福建省厦门市湖滨中学2020-2021学年九年级下学期阶段反馈一数学试题

合集下载

2020-2021厦门市初三数学下期末一模试卷(含答案)

2020-2021厦门市初三数学下期末一模试卷(含答案)
15.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧 的长为cm.
16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.
17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.
【详解】
过 作 轴,过 作 轴于,
则 ,
∵顶点 , 分别在反比例函数 与 的图象上,
∴ , ,
∵ ,
∴ ,
∴ ,
∴ ,
∴ ,
∴ ,
∴ ,
故答案为: .
【点睛】
本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B
故本题答案应为:A
【点睛】
熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.
6.C
解析:C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
7.C
解析:C
【解析】
试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.
又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).
∴∠BOC=60°(等边三角形的每个内角等于60°).
又∵⊙O的半径为6cm,∴劣弧 的长= (cm).

2021厦门初三质检数学一模试卷答案

2021厦门初三质检数学一模试卷答案

2021年厦门市初中毕业班教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.13.12.a 2(a -b ).13.5. 14.3.15. ①③(或①④或②③或②④,写出一种即可). 16.4a ,a 或5a ,2a .三、解答题(本大题有9小题,共86分) 17.(本题满分8分)⎩⎨⎧x +1≥2,①2x -3<6-x .②解:解不等式①,得x ≥2-1,………………2分 x ≥1,………………3分 解不等式②,得2x+x <6+3,………………4分 3x <9,………………5分 x <3,………………6分 所以这个不等式组的解集是1≤x <3. ………………8分18.(本题满分8分) 方法一证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥CD . ……………………………3分 ∴ AE ∥CF . 又∵ AE =CF ,∴ 四边形AECF 是平行四边形. ……………………………7分 ∴ AF =CE . ……………………………8分方法二 证明:∵ 四边形ABCD 是平行四边形,∴ AD =BC ,AB =CD ,∠B =∠D . ……………………………3分∵ AE =CF ,∴ AB -AE =CD -CF .即BE =DF .……………………………5分 ∴ △ADF ≌△CBE .……………………………7分∴ AF =CE . ……………………………8分19.(本题满分8分) 解: (m -m +9m +1) ÷m 2+3mm +1=[m (m +1)m +1-m +9m +1]·m +1m (m +3)………………………2分=m 2-9m +1·m +1m (m +3)………………………3分 =(m -3)(m +3)m +1·m +1m (m +3)………………………5分=m -3m .……………………………6分当m =3时,原式=3-33……………………………7分 =1- 3. ……………………………8分20.(本题满分8分)解:(1)(本小题满分5分)记这五个班级的学生中随机抽取一名学生,抽中近视的学生为事件A ,则 P (A )=25+25+30+27+3347+43+42+48+50=1423. ………………………5分(2)(本小题满分3分) 690×1423=420.答:(1)这五个班级的学生中随机抽取一名学生,抽中近视的学生的概率为1423;(2)估计该校初一年级近视的学生为420人. ………………………8分21.(本题满分8分) 解:(1)(本小题满分4分)由题可设l AB 的解析式为s =k 1t +b 1(k 1≠0).………………………1分 依题意,体育馆与学校的距离为70×20+200=900,所以B (200,900). 把A (60,200),B (200,900)分别代入s =k 1t+b ,得⎩⎨⎧60k 1+b 1=200,200k 1+b 1=900. 解得⎩⎨⎧b 1=-4000,k 2=70.所以l AB 的解析式为s =70t -4000(60≤t ≤70).……………………………3分所以甲同学与学校的距离s 关于时间t 的函数解析式为s =⎩⎨⎧200,0≤t <60,70t -4000,60≤t ≤70.……………………………4分 (2)(本小题满分4分)他们会在路上相遇,理由如下:由题可知,对于乙同学,s 与t 的关系为:s =50(t -53)(53≤t ≤71). 即s =50t -2650 (53≤t ≤71). …………………5分当53≤t <60时,甲在电影院内,乙在路上行走,两人不会相遇.当60≤t ≤70时,解方程组⎩⎨⎧s =70t -4000,s =50t -2650可得t =67.5.…………………7分因为60≤67.5≤70,即在甲从电影院到体育馆的路上,两人会相遇. 所以他们会在路上相遇.……………8分22.(本题满分10分) 解:(1)(本小题满分4分)如图点P 即为所求.……………………………4分解法一: 解法二:(2)(本小题满分6分)点P 在直线AB 上,理由如下:如图,连接DP ,设线段EP 与AB 交于点Q , ∵ 点P 与点C 关于直线DE 成轴对称, ∴ ED 垂直平分CP .∴ EP =CE ,DP =CD .……………………………5分 ∵ CD =CE ,∴ EP =CE =CD =DP .∴ 四边形EPDC 是菱形.……………………………6分 ∴ EP ∥CD .∴ ∠AQE =∠B ,∠AEQ =∠C .∴ △AQE ∽△ABC .……………………………7分∴ AE AC =QE BC .∵ BD CD =EP AE =12,设BD =a ,则CD =2a .∴ CE =EP =2a ,BC =3a . ∴ AE =4a . ∴ AC =6a . ∵ QE BC =AE AC ,∴ QE 3a =4a 6a.∴ QE =2a . ∴ QE =EP .又∵ 点Q 在EP 上, ∴ 点Q 与点P 重合.∴ 点P 在直线AB 上.……………………………10分23.(本题满分10分)(1)(本小题满分5分) 证明:连接OE ,OM ,OC . ∵ BC 切⊙O 于点E ,∴ OE ⊥BC ,即∠OEC =90°. ……………………1分 ∵ 点E ,点M 在⊙O 上, ∴ OE =OM .又∵ CE =CM ,OC =OC , ∴ △OCE ≌△OCM , ……………………3分 ∴ ∠OMC =∠OEC =90°,即OM ⊥CM ,……………………4分 又∵ 点M 在⊙O 上, ∴ CM 是⊙O 的切线. ……………………5分 (2)(本小题满分5分)解:连接EO 并延长交AD 于点F ,连接OA ,OD . ∵ 四边形ABCD 是正方形, ∴ ∠BCD =∠CDA =90°,AD =BC =2. 又∵ 由(1)得∠OEC =90°, ∴ 四边形ECDF 为矩形. ∴ EC =FD ,∠OFD =90°. ∵ OA =OD ,所以AF =FD =12AD ,∴ EC =FD =12AD =12BC .∴ BE =EC =12BC .……………………6分过点Q 作QH ⊥CP 于H ,连接CQ . ∵ ∠BPQ =60°,PQ =PC =m , ∴ △CPQ 为等边三角形,QC =PQ . ∵ QH ⊥CP ,即∠QHP =90°,∴ CH =HP =12CP =12m . (7)∵ ∠OEC =∠QHP =90°,所以GE ‖QH ,∴ BQ BG =BHBE.∵ 点M 是BQ 的中点,所以BM =12BQ ,∴ BM BG =BQ 2BG =BH 2BE =BH BC =BC +CH BC =2+12m 2= 1+m4.………………8分 当点M 在⊙O 内时,0<m <534.……………………10分24.(本题满分12分) (1)(本小题满分5分)已知:如图所示,点A ,B ,C 在⊙O 上,点P 在⊙O 外. 求证:∠ACB >∠APB . ……………………2分证明:设BP 交⊙O 于点Q ,连接AQ , ∵ ∠ACB 与∠AQB 同对︵AB ,∴ ∠ACB =∠AQB . ……………………3分 ∵ 在△APQ 中,∠AQB =∠APB +∠P AQ , ∴ ∠AQB >∠APB . ……………………4分 ∴ ∠ACB >∠APB . ……………………5分 (2)(本小题满分7分) 解:设合唱队员平均身高为—x cm ,则—x =142×15+146×18+150×18+154×30+158×3915+18+18+30+39=152.……………………7分在QO 上取一点B ,使得BO =152cm ,则BQ =16cm ,过B 作射线l ⊥QO 于B ,过P ,Q 两点作⊙C 切射线l 于M . …………………9分 依题意可知,参观的队员的眼睛A 在射线上.而此时,射线l 上的点只有点M 在⊙C 上,其他的点在⊙C 外. 根据(1)的结论,视角∠PMQ 最大,即队员的眼睛A 与M 重合(也即队员站在MN 处)时,观看该展品的视角最大.所以围栏应摆放在N 处. …………………10分连接CM 并延长交地面OD 于N ,过C 作CH ⊥PQ 于H ,连接CP ,CQ ,从而四边形HBMC 和四边形HONC 均为矩形. ∵ 在⊙C 中,CP =CQ ,CH ⊥PQ , ∴ PH =HQ =12PQ =48.∴ CQ =CM =HB =48+16=64. ∵ 在Rt △CHQ 中,∠CHQ =90°,CQ 2=CH 2+HQ 2,∴ CH =CQ 2-HQ 2=642-482=167.∴ ON =CH =167. 即围栏应摆在距离展台167cm 处.…………………12分25.(本题满分14分) 解:(1)①(本小题满分3分)因为点A (-m 1,1),B (m 1,1)在抛物线y =a (x -h )2上, 所以h =0,…………………………2分 所以该抛物线的解析式为y =ax 2.因为当m 2=1时,点C 的坐标为(1,4),代入y =ax 2,得a =4. 所以抛物线的解析式为y =4x 2.…………………………………3分 ②(本小题满分4分)因为A (-m 1,1),P (m ,n ) 在抛物线y =4x 2上, 所以1=4m 12,n =4m 2. 因为m 1>0, 所以m 1=12.所以A (-12,1).………………………………………………4分设直线AP 的解析式为y =kx +b ,则N (0,b ), 分别代入A (-12,1),P (m ,4m 2)得⎩⎪⎨⎪⎧-12k +b =1,km +b =4m 2.可得b =2m .所以N (0,2m ).…………………………………5分 因为14≤m ≤1,所以2m ≤2<4. 所以NQ =4-2m .过点P 作PH ⊥y 轴于点H ,则PH =m .所以△PNQ 的面积S =12·NQ ·PH =12m ·(4-2m )=-m 2+2m (14≤m ≤1) .……6分因为-1<0,对称轴m =1,所以当14≤m ≤1时,△PNQ 的面积S 随m 的增大而增大.所以716≤S ≤1.……………………………7分(2)(本小题满分7分)平移后的抛物线不经过点K ,理由如下:过点A 作直线AE ⊥x 轴于点E ,过点C 作CG ⊥AE 于点G ,过点D 作DF ⊥AE 于点F . 因为A (-m 1,1),AE ⊥x 轴, 所以AE =1. 因为AM =2,所以在Rt △AEM 中,cos ∠EAM =AE AM =22.所以∠EAM =45°.…………………………8分 因为DF ⊥AE , 所以∠AFD =90°. 所以∠ADF =45°. 因为AD ⊥AC , 所以∠DAC =90°. 所以∠GAC =90°-∠EAM =45°. 因为CG ⊥AE , 所以∠AGC =90°. 所以∠ACG =45°. 所以AG =CG =3. 所以m 2+m 1=3.因为点A (-m 1,1),B (m 1,1)在抛物线y =a (x -h )2上, 所以h =0. 所以y =ax 2,分别代入A (-m 1,1),C (m 2,4)得⎩⎨⎧am 12=1,am 22=4.可得m 22=4m 12. 因为m 1>0,m 2>0, 所以m 2=2m 1. 又因为m 2+m 1=3, 所以m 2=2,m 1=1.所以C (2,4),A (-1,1).…………………………………………10分 把C (2,4)代入y =ax 2得a =1. 所以y =x 2.因为平移后抛物线的顶点仍在y =x 2上,所以可设平移后抛物线的解析式为y =(x -t )2+t 2.因为∠EAM =∠GAC ,AD =AC ,∠ADF =∠ACG ,所以△F AD ≌△GAC .……………………………………………………11分 所以F A =FD =AG =CG =3. 因为A (-1,1), 所以D (2,-2). 因为C (2,4),所以CD ⊥x 轴, ……………………………………………12分 且CD =6.因为S △ACK =512S △ACD ,所以CK =512CD =52.所以K (2,32).……………………………………………13分代入平移后抛物线的解析式y =(x -t )2+t 2得(2-t )2+t 2=32.化简得4t 2-8t +5=0.该方程无实数根,故平移后的抛物线不经过点K .……………………………14分。

2020-2021厦门市九年级数学下期末第一次模拟试卷附答案

2020-2021厦门市九年级数学下期末第一次模拟试卷附答案

2020-2021厦门市九年级数学下期末第一次模拟试卷附答案一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,03.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <34.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+95.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .157.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米8.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4 9.如果,则a 的取值范围是( ) A . B . C . D .10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα11.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a 12.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 二、填空题13.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .14.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.16.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.17.分解因式:2x2﹣18=_____.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.20.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题21.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).22.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表. 整理情况频数 频率 非常好0.21 较好70 0.35 一般m 不好 36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了 名学生;(2)m= ;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.23.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少?(2)A B ,都在甲组的概率是多少?24.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .(1)证明:ADP CDP △≌△;(2)判断CEP △的形状,并说明理由.(3)如图2,把菱形ABCD 改为正方形ABCD ,其他条件不变,直接..写出线段AP 与线段CE 的数量关系.25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.26.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax 2-2x 过原点排除A ,再由反比例函数图象确定ab 的符号,再由a 、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a 的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.3.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.5.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.6.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.7.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.9.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.12.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 二、填空题13.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°14.6【解析】试题解析:∵DE 是BC 边上的垂直平分线∴BE=CE ∵△EDC 的周长为24∴ED+DC+EC=24①∵△ABC 与四边形AEDC 的周长之差为12∴(AB+AC+BC )-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE 是BC 边上的垂直平分线,∴BE=CE .∵△EDC 的周长为24,∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12, ∴BE+BD-DE=12,② ∵BE=CE ,BD=DC , ∴①-②得,DE=6.考点:线段垂直平分线的性质.15.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB =CD ∠D =90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF =BC ∵∴∴设CD =2xCF =3x ∴∴tan ∠DCF =故答案为:【点【解析】 【分析】 【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.16.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4 【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得. 【详解】∵数据6,x ,3,3,5,1的众数是3和5, ∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.17.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF 根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:. 【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x ∴顶点坐标为解析:(±11 ,112). 【解析】 【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a①,a+3=b ②, ∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=11 ∴y=-12x 211,∴顶点坐标为(2b a -=11244ac b a -=112),即(11112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.22.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等, 其中两次抽到的错题集都是“非常好”的情况有2种, ∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 23.(1)12(2)16【解析】解:所有可能出现的结果如下: 甲组乙组结果ABCD(AB CD ,)AC BD (AC BD ,)ADBC(AD BC ,)BCAD(DC AD ,)BDAC(BD AC ,)CDAB(CD AB ,)(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1624.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =.【解析】 【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答; 【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠, 在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩, ∴()ADP CDP SAS ∆≅∆. (2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =, ∵PA PE =,∴DAP DEP ∠=∠, ∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠, 即60CPF EDF ∠=∠=︒, 又∵PA PE =,AP CP =; ∴PE PC =, ∴CEP ∆是等边三角形. (3)CE =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°, 在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,, ∴△PDA ≌△PDC , ∴PA=PC ,∠3=∠1, ∵PA=PE , ∴∠2=∠3, ∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC , ∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形. ∴2PC 2AP . 【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(1)详见解析;(2)存在,3;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形. 【解析】 试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD=23 (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.26.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。

2020-2021厦门市九年级数学下期末试题(带答案)

2020-2021厦门市九年级数学下期末试题(带答案)

2020-2021厦门市九年级数学下期末试题(带答案)一、选择题1.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x52.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.3.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣164.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.187.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.53B25C5D.238.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A .B .C .D .9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元. 16.若一个数的平方等于5,则这个数等于_____.17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11a b20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?24.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)25.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度1:3i =,从B 到C 坡面的坡角45CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈,3 1.732≈)26.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sinB =513,求DG 的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B解析:B 【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选B .考点:等腰三角形的性质.7.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.8.A解析:A 【解析】 【分析】 【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形. 故选A .9.B解析:B 【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案. 【详解】由题意可得:∠EDF=45°,∠ABC=30°, ∵AB ∥CF ,∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选B. 【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.10.C解析:C 【解析】 【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a bab b --=-+,故该选项计算错误,C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.11.B解析:B 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,B 、是中心对称图形,也是轴对称图形,故该选项符合题意,C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,D 、是中心对称图形,不是轴对称图形,故该选项不符合题意. 故选B . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.12.A解析:A 【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A .考点:由实际问题抽象出分式方程.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】解析:2【解析】 【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值. 【详解】 ∵∠A =45°, ∴∠BOC=90° ∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.故答案为2. 【点睛】本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.15.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240, 解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.20.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形解析:4 3【解析】【分析】连接BD,根据中位线的性质得出EF//BD,且EF=12BD,进而根据勾股定理的逆定理得到△BDC是直角三角形,求解即可.【详解】连接BD,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒ ∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4, 故a =7,b =4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x =85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y =80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(1)小聪上午7:30从飞瀑出发;(2)点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH的解析式,当s=30时,求出t的值,即可确定点B的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧.24.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BC DB CDB==∠ ∴()DH AH AD AH DB AB =-=--101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.25.(1)隧道打通后从A 到B的总路程是4)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==.在Rt ACD ∆中, ∵1:3CD i AD==, ∴343AD CD ==, ∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=, ∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.26.(1)证明见解析;xy 3013 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。

2020届福建省厦门市中考数学一模试卷(有答案)(已审阅)

2020届福建省厦门市中考数学一模试卷(有答案)(已审阅)

福建省厦门XX学校中考数学一模试卷一、选择题:(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项是正确的)1.下列各数中比1小的数是()A.B.C.1 D.02.3﹣2可以表示为()A.B.﹣C.3×3 D.3+33.厦门市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月进行了公共日租车量的统计,估计4月份共租车2500000次,2500000用科学记数法表示为()A.25×105 B.2.5×106C.0.25×107D.2.5×1074.木匠用32m长的材料围花圃,不可能围成下列哪个形状的花圃()A.B.C.D.5.O为△ABC外心,∠BOC=40°,则∠BAC=()A.40°B.30°C.20°D.10°6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0 B.k≥﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠07.在式子,,,中,x可以同时取﹣1和﹣2的是()A. B. C.D.8.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为()A.6 B.4 C.2 D.19.下列函数中,哪个函数的图象与函数y=x的图象有且只有两个交点()A.y=2x﹣1 B.y=x2 C.y=﹣D.y=﹣x﹣110.已知无论x取何值,y总是取y1=x+1与y2=﹣2x+4中的最小值,则y的最大值为()A.4 B.2 C.1 D.0二、填空题(本大题共6小题,每小题4分,共24分,请将答案写在相应题号后的横线上)11.掷一枚六面体骰子,向上的一面的点数为偶数的概率为.12.方程x2﹣2x=0的解为.13.如图,AE、BD相交于点C,AB∥DE,AC=2,BC=3,CE=4,则CD=.14.y=﹣(x﹣1)2+2向右平移2个单位,再向下平移1个单位,此时抛物线的顶点为.15.P(m+1,m2+2m+2)的纵坐标随横坐标变化而变化的函数解析式为.16.△ABC中,BC=5,AC=12,AB=13,在AB边上有一个动点P,连接PC,作B关于PC的对称点B1,则AB1的最小值是,当AB1取到最小值时,CP=.三、解答题(本大题共11小题,17~23题各7分,24、25题各8分,26题10分,27题11分,共86分.请勿将答案写出密封线)17.计算:(﹣π)0+2tan45°﹣()﹣1.18.解方程:x2﹣2x﹣3=0.19.口袋中装有红、黄、蓝三种只有颜色不同的小球各一个,从中随机地摸出一个小球不放回,再摸出一个,求取出的两个小球颜色为“一黄一蓝”的概率.20.在平面直角坐标系中,已知点A(﹣1,0),B(﹣2,2),请在图中画出线段AB,并画出线段AB绕点O逆时针旋转90°后的图形.21.如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.22.画出一次函数y=﹣x+1的图象.23.如图,在△ABC中,D、E是AB、AC中点,AG为BC边上的中线,DE、AG相交于点O,求证:AG与DE互相平分.24.厦门火车站扩建好将于2016年投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.如果园林处安排26人分成两组同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,如果两组人同时完成任务,问两组人数会一样多吗?25.若点P(x,y)为坐标平面上的一个点,我们规定[P]=|x|+|y|,[P]为点P(x,y)的标志符.则A (﹣3,2)的标志符为;若点M(m+1,m2﹣4m)的标志符为[M]=3,求符合条件的点的坐标.26.已知四边形ABCD内接于⊙O,∠D=90°,P为上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,=,求证:PB﹣PD=PC.27.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t 上.(1)求点C的坐标;(2)将抛物线y1向左平移n(n>0)个单位,记平移后的抛物线图象y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n2﹣4n的最小值.福建省厦门XX学校中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项是正确的)1.下列各数中比1小的数是()A.B.C.1 D.0【考点】实数大小比较.【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【解答】解:A、>1,故此选项错误;B、>,故此选项错误;C、1=1,故此选项错误;D、0<1,故此选项正确.故选:D.【点评】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.2.3﹣2可以表示为()A.B.﹣C.3×3 D.3+3【考点】负整数指数幂.【专题】计算题;实数.【分析】原式利用负整数指数幂法则判断即可.【解答】解:3﹣2可以表示为=,故选A【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.3.厦门市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月进行了公共日租车量的统计,估计4月份共租车2500000次,2500000用科学记数法表示为()A.25×105 B.2.5×106C.0.25×107D.2.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000=2.5×106,故选:B.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.木匠用32m长的材料围花圃,不可能围成下列哪个形状的花圃()A.B.C.D.【考点】矩形的性质;平行四边形的性质;生活中的平移现象.【分析】计算选项中的图形的周长即可.【解答】解:A、该矩形的周长是2(6+10)=32(米),则园林师傅想用32米的篱笆能围成该形状的花圃.故A不符合题意;B、该图形的周长为2(6+10)=32(米),则园林师傅想用32米的篱笆能围成该形状的花圃.故B不符合题意;C、该图形的周长>2(6+10)=32(米),则园林师傅想用32米的篱笆不能围成该形状的花圃.故C符合题意;D、该图形的周长为2(6+10)=32(米),则园林师傅想用32米的篱笆能围成该形状的花圃.故D不符合题意;故选:C.【点评】本题考查了矩形的性质、平行四边形的性质以及周长的计算;熟练掌握矩形的性质和平行四边形的性质是解决问题的关键.5.O为△ABC外心,∠BOC=40°,则∠BAC=()A.40°B.30°C.20°D.10°【考点】圆周角定理.【分析】由O为△ABC的外心,∠BOC=40°,根据圆周角定理,即可求得答案.【解答】解:∵O为△ABC的外心,∠BOC=110°,∴∠BAC=∠BOC=20°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0 B.k≥﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠0【考点】根的判别式;解一元一次不等式组.【分析】由原方程有两个实数根可得出△≥0且二次项系数非0,由此即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∴,即,解得:k≥﹣1且k≠0.故选C.【点评】本题考查了根的判别式以及解一元一次不等式组,解题的关键是依照题意得出关于k 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.7.在式子,,,中,x可以同时取﹣1和﹣2的是()A. B. C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据题目中的式子可以分别得到x取何值它们有意义,从而可以解答本题.【解答】解:式子中x≠﹣1,中x≠﹣2,中x≥﹣1,中x≥﹣2,故在式子,,,中,x可以同时取﹣1和﹣2的是,故选D.【点评】本题考查二次根式有意义的条件、分式有意义的条件,解题的关键是明确二次根式和分式有意义的条件.8.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为()A.6 B.4 C.2 D.1【考点】三角形中位线定理.【分析】根据三角形的中位线定义得出DE是△ABC的中位线,再由中位线的性质得出△ADE ∽△ABC,根据相似三角形的性质求得△ADE的面积,则△DEC的面积=△ADE的面积.【解答】解:∵△ABC,D、E分别为AB、AC中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,S△DEC=S△ADE,∴S△ADE=S△ABC=2.∴S△DEC =S△ADE=2.故选:C.【点评】本题考查了三角形的中位线定理的应用,以及相似三角形的判定和性质,熟记相似三角形的面积的比等于相似比的平方是解题关键.9.下列函数中,哪个函数的图象与函数y=x的图象有且只有两个交点()A.y=2x﹣1 B.y=x2 C.y=﹣D.y=﹣x﹣1【考点】二次函数的图象;一次函数的图象;正比例函数的图象;反比例函数的图象.【分析】根据k1与k2的符号,分别画出函数图象,即可作出正确判断.【解答】解:y=x的图象与y=2x﹣1只有一个交点,故A错误;y=x的图象与y=x2只有两个交点,故B正确;y=x的图象与y=﹣无交点,故C错误;y=x的图象与y=﹣x﹣1只有一个交点,故D错误;故选B.【点评】本题考查了二次函数的图象、一次函数的图象、反比例函数的图象以及正比例函数的图象,掌握图象和性质是解题的关键.10.已知无论x取何值,y总是取y1=x+1与y2=﹣2x+4中的最小值,则y的最大值为()A.4 B.2 C.1 D.0【考点】一次函数的性质.【分析】根据题意可知,y的最大值就是两函数相交时y的值,联立两方程求出y的值即可.【解答】解:由题意得,,①×2+②得,3y=6,解得y=2.故选B.【点评】本题考查的是一次函数的性质,解答此题的关键是理解题意,得出方程组求解.二、填空题(本大题共6小题,每小题4分,共24分,请将答案写在相应题号后的横线上)11.掷一枚六面体骰子,向上的一面的点数为偶数的概率为.【考点】概率公式.【分析】根据概率公式知,6个数中有3个偶数,即可得出掷一次骰子,向上一面的点数为偶数的概率.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数偶数,故其概率是:=.故答案为:.【点评】本题主要考查了概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.12.方程x2﹣2x=0的解为x1=0,x2=2.【考点】解一元二次方程﹣因式分解法;解一元一次方程.【专题】计算题.【分析】把方程的左边分解因式得x(x﹣2)=0,得到x=0或x﹣2=0,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,x1=0 或x2=2.故答案为:x1=0,x2=2.【点评】本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.13.如图,AE、BD相交于点C,AB∥DE,AC=2,BC=3,CE=4,则CD=6.【考点】平行线分线段成比例.【分析】根据AB∥DE,可得两边对应成比例.【解答】解:∵AB∥DE,∴,∵AC=2,BC=3,CE=4,∴CD=6,故答案为:6【点评】此题考查比例线段问题,根据相似三角形的对应边的比相等即可求解.14.y=﹣(x﹣1)2+2向右平移2个单位,再向下平移1个单位,此时抛物线的顶点为(3,1).【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线解析式,再求出其顶点坐标即可.【解答】解:∵y=﹣(x﹣1)2+2向右平移2个单位,再向下平移1个单位后抛物线的解析式为:y=﹣(x﹣3)2+1,∴其顶点坐标为:(3,1).故答案为:(3,1).【点评】本题考查的是二次函数的图象与几何变换,熟知“左加右减,上加下减”的法则是解答此题的关键.15.P(m+1,m2+2m+2)的纵坐标随横坐标变化而变化的函数解析式为y=x2+1.【考点】函数关系式.【分析】将y=m+1整理到含(m+1)的式子,进而得出解析式即可.【解答】解:因为m2+2m+2=m2+2m+1+1=(m+1)2+1,所以y=x2+1.故答案是:y=x2+1.【点评】本题考查了函数关系式.函数的解析式在书写时有顺序性,列y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.16.△ABC中,BC=5,AC=12,AB=13,在AB边上有一个动点P,连接PC,作B关于PC的对称点B1,则AB1的最小值是7,当AB1取到最小值时,CP=.【考点】轨迹;相似三角形的判定与性质.【分析】因为B1的变化轨迹是以C为圆心,CB为半径的圆上,所以当B1在AC上时,AB1最小,作PM⊥BC于M,PN⊥AC于N,首先证明四边形MCNP是正方形,设边长为a,再根据•BC•AC=•AC•PN+•BC•PM,列出方程求出a,即可解决问题.【解答】解:因为B1的变化轨迹是以C为圆心,CB为半径的圆上,所以当B1在AC上时,AB1最小,此时AB1=12﹣5=7,作PM⊥BC于M,PN⊥AC于N,∵∠PCA=∠PCB,∴PM=PN,∵BC=5,AC=12,AB=13,∴BC2+AC2=AB2,∴∠ACB=90°,∵∠MCN=∠PMC=∠PNC=90°,∴四边形MCNP是矩形,∵PM=PN,∴四边形MCNP是正方形,设边长为a,则有•BC•AC=•AC•PN+•BC•PM,∴30=×12×a+×5×a,∴a=,∴PC=CM=.【点评】本题考查轨迹,对称变换、勾股定理的逆定理等知识,解题的关键是学会添加常用辅助线,学会利用面积法求有关线段,属于中考常考题型.三、解答题(本大题共11小题,17~23题各7分,24、25题各8分,26题10分,27题11分,共86分.请勿将答案写出密封线)17.计算:(﹣π)0+2tan45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣3=0.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质,正确化简各数是解题关键.18.解方程:x2﹣2x﹣3=0.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】通过观察方程形式,本题可用因式分解法进行解答.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.【点评】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.口袋中装有红、黄、蓝三种只有颜色不同的小球各一个,从中随机地摸出一个小球不放回,再摸出一个,求取出的两个小球颜色为“一黄一蓝”的概率.【考点】列表法与树状图法.【专题】计算题;概率及其应用.【分析】根据题意列表得出所有等可能的情况数,找出一黄一蓝的情况数,求出所求的概率即可.【解答】解:列表如下:红黄蓝红﹣﹣﹣(黄,红)(蓝,红)黄(红,黄)﹣﹣﹣(蓝,黄)蓝(红,蓝)(黄,蓝)﹣﹣﹣所有等可能的情况有6种,其中取出的两个小球颜色为“一黄一蓝”的情况有2种,则P==.【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.20.在平面直角坐标系中,已知点A(﹣1,0),B(﹣2,2),请在图中画出线段AB,并画出线段AB绕点O逆时针旋转90°后的图形.【考点】作图﹣旋转变换.【专题】作图题.【分析】描点得到A点和B点,连结AB得到线段AB,然后根据旋转的性质画出点A和点B的对应点A′和B′,从而得到线段A′B′.【解答】解:如图,线段AB和A′B′为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵AB∥CD,∴∠1=∠C=40°,∴∠A=∠1﹣∠E=40°﹣20°=20°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22.画出一次函数y=﹣x+1的图象.【考点】一次函数的图象.【分析】令x=0,则y=1;令y=0,则x=1,在坐标系内描出两点,画出函数图象即可.【解答】解:∵令x=0,则y=1;令y=0,则x=1,∴函数与坐标轴的交点分别为:(0,1),(1,0),∴函数图象如图.【点评】本题考查的是一次函数的图象,熟知一次函数图象的画法是解答此题的关键.23.如图,在△ABC中,D、E是AB、AC中点,AG为BC边上的中线,DE、AG相交于点O,求证:AG与DE互相平分.【考点】平行四边形的判定与性质;三角形中位线定理.【专题】证明题.【分析】连接DG,EG,根据三角形中位线性质得出DG∥AC,EG∥AB,根据平行四边形的判定得出四边形ADGE为平行四边形,根据平行四边形的性质得出即可.【解答】证明:连接DG,EG,∵D、E是AB、AC中点,AG为BC边上的中线,∴DG∥AC,EG∥AB,∴四边形ADGE为平行四边形,∴AG与DE互相平分.【点评】本题考查了三角形的中位线,平行四边形的性质和判定的应用,能求出四边形ADGE 是平行四边形是解此题的关键.24.厦门火车站扩建好将于2016年投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.如果园林处安排26人分成两组同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,如果两组人同时完成任务,问两组人数会一样多吗?【考点】二元一次方程组的应用.【分析】首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可得A、B两种花木的数量;再设应安排a人种植A花木,则安排(26﹣a)人种植B 花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可判断.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:两组人数不一样多.【点评】此题主要考查了二元一次方程组和分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.25.若点P(x,y)为坐标平面上的一个点,我们规定[P]=|x|+|y|,[P]为点P(x,y)的标志符.则A (﹣3,2)的标志符为5;若点M(m+1,m2﹣4m)的标志符为[M]=3,求符合条件的点的坐标.【考点】坐标与图形性质;含绝对值符号的一元二次方程;解一元二次方程﹣公式法.【专题】新定义.【分析】根据标志符的定义,代入数据即可求出[A]的值,结合点M的坐标以及[M]=3,即可得出[M]=|m+1|+|m2﹣4m|=3,分m<﹣1、﹣1≤m<0、0≤m≤4和m>4四种情况去掉绝对值符号,解一元二次方程求出m值,将其代入点M的坐标即可得出结论.【解答】解:∵我们规定[P]=|x|+|y|,[P]为点P(x,y)的标志符,∴[A]=|﹣3|+|2|=5,故答案为:5.∵点M(m+1,m2﹣4m)的标志符为[M]=3,∴[M]=|m+1|+|m2﹣4m|=3.当m<﹣1时,有﹣m﹣1+m2﹣4m=3,即m2﹣5m﹣4=0,解得:m1=(舍去),m2=(舍去);当﹣1≤m<0时,有m+1+m2﹣4m=3,即m2﹣3m﹣2=0,解得:m3=,m4=(舍去),此时点M的坐标为(,);当0≤m≤4时,有m+1﹣m2+4m=3,即m2﹣5m+2=0,解得:m5=,m6=(舍去),此时点M的坐标为(,);当m>4时,有m+1+m2﹣4m=3,即m2﹣3m﹣2=0,解得:m3=(舍去),m4=(舍去).综上所述:符合条件的点M的坐标为(,)或(,).【点评】本题考查了坐标与图形的性质、含绝对值符合的一元二次方程以及公式法解一元二次方程,熟读题干,明白标志符的概念,并能运用[P]=|x|+|y|解决问题是解题的关键.26.已知四边形ABCD内接于⊙O,∠D=90°,P为上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,=,求证:PB﹣PD=PC.【考点】圆内接四边形的性质;全等三角形的判定与性质;圆心角、弧、弦的关系.【分析】(1)连接AC,得到AC是⊙O的直径,解直角三角形即可得到结论;(2)根据圆内接四边形的性质得到四边形ABCD为矩形.推出矩形ABCD为正方形,根据全等三角形的性质得到PC=CE,得到△CPE为等腰直角三角形,即可得到结论.【解答】解:(1)连接AC,∵∠D=90°,∴AC是⊙O的直径,∵∠BAC=∠P=30°,∴AC=2BC=6,所以圆O的半径为3;(2)∵∠A=90°,∴∠C=90°,∵AC为圆O直径,∴∠D=∠B=90°,∴四边形ABCD为矩形.∵=,∴AB=AD,∴矩形ABCD为正方形,在BP上截取BE=DP,∴△BCE≌△DPC,∴PC=CE,∴△CPE为等腰直角三角形,∴PE=PC,∴PB=PD+PC.【点评】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.27.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t 上.(1)求点C的坐标;(2)将抛物线y1向左平移n(n>0)个单位,记平移后的抛物线图象y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n2﹣4n的最小值.【考点】二次函数综合题.【分析】(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,然后由①得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,由②y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.【解答】解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大;y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0,∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,//则当x≥1时,y随x增大而增大,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,n2﹣4n=(n﹣2)2﹣4,∴当n=2时,2n2﹣5n的最小值为:﹣4.【点评】此题属于二次函数的综合题.考查了二次函数的平移以及二次函数增减性等知识.注意利用分类讨论得出n的取值范围是解题关键.//。

福建省厦门市2020-2021学年九年级下学期九年级教学质量检测数学试题

福建省厦门市2020-2021学年九年级下学期九年级教学质量检测数学试题
(1)求 的函数解析式;
(2)探测气球甲从出发点上升到海拔 处的过程中,是否存在某一时刻使得探测气球甲、乙位于同一高度?请说明理由.
22.四边形 是矩形,点 在边 上, ,点 与点 关于直线 对称,连接 .
(1)如图,若四边形 是正方形,求 的度数;
(2)连接 ,设 探究当 时a与b的数量关系.
23.某公司有 名职员,公司食堂供应午餐.受新冠肺炎疫情影响,公司停工了一段时间.为了做好复工后职员取餐、用餐的防疫工作,食堂进行了准备,主要如下:①将过去的自主选餐改为提供统一的套餐;②调查了全体职员复工后的午餐意向,结果如图 所示;③设置不交叉的取餐区和用餐区,并将用餐区按一定的间距要求调整为可同时容纳 人用餐;④规定:排队取餐,要在食堂用餐的职员取餐后即进入用餐区用餐;⑤随机邀请了 名要在食堂取餐的职员进行了取餐、用餐的模拟演练,这 名职员取餐共用时 ,用餐时间(含用餐与回收餐具)如表所示.为节约时间,食堂决定将第一排用餐职员 人的套餐先摆放在相应餐桌上,并在 开始用餐,其他职员则需自行取餐.
【详解】
解:这组数据的中位数是40
故选B.
【点睛】
此题考查的是求一组数的中位数,掌握中位数的定义是解决此题的关键.
6.D
【分析】
根据完全平方公式: 即可得出结论.
【详解】
解:∵ = 是完全平方公式
∴ = =1
故选D.
【点睛】
此题考查的是根据完全平方公式,求参数,掌握完全平方公式是解决此题的关键.
7.C
12.50°
【分析】
根据等腰三角形等边对等角知 ,利用平行线的性质知 ,通过等量代换,即可求解.
【详解】
解:∵ ,
∴ ,
又∵ ,
∴ (两直线平行,内错角相等),且 ,

2021-2022学年福建省厦门市思明区湖滨中学中考数学最后一模试卷含解析

2021-2022学年福建省厦门市思明区湖滨中学中考数学最后一模试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为1 32.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°3.若,则的值为()A.﹣6 B.6 C.18 D.304.﹣3的相反数是()A.13-B.13C.3-D.35.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a26.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)7.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+18.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差9.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.510.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为()A.12×103B.1.2×104C.1.2×105D.0.12×105二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.12.方程242x-=的根是__________.13.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD 的面积为_____.14.如图,已知AB∥CD,α∠=____________15.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PAB S△PBC S△PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______16.不等式组512324x xx x+>+⎧⎨+⎩的解集是__.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.18.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.19.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.20.(8分)货车行驶25km与轿车行驶35km所用时间相同.已知轿车每小时比货车多行驶20km,求货车行驶的速度.21.(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?22.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.23.(12分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.24.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为12,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.2、B【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.3、B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.4、D【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.5、C【解析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.【详解】A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;B、(-a2)•a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D 、4a 2-(2a )2=4a 2-4a 2=0,此选项计算错误. 故选:C . 【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则. 6、A 【解析】分析:依据四边形ABCD 是平行四边形,即可得到BD 经过点O ,依据B 的坐标为(﹣2,﹣2),即可得出D 的坐标为(2,2).详解:∵点A ,C 的坐标分别为(﹣5,2),(5,﹣2), ∴点O 是AC 的中点, ∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形, ∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2), ∴D 的坐标为(2,2), 故选A .点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 7、D 【解析】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 1-,解得.故选D. 8、A 【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9、D【解析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【详解】数据12000用科学记数法表示为1.2×104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、9332+ . 【解析】如图,过点P 作PH ⊥OB 于点H ,∵点P (m ,m )是反比例函数y=9x在第一象限内的图象上的一个点, ∴9=m 2,且m >0,解得,m=3.∴PH=OH =3. ∵△PAB 是等边三角形,∴∠PAH =60°. ∴根据锐角三角函数,得3.∴OB 3∴S △POB =12OB•PH =9332+. 12、1. 【解析】把无理方程转化为整式方程即可解决问题. 【详解】两边平方得到:2x ﹣1=1,解得:x =1,经检验:x =1是原方程的解. 故答案为:1. 【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验. 13、1 【解析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出ACD ABC S S ∆∆=(AD AC)2=14,结合△ADC 的面积为1,即可求出△BCD 的面积. 【详解】∵∠ACD =∠B ,∠DAC =∠CAB ,∴△ACD ∽△ABC , ∴ACD ABC S S ∆∆=(AD AC )2=(12)2=14, ∴S △ABC =4S △ACD =4,∴S △BCD =S △ABC ﹣S △ACD =4﹣1=1.故答案为1.【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.14、85°.【解析】如图,过F 作EF ∥AB ,而AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABF +∠BFE =180°,∠EFC =∠C ,∴∠α=180°−∠ABF +∠C =180°−120°+25°=85°故答案为85°. 1517; 答案见解析.【解析】(1)AB 2214+17.17(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=1 2平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△PAC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.16、2≤x<1【解析】分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【详解】解:512(1) 324(2)x xx x+>+⎧⎨+⎩,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共8题,共72分)17、(1)证明见解析;3【解析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18、(1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)【解析】解:(1)(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)19、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB ,∵EH ⊥AB ,∴DH=BH=1,∵GE ∥AB ,∴∠G=180°﹣∠A=120°,∴△CEG ≌△DCO ,∴CG=OD ,设CG=a ,则AG=5a ,OD=a ,∴AC=OC=4a ,∵OC=OB ,∴4a=a+1+1,解得,a=2,即CG=2.20、50千米/小时.【解析】根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.【详解】解:设货车的速度为x 千米/小时,依题意得:解:根据题意,得 253520x x =+ . 解得:x=50经检验x=50是原方程的解.答:货车的速度为50千米/小时.【点睛】本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.21、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B 型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22、内错角相等,两直线平行【解析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23、(1)P=12;(2)P=14.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=41 =82;(2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=21 = 84.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)25;(2)8°48′;(3).【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.考点:频数(率)分布表;扇形统计图;列表法与树状图法.。

2020-2021厦门市九年级数学下期中第一次模拟试卷带答案

2020-2021厦门市九年级数学下期中第一次模拟试卷带答案

2020-2021厦门市九年级数学下期中第一次模拟试卷带答案一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A .7B .7.5C .8D .8.53.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x (x >0)、y=k x(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .12 4.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .375.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°6.观察下列每组图形,相似图形是( )A .B .C .D .7.在同一直角坐标系中,函数k y x=和y=kx ﹣3的图象大致是( ) A . B . C .D .8.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:29.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 10.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16511.在平面直角坐标系中,点E (﹣4,2),点F (﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO 缩小,则点E 的对应点E 的坐标为( )A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1) D .(8,﹣4) 12.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元二、填空题13.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____.14.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P 点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.16.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .17.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,23),C 是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P的坐标为____18.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.19.如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,0x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.20.如图,已知两个反比例函数C1:y=1x和C2:y=13x在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为_____.三、解答题21.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)22.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.23.如图,在ABC V 中,AB AC =,点E 在边BC 上移动(点E 不与点B ,C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF △∽△.(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.24.如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG 所示,路灯灯泡在线段DE 上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB =1.6m ,他的影子长AC =1.4m ,且他到路灯的距离AD =2.1m ,求灯泡的高.25.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.2.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.3.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.B解析:B 【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.5.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.6.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.7.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.10.C解析:C【解析】【分析】根据矩形的性质可知:求AD的长就是求BC的长,易得∠BAC=∠ADE,于是可利用三角函数的知识先求出AC,然后在直角△ABC中根据勾股定理即可求出BC,进而可得答案.解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.11.A解析:A【解析】【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.12.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C .本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题13.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC相似△A′B′C′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC相似△A′B′C′,面积比为1:4,∴△ABC与△A′B′C′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.14.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.15.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x 米.∵AB ∥CD ,∴∠PDC=∠PBF ,∠PCD=∠PAB ,∴△PDC ∽△PBA , ∴AB PF CD PE =, ∴AB 15x CD 15+=, 依题意CD=20米,AB=50米, ∴1520 5015x =+, 解得:x=22.5(米).答:河的宽度为22.5米.16.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长再根据此影长列出比例式即可【详解】解:过N 点作ND ⊥PQ 于D 又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.17.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB 列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=∴33=,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.18.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB ﹣OC=2﹣3在Rt △ABC 中根据tan ∠ABO=ACBC 可得答案【详解 解析:2+.【解析】【分析】连接OA ,过点A 作AC⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB ﹣OC=2﹣,在Rt△ABC 中,根据tan∠ABO=可得答案. 【详解】如图,连接OA ,过点A 作AC⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC 中,OC==, ∴BC=OB﹣OC=2﹣,∴在Rt△ABC 中,tan∠ABO==2+. 故答案是:2+.【点睛】 本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键.19.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ),设直线BD 的解析式为y=mx+n ,把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.20.【解析】【分析】根据反比函数比例系数k 的几何意义得到S△AOC=S△BOD=S 矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB 的面积【详解】∵PC⊥x 轴PD⊥y 轴∴S△ 解析:23【解析】【分析】根据反比函数比例系数k 的几何意义得到S △AOC =S △BOD =111236⨯=,S 矩形PCOD =1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB 的面积.【详解】∵PC ⊥x 轴,PD ⊥y 轴,∴S △AOC =S △BOD =11||23⋅=111236⨯=,S 矩形PCOD =1,∴四边形P AOB 的面积=1﹣2×16=23. 故答案为:23. 【点睛】本题考查了反比函数比例系数k 的几何意义.掌握反比函数比例系数k 的几何意义是解答本题的关键.反比函数比例系数k 的几何意义:在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 三、解答题21.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=-≈.3.2cm【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(1)(2,6);(2)5; (3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则22+512则△ABC55(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,BC=2,AC=10,∵△A1B1C1∽△ABC,且相似比为2:1,∴A1B1=22,B1C1=2,A1C1=25,所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.23.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB,∠CEF=180°-∠DEF-∠DEB,结合∠B=∠DEF,可得∠BDE=∠CEF;由AB=AC可得∠B=∠C,由此即可证得:△BDE ∽△CEF;(2)由(1)中结论:△BDE ∽△CEF 可得:BE DE CF EF=,结合BE=EC 可得:CE DE CF EF=,再结合∠C=∠B=∠DEF ,证得:△DEF ∽△ECF ,由此可得∠DFE=∠EFC ,从而得到结论EF 平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠,BDE CEF V V ∽.(2)∵BDE CEF V V ∽,∴BE DE CF EF=, ∵E 是BC 中点,BE CE =,∴CE DE CF EF=, ∵DEF B C ∠=∠=∠,∴DEF ECF V V ∽,∴DFE CFE ∠=∠,∴EF 平分DFC ∠.24.(1)画图见解析;(2)DE=4.【解析】【分析】 (1)连接CB 延长CB 交DE 于O ,点O 即为所求.连接OG ,延长OG 交DF 于H .线段FH 即为所求.(2)根据AB CA OD CD =,可得1.6 1.41.4 2.1DO =+ ,即可推出DO =4m . 【详解】(1)解:如图,点O 为灯泡所在的位置,线段FH 为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.25.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.。

厦门市九年级下学期数学中考一模试卷

厦门市九年级下学期数学中考一模试卷

厦门市九年级下学期数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)若 =25, =3,则a+b=()A . -8B . ±8C . ±2D . ±8或±22. (2分) (2020八下·昌吉期中) 下列计算中,正确的是()A . 5B . (a>0,b>0)C .D .3. (2分)(2013·泰州) 下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4. (2分)数据0,1,2,3,x的平均数是2,则这组数据的方差是()A . 2B .C . 10D .5. (2分)(2017·温州模拟) 用反证法证明“若a⊥c,b⊥c,则a∥b”时,第一步应先假设()A . a不垂直于cB . b不垂直于cC . c不平行于bD . a不平行于b6. (2分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A .B .C .D .二、填空题 (共10题;共11分)7. (1分) (2016七上·中堂期中) ﹣的倒数的绝对值是________.8. (1分) (2020七下·温州期中) 新型冠状病毒的直径约为0.00008毫米,0.00008用科学记数法表示为________。

9. (2分)袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)10. (1分)如果a,b互为相反数,x,y互为倒数,则2013(a+b)-2014xy的值是________。

2020-2021厦门市九年级数学下期末第一次模拟试卷带答案

2020-2021厦门市九年级数学下期末第一次模拟试卷带答案

2020-2021厦门市九年级数学下期末第一次模拟试卷带答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.417173.如图,下列关于物体的主视图画法正确的是()A.B.C.D.4.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D .斜坡的坡度为1:25.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠6.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=07.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .68.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°9.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .810.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.15.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).16.若一个数的平方等于5,则这个数等于_____.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.当m=____________时,解分式方程533x mx x-=--会出现增根.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.23.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 26.如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB15,故选A3.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C .【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.4.A解析:A【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.5.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .6.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.7.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAM=30°,∴==故选:B .【点睛】本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 8.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.11.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半 解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:1206180π⋅=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r ,则2πr =4π,解得:r =2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.15.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5±【解析】【分析】根据平方根的定义即可求解.【详解】±.若一个数的平方等于5,则这个数等于:5±.故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.20.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE ∥AC ,CE ∥BD∴四边形OCED 是平行四边形∵四边形ABCD 是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.23.(1) m=4,k=8,n=4;(2)△ABC的面积为4.【解析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=可得k=8,∵点B (2,n )在y=的图象上, ∴n=4; (2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =AC•BE=×4×2=4,即△ABC 的面积为4.考点:反比例函数与一次函数的交点问题.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a m +=+, ∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.26.A 、C 之间的距离为10.3海里.【解析】【分析】【详解】解:作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°,∠ABD =30°.设CD =x ,在Rt △ACD 中,可得AD =x ,在Rt △ABD 中,可得BD 3x .又∵BC =20,∴x 3x =20,解得:x =31).∴AC 2231) 1.4110(1.731)10.29310.3x =≈⨯⨯-=≈ (海里). 答:A 、C 之间的距离为10.3海里.。

2020-2021厦门市一中初三数学下期中第一次模拟试卷带答案

2020-2021厦门市一中初三数学下期中第一次模拟试卷带答案
说明理由.
22.如图,在平面直角坐标系 xOy 中,直线 y=x+b 与双曲线 y= k 相交于 A,B 两点, x
已知 A(2,5).求: (1)b 和 k 的值; (2)△OAB 的面积.
23.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河 对岸边的一棵大树,将其底部作为点 A,在他们所在的岸边选择了点 B,使得 AB 与河岸垂 直,并在 B 点竖起标杆 BC,再在 AB 的延长线上选择点 D 竖起标杆 DE,使得点 E 与点 C、A 共线. 已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所 示.请根据相关测量信息,求河宽 AB.
A.8
B.10
C.11
D.12
7.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB 与△OCD 的面
积分别是 S1 和 S2,△OAB 与△OCD 的周长分别是 C1 和 C2,则下列等式一定成立的是
()
A. OB 3
CD 则下列比例式成立的是(
C.
S1 S2
3 2

A.
B.
C.
9.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是(
D. C1 3 C2 2
D. )
A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA
10.河堤横断面如图所示,堤高 BC=5 米,迎水坡 AB 的坡比 1: 3 ,则 AC 的长是( )
B 选项,在△OAB∽△OCD 中,∠A 和∠C 是对应角,因此 ,所以 B 选项不成立;
C 选项,因为相似三角形的面积比等于相似比的平方,所以 C 选项不成立; D 选项,因为相似三角形的周长比等于相似比,所以 D 选项一定成立. 故选 D.

2020-2021厦门市初三数学下期末一模试卷及答案

2020-2021厦门市初三数学下期末一模试卷及答案

2020-2021厦门市初三数学下期末一模试卷及答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1063.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.325.-2的相反数是()A.2B.12C.-12D.不存在6.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.2-的相反数是()A.2-B.2C.12D.12-9.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:3x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A .6B .8C .10D .1210.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .2011.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .5二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.若一个数的平方等于5,则这个数等于_____.16.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.17.计算:82-=_______________.18.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.19.若式子3x+在实数范围内有意义,则x的取值范围是_____.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC=,DF+BF=8,如图2,求BF的长.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,26.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】230000000=2.3×108 ,故选C.2.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .9.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.10.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,∴菱形的周长为4×5=20.故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB 的长是解题的关键.11.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .12.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果. 【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=.故答案为8. 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7 【解析】 【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值. 【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0, ∴a ﹣7=0,b ﹣1=0, 解得a=7,b=1, ∵7﹣1=6,7+1=8, ∴68c <<, 又∵c 为奇数, ∴c=7, 故答案为7. 【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】 【分析】根据平方根的定义即可求解. 【详解】若一个数的平方等于5,则这个数等于:故答案为: 【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.6【解析】试题解析:∵DE 是BC 边上的垂直平分线∴BE=CE ∵△EDC 的周长为24∴ED+DC+EC=24①∵△ABC 与四边形AEDC 的周长之差为12∴(AB+AC+BC )-(AE+ED+DC+AC解析:6 【解析】试题解析:∵DE 是BC 边上的垂直平分线, ∴BE=CE .∵△EDC 的周长为24, ∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.解:若式子3x +在实数范围内有意义, 则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)-台,根据每小时加工零件的总量8A=⨯型机器的数量6B+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩,解得:6m8,m为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=2216023604π⨯⨯+⨯=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵BD CD=,∴CD=BD=∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323yx=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.24.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25.(1)证明见解析;xy(3)DG=3013 23.【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF =,即AD 2=AB•AF=xy , 则AD=xy ; (3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·181313AB AF =⨯=, 则DG=133033013231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.26.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。

2020厦门湖滨中学九(下)阶段反馈一

2020厦门湖滨中学九(下)阶段反馈一

B.
C.
D.
第2题
第7题
3.下列计算正确的是( )
A. 6a-3a=3
B. 5 y3 3y5 15 y8
C. a4b 3 a7b3
D. a 52 a2 25
4.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
5.古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米 2018 石,验得米内夹谷,抽
y 轴上,若反比例函数 y k 的图象过 C,F 两点,则 n 的值是( )
x
m
A. 1 2
1
B.
3
1
C.
5
D. 2 1
二、填空题(每题 4 分,满分 24 分,将答案填在答题纸上.) 11.将数据 4560000 用科学记数法表示为_________. 12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地
x
3
8
x
4②
并把解集在数轴上表示出来,并写出它的所有负整数解.
3
20.在▱ ABCD 中,∠D=30°,AB<AD. (1)在 AD 边上求作一点 P,使点 P 到边 AB,BC的距离相等;
(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,连接 BP,若 AB=2,求△ABP 的面积.
且 2PA 3PA1 ,则五边形 ABCDE 和五边形 A1B1C1D1E1 的相似比等于 ( )
2
A.
3
3
B.
2
3
C.
5
5
D.
3
1
8.已知:将直线 y=x﹣1 向上平移 2 个单位长度后得到直线 y=kx+b,则下列关于直线 y=kx+b 的说法正确

2020-2021厦门市九年级数学下期中试题(附答案)

2020-2021厦门市九年级数学下期中试题(附答案)

2020-2021厦门市九年级数学下期中试题(附答案)一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.如图,△ABC 中,DE ∥BC ,若AD :DB =2:3,则下列结论中正确的( )A .23DE BC =B .25DE BC = C .23AE AC =D .25AE EC = 3.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 4.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小5.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .56.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.7.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D.8.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米10.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为A 42B.2C82D.211.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 12.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④C .②④D .②③ 二、填空题13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.14.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.15.如图,在▱ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,则CD 的长为___________.16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .17.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.18.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 19.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.20.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.三、解答题21.如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,•景区管委会又开发了风景优美的景点D ,经测量,景点D 位于景点A 的北偏东30′方向8km 处,•位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D 向公路a 修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km ).(2)求景点C 与景点D 之间的距离.(结果精确到1km )(参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).22.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向的B 处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)23.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的12得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.24.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.25.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力. 4.D解析:D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.5.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.6.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.7.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒=3,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.11.C解析:C【解析】【分析】先根据非负数的性质求出sinA 及tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B )2=0,∴sinA=2,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈解析:四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD解析:【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.15.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.16.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx .【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据t an∠ABO=可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC==,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO==2+.故答案是:2+.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.18.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.19.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E 构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 -【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB =90°,∠CDE =45°∴设DE =CE =x ,则CD x ,在Rt △ACD 中,∵∠CAD =30°,∴tan ∠CD AC ,则AC ,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC ,∴在Rt △BED 中,tan ∠CBD =DEBE. 【点睛】 本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.20.【解析】当时∵∠A=∠A∴△AED∽△ABC 此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是: 解析:51235或 【解析】 当AE AB AD AC=时, ∵∠A=∠A , ∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC=时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 三、解答题21.(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF-=-=,在Rt△ABF中BF=2222AB AF54-=-=3,∴BD=DF﹣BF=43﹣3,sin∠ABF=45 AFAB=,在Rt△DBE中,sin∠DBE=DBBD,∵∠ABF=∠DBE,∴sin∠DBE=45,∴DE=BD•sin∠DBE=45×(43﹣3)=163125-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.22.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠APC=403(海里),在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cosPCBPC=∠=406≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.23.(1)作图见解析;(2)10【解析】【分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:10.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置. 24.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题25.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.。

2021年福建省厦门市中考数学一检试卷(附答案详解)

2021年福建省厦门市中考数学一检试卷(附答案详解)

2021年福建省厦门市中考数学一检试卷一、选择题(本大题共10小题,共40.0分)1.有一组数据:1,2,3,3,4,这组数据的众数是()A. 1B. 2C. 3D. 42.下列方程中有两个相等实数根的是()A. (x−1)(x+1)=0B. (x−1)(x−1)=0C. (x−1)2=4D. x(x−1)=03.不等式组{2x≥−1x>−1的解集是()A. x>−1B. x>−12C. x≥−12D. −1<x≤−124.在如图所示的正方形ABCD中,点E在边CD上,把△ADE绕点A顺时针旋转得到△ABF,∠FAB=20°,旋转角的度数是()A. 110°B. 90°C. 70°D. 20°5.一个扇形的圆心角为120°,半径为3,则这个扇形的面积是()A. πB. 2πC. 3πD. 4π6.为解决“在甲、乙两个不透明口袋中随机摸球”的问题,小明画出如图所示的树状图.已知这些球除颜色外无其他差别,根据树状图,小明从两个口袋中各随机取出一个球恰好是1个白球和1个黑球的结果共有()A. 1种B. 2种C. 3种D. 4种7.如图,在正六边形ABCDEF中,连接BF,BE,则关于△ABF外心的位置,下列说法正确的是()A. 在△ABF内B. 在△BFE内C. 在线段BF上D. 在线段BE上8.有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了m个人,则第二轮被传染上流感的人数是()A. m+1B. (m+1)2C. m(m+1)D. m29.东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周⏜)向右水平拉直(保持M端长之间存在一定的比例关系.将图中的半圆弧形铁丝(MN不动),根据该古率,与拉直后铁丝N端的位置最接近的是()A. 点AB. 点BC. 点CD. 点D10.为准备一次大型实景演出,某旅游区划定了边长为12m的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O为中心,A,B,C,D是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节日演出过程中增开人工喷泉,喷头位于演出区域东侧,且在中轴线l上与点O相距14m处.该喷泉喷出的水流落地半径最大为10m,为避免演员被喷泉淋湿,需要调整的定位点的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)11.投掷一枚质地均匀的正方体骰子,向上一面的点数是1的概率是______.12.若x=3是方程x2−bx+3=0的一个根,则b的值为______.13.抛物线y=3(x−1)2+2的对称轴是______.14.如图,AB是⊙O的直径,点C在AB⏜上,点D在AB上,AC=AD,OE⊥CD于E.若∠COD=84°,则∠EOD的度数是______.15.在平面直角坐标系中,O为原点,点A在第一象限,B(2√3,0),OA=AB,∠AOB=30°,把△OAB绕点B顺时针旋转60°得到△MPB,点O,A的对应点分别为M(a,b),P(p,q),则b−q的值为______ .16.已知抛物线y=−x2+6x−5的顶点为P,对称轴l与x轴交于点A,N是PA的中点.M(m,n)在抛物线上,M关于直线l的对称点为B,M关于点N的对称点为C.当1≤m≤3时,线段BC的长随m的增大而发生的变化是______.(“变化”是指增减情况及相应m的取值范围)三、计算题(本大题共1小题,共8.0分)17.解方程:x2−2x−5=0.四、解答题(本大题共8小题,共78.0分)18.如图,在△ABC中,AB=AC,以AB为直径作⊙O,过点O作OD//BC交AC于D,∠ODA=45°.求证:AC是⊙O的切线.19.先化简,再求值:2x+1x ÷(1−1+x−4x2x),其中x=√2+12.20.2018年某贫困村人均纯收入为3000元,对该村实施精准扶贫后,2020年该村人均纯收入达到5070元,顺利实现脱贫.这两年该村人均纯收入的年平均增长率是多少?21.某批发商从某节能灯厂购进了50盒额定功率为15W的节能灯,由于包装工人的疏忽,在包装时混进了30W的节能灯.每盒中混入30W的节能灯数见表:(1)平均每盒混入几个30W的节能灯?(2)从这50盒中任意抽取一盒,记事件A为:该盒中没有混入30W的节能灯,求事件A的概率.22.如图,菱形ABCD的对角线AC,BD交于点O,其中BD>AC,把△AOD绕点O顺时针旋转得到△EOF(点A的对应点为E),旋转角为α(α为锐角).连接DF,若EF⊥OD.(1)求证:∠EFD=∠CDF;(2)当α=60°时,判断点F与直线BC的位置关系,并说明理由.23.已知抛物线y=(x−2)(x−b),其中b>2,该抛物线与y轴交于点A.b,0)在该抛物线上,求b的值;(1)若点(12(2)过点A作平行于x轴的直线l,记抛物线在直线l与x轴之间的部分(含端点)为图象L.点M,N在直线l上,点P,Q在图象L上,且P在抛物线对称轴的左侧.设m+1的点P的横坐标为m,是否存在以M,P,Q,N为顶点的四边形是边长为12正方形?若存在,求出点P,Q的坐标;若不存在,请说明理由.24.某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100m(如图所示).由于潮汐变化,该海湾涨潮5h后达到最高潮位,此最高潮位维持1h,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t变化的情况大致如表一所示:(在涨潮的5h内,该变化关系近似于一次函数)表一涨潮时间t(单位:ℎ)123456桥下水位上涨的高度(单位:m)458512516544(1)求桥下水位上涨的高度(单位:m)关于涨潮时间t(0≤t≤6,单位ℎ)的函数解析式;(2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表二所示:表二涨潮时间t(单位:ℎ)5452154桥下水面宽(单位:m)20√2420√2320√22现有一艘满载集装箱的货轮,水面以上部分高15m,宽20m,在涨潮期间能否安全从该桥下驶过?请说明理由.25.在△ABC中,∠B=90°,D是△ABC外接圆上的一点,且点D是∠B所对的弧的中点.(1)尺规作图:在图1中作出点D;(要求:不写作法,保留作图痕迹)(2)如图2,连接BD,CD,过点B的直线交边AC于点M,交该外接圆于点E,交CD的延长线于点P,BA,DE的延长线交于点Q,DP=DQ.①若AE⏜=BC⏜,AB=4,BC=3,求BE的长;②若DP=√2(AB+BC),求∠PDQ的度数.2答案和解析1.【答案】C【解析】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.找出数据中出现次数最多的数即可.此题考查了众数.众数是这组数据中出现次数最多的数.2.【答案】B【解析】解:A、原方程转化为一般式方程为:x²−1=0,△=02−4×1×(−1)=4>0,方程有两个不相等的两个实数根,故不符合题意;B、原方程转化为一般式方程为:x²−2x+1=0,△=(−2)2−4×1×1=0,方程有两个相等的两个实数根,故符合题意;C、原方程转化为一般式方程为:x²−2x−3=0,△=(−2)2−4×1×(−3)=16>0,方程有两个不相等的两个实数根,故不符合题意;D、原方程转化为一般式方程为:x²−x=0,△=(−1)2−4×1×0=1>0,方程有两个不相等的两个实数根,故不符合题意.故选:B.只需将一元二次方程转化为一般形式,然后运用根的判别式就可解决问题.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3.【答案】C,【解析】解:解不等式2x≥−1,得:x≥−12又x>−1,∴不等式组的解集为x≥−1,2故选:C.求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.【答案】B【解析】解:∵把△ADE绕点A顺时针旋转得到△ABF,∴旋转角为∠DAB,又∵四边形ABCD是正方形,∴∠DAB=90°,故选:B.根据图形旋转前后对应点与旋转中心的连线的夹角即为旋转角确定把△ADE绕点A顺时针旋转得到△ABF后旋转角即为∠DAB,然后根据正方形的性质求解.本题考查旋转的性质,理解旋转角的概念是解题基础.5.【答案】C=3π.【解析】解:这个扇形的面积=120⋅π⋅32360故选:C.直接根据扇形的面积公式求解.本题考查了扇形面积的计算:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=nπR360 lR(其中l为扇形的弧长).或S扇形=126.【答案】A【解析】解:由树状图知,明从两个口袋中各随机取出一个球恰好是1个白球和1个黑球的结果共有1种,故选:A.由树状图知符合条件的结果为(白球、黑球)这一种结果.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.7.【答案】D【解析】解:在正六边形ABCDEF 中,△ABF 的外心是正六边形的中心,是线段BE 的中点, 故选:D .正六边形ABCDEF 的中心,是△ABF 的外心,由此即可判断.本题考查正多边形与圆,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】C【解析】解:∵在每轮的传染中平均一个人传染了m 个人, ∴经过一轮传染后有(m +1)人染上流感, ∴第二轮被传染上流感的人数是m(m +1)人. 故选:C .由每轮传染中一人传染的人数,可得出经过一轮传染后有染上流感得人数,再利用第二轮被传染上流感的人数=经过一轮传染后有染上流感得人数×每轮传染中一人传染的人数,即可得出结论.本题考查了列代数式,根据各数量之间的关系,用含m 的代数式表示出第二轮被传染上流感的人数是解题的关键.9.【答案】A【解析】解:根据题意知,MN ⏜的长度为:12π×1≈12×3.14=1.57,则与拉直后铁丝N 端的位置最接近的是点A . 故选:A .求得MN⏜的长度,结合数轴作出选择. 本题主要考查了圆的认识,需要掌握圆的周长公式,难度不大.10.【答案】B【解析】解:如图,设点P是喷泉中心位置,OP=14m,连接PD.由题意,OA=6m,∴PA=8m<10m,∵PD=√AD2+AP2=√32+82=√73m<10m,PB=11m>10m,PC>PB>10m,∴为避免演员被喷泉淋湿,需要调整的定位点的个数是2个,故选:B.如图,设点P是喷泉中心位置,OP=14m,连接PD.求出PA,PB,PD,PC即可判断.本题考查点与圆的位置关系,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.【答案】16【解析】解:投掷一枚质地均匀的正方体骰子共有6种等可能结果,其中向上一面的点数是1的只有1种结果,,所以向上一面的点数是1的概率为16.故答案为:16用掷到点数是1的结果数除以所有可能的结果数即可.本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】4【解析】解:根据题意,得32−3×b+3=0,即−3b+12=0,解得,b=4.故答案是:4.由一元二次方程的解的定义,将x=3代入已知方程列出关于b的新方程,通过解新方程来求b的值即可.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.【答案】直线x=1【解析】解:∵抛物线y=3(x−1)2+2,∴该抛物线对称轴是直线x=1,故答案为:直线x=1.根据抛物线的顶点式,可以直接写出该抛物线的对称轴,本题得以解决.本题考查二次函数的性质,解答本题的关键是明确二次函数的性质,由顶点式可以直接写出对称轴.14.【答案】21°【解析】解:如图,∵BC⏜=BC⏜,∠COD=84°,∠COD=42°.∴∠A=12又∵AC=AD,=69°.∴∠ADC=∠ACD=180°−42°2∵OE⊥CD,∴∠OED=90°.∴∠EOD=90°−69°=21°.故答案是:21°.首先利用圆周角定理得到:∠A=42°;然后根据等腰△ACD的性质求得∠ADC的度数;最后由直角三角形两个锐角互余的性质求得结果.本题主要考查了圆周角定理,圆心角、弧、弦的关系,难度不大,掌握相关定理和性质即可解题.15.【答案】1【解析】解:如图,连接OM,MA,延长A交OB于D.∵BO=BM,∠OBM=60°,∴△OBA是等边三角形,∴MO=MB,∵AO=AB,∴MD垂直平分线段OB,∴OD=OB=√3,∵∠AOB=30°,∴AD=OD⋅tan30°=1,OA=AB=BP=AM=2,∵∠ABP=60°,∠ABO=∠AOB=30°,∴∠OBP=90°,∴M(√3,3),P(2√3,2),∴b=3,q=2,∴b−q=1.故答案为:1.如图,连接OM,MA,延长A交OB于D.证明△OMB是等边三角形,推出MD⊥OB,BP⊥OB,求出DM,PB,可得结论.本题考查坐标与图形变化−旋转,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.【答案】当1≤m≤3−√2时,BC的长随m的增大而减小,当3−√2<m≤3时,BC的长随m的增大而增大【解析】解:∵y=−x2+6x−5=−(x−3)2+4,∴顶点P(3,4),对称轴l为直线x=3,∴A(3,0),∵N是PA的中点,∴N(3,2),∵M关于直线l的对称点为B,∴B(6−m,n),∵M点关于N的对称点为C,∴N是MC的中点,∴C(6−m,4−n),∵B和C的横坐标相同,∴BC//y轴,令y=2,则−x2+6x−5=2,∴x=3±√2,①当1≤m≤3−√2时,M在N点下方,如图1,∴B在C下方,∴BC=4−2n,∵n=−(m−3)2+4,∴BC=2(m−3)2−4,∵a=2>0,∴当1≤m≤3−√2时,BC的大小随着m的增大而减小,②当3−√2<m≤3时,M在N点上方,如图2∴B在C上方,∴BC=n−4+n=2n−4,∴BC=−2(m−3)2+4,∵a=−3<0,∴当3−√2<m≤3时,BC的大小随着m增大而增大,即当1≤m≤3−√2时,BC的长随m的增大而减小,当3−√2<m≤3时,BC的长随m的增大而增大.将二次函数的解析式写成顶点式,得到P的坐标和对称轴,由此写出N点坐标,接着分别利用对称性质,写出B点和C点坐标,通过画图或者数据,都可以发现B和C的横坐标相同,由此得到BC//y轴,接下来要表示出线段BC的长度,由于无法确定B点和C点谁在上方,故需要找到B与C重合的位置,即纵坐标为2时,求出此时对应的横坐标,然后展开分类讨论,用m表示出BC的长度,利用二次函数性质,即可得到结论.此题考查了二次函数的性质以及图象上点的坐标特征,熟练化成顶点式,得到顶点坐标和对称轴,是解决此题的基本要求,同时,注意用函数思想讨论线段BC的变化趋势是解决本题的关键.17.【答案】解:x2−2x+1=6,那么(x−1)2=6,即x−1=±√6,则x1=1+√6,x2=1−√6.【解析】利用完全平方公式配方,再利用直接开方法求方程的解即可.本题考查了用配方法解一元二次方程,解题的关键是注意使用配方法时要保证不改变原方程.18.【答案】证明:∵AB=AC,∴∠C=∠B,∵OD//BC,∴∠ODA=∠C=45°,∴∠B=45°,∴∠CAB=180°−∠B−∠C=180°−45°−45°=90°,∴AC⊥AB,∵AB为⊙O的直径,∴AC是⊙O的切线.【解析】由等腰三角形的性质得出∠C=∠B,由平行线的性质得出∠ODA=∠C=45°,由三角形内角和定理得出∠CAB=90°,则可得出结论.本题主要考查圆的切线的判定、平行线的性质、等腰三角形的性质等知识点,熟练掌握切线的判定是解题的关键.19.【答案】解:原式=2x+1x ÷(xx−1+x−4x2x)=2x+1x×x(2x+1)(2x−1)=12x−1,当x=√2+12时,原式=2√2+1−1=√24.【解析】根据分式的混合运算法则把原式化简,把x的值代入计算,得到答案.本题考查的是分式的化简求值,掌握分式的混合运算法则、二次根式的除法法则是解题的关键.20.【答案】解:设这两年该村人均纯收入的年平均增长率是x,依题意得:3000(1+x)2=5070,解得:x1=0.3=30%,x2=−2.3(不合题意,舍去).答:这两年该村人均纯收入的年平均增长率是30%.【解析】设这两年该村人均纯收入的年平均增长率是x,根据该村2018年及2020年的人均纯收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:(1)0×14+1×25+2×9+3×1+4×150=1(个),答:平均每盒混入1个30W的节能灯.(2)在这50盒中,没有混入30W节能灯的有14盒,所以事件A的概率为1450=725.【解析】(1)利用加权平均数的定义列式计算即可;(2)用没有混入30W节能灯的盒数除以总数量即可.本题考查了概率公式和加权平均数.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】(1)证明:∵四边形ABCD为菱形,BD为对角线,∴∠ODA=∠ODC,由旋转性质可知,OD=OF,∠ODA=∠OFE,∴∠OFD=∠ODF,∠OFE=∠ODC,∴∠OFD−∠OFE=∠ODF−∠ODC,即∠EFD=∠CDF.(2)解:点F在BC的延长线上,理由如下:连接CF,由于四边形ABCD为菱形,∴BD⊥AC.当α=60°时,∵EF⊥OD,∴AC//EF,∴∠OEF=∠AOE=60°,又由旋转性质知∠EOF=∠AOD=90°,∴∠EFO=30°=∠ODA=∠ODC,∴∠ADC=60°,由菱形性质可知∠ACD=∠ACB=60°.∵∠DOF=60°,又OD=OF,则△ODF为等边三角形,∴∠CDF=∠ODF−∠ODC=60°−30°=30°,在△ODC和△FDC中,{OD=FD∠ODC=∠FDC=30°CD=CD,∴△ODC≌△FDC(SAS).∴∠DCF=∠DCO=60°,∴∠BCF=∠ACB+∠ACD+∠DCF=60°+60°+60°=180°.故F在BC的延长线上.【解析】(1)由菱形性质可知∠ODA=∠ODC,由旋转性质可知,OD=OF,∠ODA=∠OFE,所以∠OFD=∠ODF,∠OFE=∠ODC,所以∠OFD−∠OFE=∠ODF−∠ODC,立即得证;(2)连接CF,由已知条件可证AC//EF,则∠OEF=∠AOE=60°,可求得∠EFO=30°=∠ODA=∠ODC,∠ACD=∠ACB=60°.再证明△ODF为等边三角形,则得∠CDF=30°,然后利用“SAS”证明△ODC≌△FDC,得∠DCF=∠DCO=60°,从而证明∠BCF=∠ACB+∠ACD+∠DCF=3×60°=180°即可.本题考查了图形旋转的性质,菱形的性质,全靠三角形的判定与性质,等边三角形的判定与性质,平行线的判定与性质等知识点,综合性较强.解题中需特别注意图形旋转前后的相等对应关系以及菱形的性质应用、找到正确的图形全等关系.23.【答案】解:(1)∵点(12b,0)在该抛物线上,∴0=(12b−2)(12b−b),∴b+14b2=0,∵b>2,∴b=4;(2)不存在以M,P,Q,N为顶点的四边形是边长为12m+1的正方形,理由如下:令x=0,y=(0−2)(0−b)=2b,∴A(0,2b),抛物线y=(x−2)(x−b)的对称轴为直线x=1+12b,∵点M,N在直线l上,设M(m,2b),∵P在对称轴左侧,以M,P,Q,N为顶点的四边形为正方形,∴Q点与P点关于对称轴对称,∴Q点横坐标为2+b−m,∵正方形边长为12m+1,∴Q点横坐标为m+12m+1=32m+1,∴2+b−m=32m+1,∴b=52m−1,∵P(m,2b −12m −1),∴P(m,92m −3), ∵P 点在抛物线上,∴92m −3=(m −2)(m −b)=(m −2)(m −52m +1),解得m =−1或m =23,∵0≤m <2,∴m =23, ∴b =52m −1=23<2, ∴不存在以M ,P ,Q ,N 为顶点的四边形是边长为12m +1的正方形.【解析】(1)将点(12b,0)代入函数y =(x −2)(x −b)中即可求b 的值;(2)求出A(0,2b),对称轴为x =1+12b ,设M(m,2b),由正方形的性质可知Q 点与P 点关于对称轴对称,则Q 点横坐标为2+b −m ,又由正方形边长为12m +1,则Q 点横坐标为m +12m +1=32m +1,得到等式2+b −m =32m +1,求出b 与m 的关系:b =52m −1,所以P(m,92m −3),将点P 代入抛物线解析式可得解得m =−1或m =23,由0≤m <2,可求m =23,所以b =52m −1=23<2,与已知矛盾,即可确定不存在满足条件的P 、Q 点.本题考查二次函数图象上点的特点,熟练掌握二次函数图象上点与函数的关系,结合正方形的性质,将正方形边的关系转化为点的坐标关系是解题的关键.24.【答案】解:(1)当0≤t ≤5,由题意可设桥下水位上涨的高度h 关于涨潮时间t 的函数解析式为ℎ=mt +n ,当t =1时,ℎ=45;当t =2时,ℎ=85,可得:{m +n =452n +n =85, 解得:{m =45n =0, ∴当0≤t ≤5时,ℎ=45t ,当5<t ≤6时,ℎ=4;(2)以抛物线的对称轴为y 轴,以正常水位时桥下的水面与抛物线的交线为x 轴建立直角坐标系,设抛物线解析式为:y =ax²+k(a <0),由(1)可得:当t =0时,ℎ=0,此时桥下水面宽100,当t =54时,ℎ=1,此时桥下水面宽为20√24,∴抛物线过点(50,0),(10√24,1),可得:{2500a +k =02400a +k =1, 解得:{a =−1100k =25, ∴y =−1100x²+25(−50≤x ≤50),当x =10时,y =24,在最高潮时,4+15=19<24,答:该货轮在涨潮期间能安全从该桥下驶过.【解析】(1)设桥下水位上涨的高度h 关于涨潮时间t 的函数解析式为ℎ=mt +n ,利用待定系数法求解即可;(2)设抛物线解析式为y =ax²+k ,利用待定系数法,求出最高潮位,比较即可得出结论.本题考查二次函数的应用,关键是学会构建二次函数,利用函数的性质解决问题.25.【答案】解:(1)如图1,作∠ABC 的角平分线,交圆于点D ,则点D 为∠B 所对的弧AC⏜的中点,(2)①连结AE,∵AE⏜=BC⏜,∴∠ABE=∠BAC,∵AB⏜=AB⏜,∴∠AEB=∠ACB,又∵AB为公共边,∴△ABE≌△BAC(AAS),∴∠EAB=∠ABC=90°,又∵AE⏜=BC⏜,BC=3,∴AE=BC=3,在Rt△ABE中,AB=4,AE=3,∴BE=√AB2+AE2=√42+32=5,∴BE=5;②连结AD,分别过点A,C作AH⊥BD于点H,CR⊥BD于R,∵AD⏜=DC⏜,∴AD=DC,∠ABD=∠DBC=45°,在Rt△ABH中,∠AHB=90°,∴∠ABH=∠BAH=45°,BH2+AH2=AB2,∴BH=AH=√2AB,2BC,同理,BR=√22∵∠ABC=90°,∴AC为直径,∴∠ADC=90°,∴∠ADH+∠CDR=90°,在Rt△ADH中,∠ADH+∠HAD=90°,∴∠HAD=∠CDR,∴△ADH≌△DCR(AAS),∴AH=DR,(AB+BC)=AH+BR=DR+BR=BD,∴√22∵DP=√2(AB+BC),2∴DP=BD,∴∠P=∠PBD,∴∠BDC=∠P+∠PBD=2∠P,由①得,BE为直径,又∵AC为直径,∴点M为圆心,∴MA=MB,∴∠MAB=∠ABM,∵BC⏜=BC⏜,∴∠MAB=∠BDC,设∠P=α,则∠ABM=2α,∵∠ABM+∠PBD=∠ABD=45°,∴2α+α=45°,∴α=15°,∴∠BDC=30°,∵BE为直径,∴∠EDB=90°,∴∠PDQ=180°−∠EDB−∠BDC=180°−90°−30°=60°.【解析】(1)作∠ABC的角平分线,交圆于点D,则点D为∠B所对的弧AC⏜的中点;(2)①连结AE,根据等弧或同弧所对的圆周角相等,得到∠ABE=∠BAC,∠AEB=∠ACB,根据AAS判定△ABE≌△BAC,得到∠EAB=∠ABC=90°,再根据勾股定理即可求解;②连结AD,分别过点A,C作AH⊥BD于点H,CR⊥BD于R,由AD⏜=DC⏜,得到AD=DC,∠ABD=∠DBC=45°,根据勾股定理求得BH=AH=√22AB,BR=√22BC,根据△ADH≌△DCR,求得DP=BD,根据三角形外角定理得到∠BDC=2∠P,再由①得M为圆心,得到MA=MB,∠MAB=∠ABM,根据根据同弧所对的圆周角相等,得到∠MAB=∠BDC,据此列式求得∠P=15°,∠BDC=30°,最后根据平角的定义即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,勾股定理等知识,得出AC是直径及∠BDC=2∠P是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位: ),请你用所学过的有关统计的知识回答下列问题:
(1)分别求甲、乙两段台阶路的高度平均数;
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下是 的中点,直接写出 的值(用含 的式子表示)
25.已知二次函数 ,其中a>0.
(1)若方程 有两个实根 ,且方程 有两个相等的实根,求二次函数的解析式;
(2)若二次函数 的图象与x轴交于 两点,且当 时, 恒成立,求实数m的取值范围.
参考答案
1.C
【分析】
根据实数的大小比较法则即可得.
三、解答题
17.解方程: .
18.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
19.解不等式: 并把解集在数轴上表示出来,并写出它的所有负整数解.
20.在▱ABCD中,∠D=30°,AB<AD.
(1)在AD边上求作一点P,使点P到边AB,BC的距离相等;(要求:尺规作图,不写作法,保留作图痕迹)
6.化简 的结果是( )
A. B. C. D.
7.如图,五边形ABCDE和五边形 是位似图形,点A和点 是一对对应点,P是位似中心,且 ,则五边形ABCDE和五边形 的相似比等于
A. B. C. D.
8.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
3.下列计算正确的是()
A.6a-3a=3B.
C. D.
4.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
5.古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2018石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为()
A.222石B.224石C.230石D.232石
23.如图,在△ABC中,AB=AC= ,∠BAC=45°,将△ABC绕点A按顺时针方向旋转得到△AEF,连接BE,CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ACDE为菱形时,求BD的长.
24.在 中, , , 是 上一点,连接
(1)如图1,若 , 是 延长线上一点, 与 垂直,求证:
(2)过点 作 , 为垂足,连接 并延长交 于点 .
14.如图,若一次函数y=-2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式-2x+b>0的解集为_________.
15.已知平行四边形 的顶点 的坐标分别为 顶点在 双曲线 上,边 交 轴于点 .若四边形 的面积是 面积的 倍,则点 的坐标为_________.
16.如图,已知在矩形纸片 中, 将纸片折叠,使顶点 与边 的点 重合.若折痕 分别与 交于点 的外接圆与直线 有唯一一个公共点,则折痕 的为______.
A.经过第一、二、四象限B.与x轴交于(1,0)
C.与y轴交于(0,1)D.y随x的增大而减小
9.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为( )
A.12B.10
C.8D.6
10.如图,ABCD,DEFG都是正方形,边长分别为m,n(m>n),坐标原点O为AD的中点,A,D,G在y轴上,若反比例函数 的图象过C,F两点,则 的值是()
(2)在(1)的条件下,连接BP,若AB=2,求△ABP的面积.
21.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/千米
0.3元/分
0.8元/千米
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千米收0.8元.
【详解】
则四个实数的大小关系为
因此,最大的数是
故选:C.
【点睛】
本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.
2.A
【解析】
分析:根据主视图是从正面看到的图象判定则可.
详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.
故选A.
点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
A. B. C. D.
二、填空题
11.将数据4560000用科学记数法表示为_________.
12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.
13.如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=_____°.
(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;
(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.
福建省厦门市湖滨中学2020-2021学年九年级下学期阶段反馈一数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在下列四个实数中,最大的数是()
A. B.0C. D.
2.如图所示的正六棱柱的主视图是()
A. B. C. D.
3.B
【分析】
根据整式的加减、同底数幂乘法、积的乘方、完全平方公式逐项判断即可.
【详解】
A、 ,此项错误
B、 ,此项正确
C、 ,此项错误
D、 ,此项错误
故选:B.
【点睛】
本题考查了整式的加减、同底数幂乘法、积的乘方、完全平方公式,熟记各运算法则和公式是解题关键.
4.C
【分析】
根据轴对称图形:在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,逐一判定即可.
相关文档
最新文档