,包括人员、设备、家具等的活荷载。
4、风荷载建筑物的风荷载应按照设计要求计算,包括基本风压和风荷载系数。
5、地震荷载建筑物的地震荷载应按照设计要求计算,包括地震作用下建筑物的动力响应和变形。
五、结构材料1、混凝土建筑物的混凝土应符合国家相关标准要求,包括强度、耐久性、抗渗性等。
2、钢筋建筑物的钢筋应符合国家相关标准要求,包括强度、耐腐蚀性等。
3、预应力钢筋建筑物的预应力钢筋应符合国家相关标准要求,包括强度、耐腐蚀性4、砖墙建筑物的砖墙应符合国家相关标准要求,包括强度、耐久性、防火性能等。
5、地基建筑物的地基应符合国家相关标准要求,包括承载能力、稳定性等。
六、结构形式1、楼板建筑物的楼板应采用合理的梁板结构形式,梁板之间应采用适当的连接方式,以提高楼板的刚度和承载能力。
2、柱子建筑物的柱子应采用合理的截面形式,以提高柱子的承载能力和抗震性能。
建筑物的梁应采用合理的梁截面形式,以提高梁的承载能力和刚度。
高层建筑结构设计 第三讲 高层建筑结构荷载
回顾-地震作用的知识点
地震效应: 地面运动产生的结构反应,包括加速度、速度、位移 反应。 地面运动特性的特征量(三要素):强度、频谱和持续时间。
建筑物本身的动力特性对建筑破坏程度有很大的影响,建筑物的 动力特性:主要指建筑物的自振周期、振型和阻尼。 抗震设防是对建筑物进行抗震设计并采取一定的抗震措施,以达 到结构抗震的效果和目的。 抗震设防的目标:(三水准)
高层建筑结构设计
第三讲 高层建筑结构荷载
高层建筑主要承受竖向荷载、风荷载和地震作用。本章的主要 任务是介绍上述荷载的汇集方法。
3.1 竖向荷载
永久荷载(恒荷载):结构及装饰材料自重、固定 设备自重。 竖向荷载分为 可变荷载(活荷载):楼面均布活荷载、雪荷载、 积灰荷载及施工检修荷载。 恒荷载标准值可由《建筑结构荷载规范》GB50009提供的各种材 料自重标准值及构件和装饰物等截面尺寸进行计算,固定设备自重 由有关专业人员提供。 活荷载标准值应按《建筑结构荷载规范》GB50009的有关规定 采用。
“小震不坏,中震可修,大震不倒”
通过二阶段设计法来实现上述“三水准”抗震设计目标。
15
3.3 地震作用
一、地震作用的有关规定 1.建筑物重要性分类 甲类——指重大建筑工程和地震作用时可能发生严重次生灾 害的建筑。 乙类——指地震时使用功能不能中断或需尽快恢复的建筑。 丙类——指一般高层民用建筑。
(1)甲类建筑:应按高于本地区设防烈度计算; (2)乙、丙建筑,应按本地区设防烈度计算。 抗震措施不同,具体抗震措施要求看《规范》。
在计算高层建筑楼面活荷载引起的内力时,一般可不考虑楼 面活荷载不利布置,因为高层建筑楼面活荷载标准值一般为 2kN/m2 ,而高层建筑全部竖向荷载标准值一般为12~16kN/m2, 楼面活荷载最不利布置对内力影响较小,为简化计算,可不考虑 楼面活荷载不利布置,按活荷载满布进行计算,然后对梁跨中弯 矩乘以1.1~1.3的放大系数。 当楼面活荷载大于4kN/m2时,应考虑活荷不利布置。
高层建筑结构方案设计荷载估算
高层建筑结构方案设计荷载估算(2010-04-27 01:53:45)转载▼分类:PART10设计心得标签:建筑荷载折减系数轴力布活载教育1.2 高层建筑结构作用效应的特点1.2.1 高层建筑结构的受力特点建筑结构所受的外力(作用)主要来自垂直方向和水平方向。
在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。
也就是说,竖向荷载往往是结构设计的主要控制因素。
建筑结构的这种受力特点随着高度的增大而逐渐发生变化。
在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为:边柱 N=wlH/2h中柱 N=wlH/h即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。
就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。
其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为:水平均布荷载 Mmax=qH2/2倒三角形水平荷载 Mmax= Qh3/3即结构底部产生的倾复弯矩与楼层总高度的平方成正比。
就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。
1.2.2 高层建筑结构的变形特点在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。
由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。
在钢筋混凝土结构中,由于在施工过程中的找平,同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。
在水平荷载作用下,高层建筑结构最大的顶点位移为:水平均布荷载△max=qH4/8EI倒三角形水平荷载△max= 11qH4/120EI式中EI为结构的从以上可看出,结构顶点位移与其总高度的四次方成正比。
1.高层建筑结构有何受力特点
1.高层建筑结构有何受力特点高层建筑结构受力特点1. 引言高层建筑结构是指建筑物高度在一定范围内远远超过周围建筑物的建筑。
由于高层建筑的高度,其受力特点与普通建筑不同。
本文将就高层建筑结构的受力分析进行详细阐述。
2. 垂直荷载2.1 自重荷载高层建筑的自重荷载是指建筑物所有组成部分的重力。
高层建筑结构在设计和施工过程中要考虑自重荷载的作用,合理设计结构以承受自重荷载的作用。
2.2 活载荷载高层建筑在正常使用过程中,会受到人员、家具、设备等活动荷载的作用。
这些活载荷载需要合理计算和施加在建筑结构上,以确保结构的稳定性和安全性。
3. 风荷载高层建筑由于高度较大,所以受到风荷载的影响较为显著。
风荷载是指风对建筑物表面的压力和摩擦力。
高层建筑结构需要合理考虑风荷载的作用,设计适当的结构以抵抗风力的影响。
4. 地震荷载高层建筑由于高度较大,所以在地震发生时受到的地震荷载较为显著。
地震荷载是指地震引起的水平和垂直加速度对建筑物的作用。
高层建筑结构需要充分考虑地震荷载的作用,采取相应的抗震设计措施,确保结构的稳定性和安全性。
5. 结构系统高层建筑的结构系统可以分为框架结构、剪力结构、核心筒结构等不同类型。
每种结构系统都具有自身的特点和适用范围,设计和选择合适的结构系统对保证高层建筑结构的稳定性至关重要。
6. 附件本文档附带的附件包括高层建筑结构的示意图、力学分析图表等。
7. 法律名词及注释7.1 建筑法律名词1:XX法规注释:XX法规是指XX地区对于建筑结构设计和施工的法律法规。
7.2 建筑法律名词2:XX条款注释:XX条款是指XX法规中关于高层建筑结构的具体规定。
高层建筑结构的设计要点1. 引言高层建筑结构的设计是建筑工程中的重要环节。
本文将介绍高层建筑结构设计过程中需要注意的要点,以保证结构的稳定性和安全性。
2. 建筑系统选择在设计高层建筑结构时,需要根据建筑的用途和高度选择合适的建筑系统,如框架结构、剪力结构、核心筒结构等。
高层建筑的结构与受力分析
高层建筑的结构与受力分析高层建筑由于其高度较高,所以在设计和施工过程中需要特别重视其结构与受力分析。
本文将对高层建筑的结构和受力分析进行详细探讨。
一、高层建筑的结构类型高层建筑的结构类型多种多样,常见的包括框架结构、筒体结构、剪力墙结构等。
每种结构类型都有其独特的特点和适用范围。
1. 框架结构:框架结构是高层建筑最常见的结构类型之一。
它利用垂直柱和水平梁构成的框架来承担建筑的荷载。
框架结构具有灵活性和适应性,适用于不同形状和高度的建筑。
2. 筒体结构:筒体结构是一种通过建筑物外围的承重墙、柱和板板形成的结构类型。
筒体结构具有较好的抗侧向力能力和稳定性,适用于地震等自然灾害频发的地区。
3. 剪力墙结构:剪力墙结构采用设置剪力墙来承担建筑的纵向荷载,是一种高度抗震的结构类型。
剪力墙结构在地震区域的高层建筑中广泛采用,能够有效地抵抗地震力的作用。
二、高层建筑的受力分析高层建筑的受力分析对于确保建筑物的安全和稳定性至关重要。
在设计和施工过程中,需对各种力的作用进行合理分析和计算。
1. 垂直荷载:高层建筑承受的垂直荷载包括自重荷载和使用荷载。
自重荷载是指建筑本身的重量,而使用荷载是指建筑内外部设施、人员活动等产生的荷载。
设计师需要根据建筑的功能和用途,准确计算垂直荷载的作用。
2. 水平荷载:高层建筑需要考虑到水平荷载,包括风荷载和地震荷载。
风荷载是指风对建筑物表面产生的压力,地震荷载是指地震对建筑物的作用力。
在设计过程中,需根据具体地点的风速和地震烈度,合理计算水平荷载。
3. 温度荷载:高层建筑由于在使用过程中会受到温度的变化而产生热胀冷缩的作用。
设计师需要考虑到温度变化对建筑物的影响,并通过合理的设计和材料选择来减少温度荷载对建筑物的影响。
三、高层建筑结构设计的关键要素高层建筑的结构设计有许多关键要素需要考虑,下面将介绍其中几个重要要素。
1. 强度和稳定性:高层建筑的结构必须具备足够的强度和稳定性,以承受各种荷载的作用。
高层建筑的主要荷载
高层建筑的主要荷载一、引言高层建筑是城市中耸立的巨型建筑物,其承受的荷载是建筑结构设计中至关重要的因素。
主要荷载是指对建筑物施加压力或力量的因素,包括建筑自重、风荷载、地震荷载以及使用荷载等。
本文将深入探讨高层建筑的主要荷载及其对建筑结构的影响。
二、建筑自重建筑自重是指建筑物本身所承受的重力,主要由建筑材料的重量所决定。
高层建筑的自重较大,因此在设计阶段需要充分考虑建筑结构的承载能力,以确保安全稳固。
三、风荷载风荷载是指风对建筑物表面所产生的压力。
由于高层建筑面积大、高度高,容易受到风力的影响,因此风荷载在设计中必须予以充分考虑。
工程师通常使用风洞试验等方法来确定高层建筑所承受的风荷载,以保证建筑的结构稳定性。
四、地震荷载地震荷载是指地震对建筑物结构所产生的力量。
高层建筑作为城市中的重要标志性建筑,必须能够在地震发生时保持稳定。
因此,在设计高层建筑时,地震荷载是必须要考虑的主要荷载之一。
工程师会根据地震区域的状况,采用合适的抗震设计措施,确保建筑的抗震能力。
五、使用荷载使用荷载是指建筑物在使用过程中所承受的荷载,如人员活动、设备设施等。
高层建筑由于人员密集、设备众多,使用荷载较大。
在设计中,需要充分考虑建筑物的使用功能,合理安排荷载分布,以确保建筑结构的安全性。
六、其他荷载除了以上主要荷载外,高层建筑还可能承受其他荷载,如温度荷载、雪荷载、震荡荷载等。
这些荷载的大小和影响因素需要根据具体情况进行综合考虑,并在设计中予以合理处理。
七、荷载对建筑结构的影响主要荷载对高层建筑的结构稳定性和安全性起着至关重要的作用。
合理的荷载设计可以确保建筑物在长期使用过程中不发生变形、开裂或倒塌等事故。
在设计过程中,工程师需要根据荷载的大小和性质,选择合适的建筑材料、结构形式和抗震措施,以确保建筑的结构安全可靠。
八、结论高层建筑的主要荷载是建筑结构设计中必须要考虑的关键因素。
建筑自重、风荷载、地震荷载和使用荷载等荷载对高层建筑的结构稳定性和安全性有着重要影响。
荷载与设计要求,建筑结构设计计算的一般规定
确定楼面梁、墙、柱及基础的荷载标准值时,应 将楼面活荷载标准值乘以规定的折减系数。 1)设计楼面梁时,上表中的折减系数为: ①第1项当楼面梁从属面积超过25m2时,取0.9; ②第2~8项当楼面梁从属面积超过50m2时,取0.9; ③第9项对单向板楼盖的次梁和槽形板的纵肋应取 0.8;
1、 单位面积上的风荷载标准值 我国《建筑结构荷载规范》规定垂直作用于 建筑物表面单位面积上的风荷载标准值 wk(KN/m2)按下式计算:
2)上人的屋面,当兼作其他用途 时,应按相应楼面活荷载采用。
3)对于因屋面排水不畅、堵塞等引 起的积水荷载,应采取构造措施加以防 止;必要时,应按积水的可能深度确定 屋面活荷载。
4)屋顶花园活荷载不包括花圃土石 等材料自重。
屋面均布活载不应与雪荷载同时组 合,雪荷载的取用见《荷载规范》。
活荷载按楼层的折减系数
确定高层建筑风荷载的方法有两种,大多 数建筑(高度300m以下)按照《荷载规范》规 定的方法计算风荷载值,少数建筑(高度大、 对风荷载敏感或有特殊情况者)还要通过风洞 试验确定风荷载,以补充规范的不足。
一般情况下,在风力不很大的地震区建 筑物仅考虑地震作用而不考虑风荷载;而在 风力较大的地震区建筑物,则需同时考虑风 荷载和地震作用;在没有抗震设防要求的地 区,风荷载起主要的控制作用。
0.7 0.7
0.7 0.7
0.7 0.7 0.7
0.7
0.5 0.7
0.4 0.5
0.4 0.5 0.3
0.5
注:1)本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情 况特殊时,应按实际情况采用;
高层建筑结构设计(风荷载例题)
z H i 1.502 0.478 H i z 1 1 1 z z H z H
(4)风荷载计算:风荷载作用下,按式(3.1)可得
沿房屋高度分布的风荷载标准值为:
q( z) 0.45 0.8 0.57 40z z 24.66z z
下室采用筏形基础,埋置深度为12m,如图所示。已
知基本风压 w0 0.45 kN m2 ,建筑场地位于大城市郊 区。已计算求得作用于突出屋面小塔楼上的风荷载标
准值的总值为 800kN 。为简化计算,将建筑物沿高度
划分为六个区段,每个区段为20m,近似取其中点位
置的风荷载作为该区段的平均值。计算在风荷载作用
筏形基础底面的弯矩为:
M 800 132 1384.8 122 1262.2 102 1123.8 82 971.0 62 788.6 42 522.8 22 600266.4kN m
下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据经验公式可得
T1 0.05n 0.05 38 1.90s
w0T12 0.45 1.92 1.62kN s 2 m2
(2)风荷载体型系数:对于矩形平面,由附录1求得 s1 0.8
H 120 s 2 0.48 0.03 0.48 0.03 0.57 L 40
例题31某高层建筑剪力墙结构上部结构为38层底部13层层高为4米其他各层层高为3米室外地面至檐口的高度为120米平面尺寸为30m40m地下室采用筏形基础埋置深度为12m如图所示
例题3-1 某高层建筑剪力墙结构,上部结构为38层,
高层建筑结构第3章 高层建筑结构的荷载作用及其效应组合
第3章 高层建筑结构的荷载作用及其效应组合
风荷载的特点:
与地震作用相比,风力作用持续时间较长,其作用 更接近于静力,但建筑物的使用期限出现较大风力的 次数较多。 由于有较长期的气象观测,大风的重现期很短,所 以风力大小的估计比地震作用大小的估计较为可靠。 而且抗风设计具有较大的可靠性。
3.2.2 风荷载的计算
0.45 0.55 0.30
0.50 0.60 0.35
第3章 高层建筑结构的荷载作用及其效应组合
(2)风压高度变化系数
z
风压高度变化系数应该根据地面粗糙度类别确定
地面粗糙度分类: A类:近海海面和海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的 乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群且房屋较高的城市市区;
第3章 高层建筑结构的荷载作用及其效应组合
3.1 竖向荷载
3.2 风荷载
3.3 地震作用
3.4 温度作用 3.5 荷载效应组合
1
第3章 高层建筑结构的荷载作用及其效应组合
高层建筑结构主要承受竖向荷载和水平荷载。 恒荷载 1)竖向荷载 活荷载 2)水平荷载 地震作用 风荷载
与多层建筑结构有所不同,高层建筑结构—— 1)竖向荷载效应远大于多层建筑结构;
第3章 高层建筑结构的荷载作用及其效应组合
地面粗糙度分类
第3章 高层建筑结构的荷载作用及其效应组合
第3章 高层建筑结构的荷载作用及其效应组合
(3)风荷载体型系数 s
①定义:风荷载体型系数是指风作用在建筑物表面所引起 的压力(吸力)与原始风速算得的理论风压的比值。
②特点:风荷载体型系数一般都是通过实测或风洞模拟试验的
高层建筑结构设计确定风荷载
高层建筑结构设计确定风荷载高层结构设计要确保结构在风荷载作用下具备足够的抵抗变形能力和承载能力,保证结构在风荷载作用下的安全性。
同时,高层建筑物在风荷载作用下将产生振动,过大的振动加速度将使在高楼内居住的人们感觉不舒适,因此高层建筑结构应具备良好的使用条件,满足舒适度的要求。
1.1等效静态风荷载一般作用在建筑物上的风包括平均风和脉动风。
其中平均风是风荷载的长周期部分作用在建筑物上,其周期常在10min以上,可认为是作用在建筑物上的静荷载,因为其周期与建筑物的自振周期相差较远;脉动风则是短周期部分作用在建筑物上,其脉动的周期很短,一般只有几秒,其作用可以被认为是作用在建筑物上随机的动荷载,因为其周期与建筑物的自振周期比较接近。
作用在建筑结构上的风荷载除了平均风和脉动风产生的平均风力和脉动风力,还有风振产生的惯性力。
平均风力、脉动风力和惯性力组合得到最终的等效静态风荷载。
(1)惯性力依据高频动态天平试验结果,可以求出高层建筑底部的平均风力(包含力矩和剪力)和脉动风力,在给出高层建筑结构参数的情况下,可以计算出位移和加速度响应,由共振加速度可以进一步求出惯性力。
惯性力是由振动产生的,由加速度和质量决定,沿高度分布惯性力均方根σaf(z)表达式为:上式中m(z)为沿高度的质量,为沿高度的加速度。
(2)平均风力和脉动风力空气来流沿高层建筑高度分布的风力可通过下式表达:其中:ρ为空气密度;是z处单位高度上的力系数,一般通过风压测量试验确定;是来流风速。
风速是平均风速与脉动风速的合成,即:一般来说,脉动风速相对于平均风速是小量,忽略二阶小量,即可得到沿高度分布的平均风力和脉动风力分别如下:脉动力均方根为:其中,为沿高度的来流湍流度。
(3)等效静态风荷载沿高度分布的等效静态风荷载由下式给出:式中g为峰值因子,可取3.5。
1.2结构体型系数对于普通的高层结构,结构体型系数一般按《建筑结构荷载规范》(GB52022-0512)表8.3.1和《高层建筑混凝土结构技术规程》(JGJ3-2010)第4.2.3条取包络值。
高层建筑结构设计规范要求
高层建筑结构设计规范要求高层建筑结构设计是一个关乎安全和可持续性的重要领域。
为确保高层建筑的稳定和抗震能力,设计师必须遵守一系列严格的规范要求。
本文将介绍一些常见的高层建筑结构设计规范要求,以便读者了解并在实践中运用。
一、设计荷载要求高层建筑结构设计的第一步是确定设计荷载。
设计师必须考虑建筑在正常使用和极端情况下所承受的荷载,包括垂直荷载、水平荷载和温度荷载等。
这些荷载的大小和分布需参考当地规范要求,并根据建筑的用途和位置进行合理的调整。
二、结构安全性要求高层建筑必须保证结构的安全性,以抵御自然灾害和人为因素的影响。
设计师应遵循规范要求,确保建筑在地震、风灾和火灾等情况下的结构安全性。
例如,设计师需要考虑使用抗震设计和防火材料,并合理安排紧急疏散通道,以确保居民在紧急情况下能够迅速安全地离开建筑。
三、结构材料要求高层建筑的结构材料对于建筑的强度和稳定性起到至关重要的作用。
设计师应选择合适的结构材料,如混凝土、钢材等,并保证其质量符合规范要求。
此外,设计师还应考虑材料的阻火性、耐腐蚀性和环境友好性等方面。
四、结构形式要求高层建筑的结构形式是指建筑的整体结构布局和构造形式。
设计师需要根据建筑的用途和地理环境等因素,选择适当的结构形式,如框架结构、剪力墙结构或组合结构等。
在设计过程中,还要考虑结构形式对于建筑的稳定性和抗震能力的影响。
五、结构连接和节点要求高层建筑的结构连接和节点是指各个构件之间的连接方式和连接节点的设计。
设计师需根据规范要求选择合适的连接方式,并保证其强度和稳定性。
同时,设计师还要注意连接节点的设计,确保其能够承受各种荷载,并具备一定的延性和韧性。
六、监测和维护要求高层建筑在使用过程中需要进行定期的监测和维护,以确保结构的安全和功能的正常运行。
设计师在结构设计中应考虑监测系统的设置和维护通道的安排,并提供适当的使用和维护手册,供业主和维护人员参考。
综上所述,高层建筑结构设计规范要求包括设计荷载要求、结构安全性要求、结构材料要求、结构形式要求、结构连接和节点要求以及监测和维护要求等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 风 荷 载
3.1.1 单位面积上的风荷载标准值
3.1.2
总体风荷载与局部风荷载
3.1.3 关于风洞试验
3.2 地 震 作 用 (以《建筑结构抗震设计》课为主讲)
3.2.1 地震作用的特点
3.2.2 抗震设防准则及基本方法 3.2.3 抗震计算理论 3.2.4 设计反应谱 3.2.5 水平地震作用计算 3.2.6 结构自振周期计算 (主要以反应谱理论计算) 3.2.7 竖向地震作用计算(仅8、9度设防区内的部分结构考虑)
4 第11项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验 算。
5 本表各项荷载不包括隔墙自重和二次装修荷载。对固定隔墙的自重应 按恒荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的自重可取每 延米长墙重(kN/m)的1/3作为楼面活荷载的附加值(kN/m2)计入,附加值不 小于1.0kN/m2。
•《荷载规范》规定:垂直作用于建筑物表面单位面积
上的风荷载标准值Wk(kN/m2): k z sz0
• 重现期问题:
(3-1)
房屋高度大于60 m的高层建筑,通常可按100年一遇的风 压值采用;没有100年一遇的风压资料时,可近似将50年一遇 的基本风压值乘以增大系数1.1。
• 群体效应问题:
间距较近的多个建筑物之间,风荷载有相互干扰的群体效 应,一般可将单独建筑的体型系数乘以增大系数约为1.1~1.3, 必要时宜通过风洞试验的出。
表4.3.1 屋面均布活荷载 kN/m2
项 次
类别
1
不上人的屋 面
2 上人的屋面
3 屋顶花园
标准值
0.5 2.0 3.0
组合值系数 Ψc
0.7
0.7 0.7
频遇值系数Ψf
0.5 0.5 0.6
准永久值系数 Ψq
0
0.4 0.5
• 楼面活荷载的设计折减系数取值
1)楼面梁: 楼面梁从属面积超过25m2(50m2)时,应取0.9; 2) 柱、基础:
风荷是随时间而波动变化的动力荷载,但除较高柔的建筑必须考虑风 荷的动力效应影响外,大多数建筑(高度300m以下)的风荷载值可按荷载
规范规定的拟静力法计算。 • 计算步骤:
①确定风荷载标准值WK(kN/m2), ②计算建筑物表面的风荷载W(kN/m2或 kN/m或 kN)。
3.1.1 单位面积上的风荷载标准值
构计算内力并验算截面尺寸的合理性)
七、用构造处理手段进一步完善结构的构件及结点设计,绘施 工图。
1)永久荷载:
活荷载不利时
以活荷载为主时:
G 1.2,
q 1.4,
以恒荷载为主时:
竖
G 1.35, q 1.4, 0.7
向
荷
活荷载有利时
G 0.9或1.0,
载
2)活荷载,
a) 楼面活荷载(GB 50009-2010)
墙柱基础计算截面以上的层数
1
2~3 4~5 6~8 9~10 >20
各楼层活荷载折减系数
1.00(0.9) 0.85 0.70 0.65 0.60 0.55
3.1 风 荷 载
• 水平向荷载: 风荷载;地震作用
• 风荷载——空气流动形成风速,遇到建筑物时,在建筑物表 面产生压力和吸力。
• 风速、风向是紊乱变化的。
(2)无固定座位的看台
5
(1)健身房、演出舞台 (2)舞厅
6
(1)书库、档案库、贮藏室 ()密集柜书库
7 通风机房、电梯机房
标准 值(kN /m2)
2.0
2.5 3.0
3.0
3.5 3.5 4.0 4.0 5.0 12.0 7.0
组合值 系数 Ψc
0.7
0.7 0.7
0.7
0.7 0.7 0.7 0.7
0.9
0.9
频遇 准永久 值系 值系数 数Ψf Ψq 0.5 0.4
0.6 0.5 0.6 0.5 0.5 0.3
0.6 0.5
0.6 0.5 0.5 0.3 0.6 0.5 0.6 0.3
0.9 0.8
0.9 0.8
汽车通道及停车库:
(1)单向板楼盖(板跨不小于2m) 客车
4.0 0.7 0.7 0.6
结构施工图设计步骤
一、结构布置及截面估算 二、计算简图及荷载计算
竖向恒荷载、竖向活荷载、水平风荷载、地震作用
三、结构整体内力计算(按不同工况分别计算) 四、侧移验算(按不同工况分别计算,侧移不满足要求回到步骤一) 五、计算控制截面处最不利效应的内力组合(取不同工况下内力、
位移组合)
六、延性设计调整及截面尺寸验算:(按延性设计思路,进一步调整结
(2)其他民用建筑
2.0 0.7 0.5 0.4 2.5 0.7 0.6 0.5
走廊、门厅、楼梯:
(1)宿舍、旅馆、医院病房、托儿所、幼 2.0 0.7 0.5 0.4
11 儿园、住宅
2.5 0.7 0.6 0.5
(2)办公楼、教学楼、餐厅,医院门诊部 3.5 0.7 0.5 0.3
(3)当人流可能密集时
12 阳台:(1)一般情况 (2)当人群有可能密集时
2.5 0.7 0.6 0.5 3.5
注:
1 本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情况特 殊时,应按实际情况采用。
2 第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高 度不小于2.5kN/m2确定。
3 第8项中的客车活荷载只适用于停放载人少于9人的客车;消防车活荷 载是适用于满载总重为300kN的大型车辆;当不符合本表的要求时,应将 车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。
3.1.1 单位面积上的风荷载标准值
•《荷载规范》:主体结构计算时,风荷载作用面积应取垂直于
消防车
35.0 0.7 0.7 0.6
8 (2)双向板楼盖(板跨不小于6m×6m)和无梁
楼盖(柱网尺寸不小于6m×6m) 客车 消防车
2.5 0.7 0.7 0.6 20.0 0.7 0.7 0.6
9 厨房 (1)一般的 (2)餐厅的
2.0 0.7 0.6 0.5 4.0 0.7 0.7 0.7
浴室、厕所、盥洗室: 10 (1)第1项中的民用建筑
b) 风荷载
c) 地震作用
d) 其他
民用建筑楼面均布活荷载的标准值等
表4.1.1
项 次
类别
(1)住宅、宿舍、旅馆、办公楼、医院病房、托儿 1 所、幼儿园
(2)教室、试验室、阅览室、会议室、 医院门诊室
2 食堂、餐厅、一般资料档案室
3
(1)礼堂、剧场、影院、有固定座位的看台 (2)公共洗衣房
(1)商店、展览厅、车站、港口、机场大厅及其旅 4 客等候室