相遇应用题求路程六年级
六年级应用题必背口诀
六年级应用题必背口诀一、路程问题应用题1、相遇问题【口诀】:相遇那一刻,路程全走过。
除以速度和,就把时间得。
举例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。
即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。
即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时)。
2、追及问题【口诀】:慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
举例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3×2=6(千米)速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6÷3=2(小时)。
二、鸡兔同笼应用题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
举例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24。
求鸡时,假设全是兔,则鸡数=(4×36-120)÷(4-2)=12。
三、和差问题应用题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
举例:已知两数和是10,差是2,求这两个数。
按口诀,大数=(10+2)÷2=6,小数=(10-2)÷2=4四、浓度问题应用题1、加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加水量。
举例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20×15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后糖水量-原来糖水量,30-20=10(千克)。
六年级相遇问题解题技巧
六年级相遇问题解题技巧一、相遇问题基本概念1. 定义两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧1. 认真审题,确定已知量和未知量例如:甲、乙两车分别从A、B两地同时出发,相向而行。
甲车的速度是每小时60千米,乙车的速度是每小时40千米,经过3小时两车相遇。
求A、B两地的距离。
解析:在这个题目中,已知量是甲、乙两车的速度(甲车速度公式千米/小时,乙车速度公式千米/小时)和相遇时间公式小时,未知量是A、B两地的距离(也就是路程和公式)。
根据公式公式,可得公式千米。
2. 画线段图辅助理解例如:小明和小红分别从相距500米的两地同时出发,相向而行。
小明的速度是每分钟60米,小红的速度是每分钟40米,他们多久能相遇?解析:先画一条线段表示两地的距离500米,然后在两端分别标记小明和小红的出发地。
从各自的出发地分别画出表示他们行走方向的箭头。
根据线段图可以更直观地看出路程和为500米,速度和为公式米/分钟。
再根据相遇时间公式,可得公式分钟。
3. 灵活运用公式变形例如:A、B两地相距480千米,甲、乙两车同时从两地相向而行,4小时后相遇。
已知甲车的速度是乙车速度的2倍,求甲、乙两车的速度各是多少?解析:首先根据公式公式,这里公式千米,公式小时,所以速度和公式千米/小时。
设乙车速度为公式千米/小时,因为甲车速度是乙车速度的2倍,则甲车速度为公式千米/小时。
根据速度和可列方程公式,即公式,解得公式千米/小时。
那么甲车速度公式千米/小时。
4. 注意单位换算例如:一辆客车和一辆货车分别从相距360千米的两地同时出发,相向而行。
客车的速度是50米/秒,货车的速度是30米/秒,求相遇时间。
解析:首先要统一单位,因为客车速度公式米/秒,货车速度公式米/秒,路程公式千米公式米。
六年级行程问题应用题
行程应用题1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米?3、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0。
5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?4、A、B两村相距2800米,小明从A村步行出发5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行130米,小明步行速度是每分钟多少米?5、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。
5千米的地方和乙车相遇,甲车每小时行多少千米?6、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1。
2倍,求A、B两地的距离。
7、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过2分钟后就相遇一次,若他们同向而行,那经过18分钟后快车追上慢车一次,求两人骑自行车的速度?8、兄妹两人同时离家去上学。
哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校多远?9、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。
当它们从起点一起出发后龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经领先它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间,龟跑了多少米?10、一辆汽车从甲地开往乙地,如果把车速提高20%;可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%则可提前40分钟到达。
六年级应用题
五年级相遇问题相遇问题公式:姓名(速度和)×相遇时间=相遇路程;相遇路程÷(速度和)=相遇时间;相遇路程÷相遇时间=速度和一、同时出发、相向而行1、两辆汽车从A、B两地同时出发、相向而行,甲每小行50千米,乙每小行60千米,经过3.5小时相遇。
A、B两地相距多少千米?2、小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?3、客车和货车同时从两城出发,相向而行,客车每小时行45千米,比货车每小时多行3千米,经过4小时两车相遇。
两城相距多少千米?4、客轮、货轮从武汉和上海两地同时出发,相对开出,货轮每小时行40千米,客轮的速度是货轮的1.2倍,两地相距862.4千米。
请问几小时两船可以相遇?5、两个工程队同时从两端开一条长850米的隧道,甲队每天开凿26米,乙队每天开凿24米,经过几天就可以打通?6、师徒两个人合作加工一批零件,师傅每小时加工68个,徒弟每小时加工55个,合作6小时完成任务,这批零件一共有多少个?7、加工厂用两台磨面机同时磨面17280千克,第一台磨面机每小时磨面364千克,第二台磨面每小时磨面356千克,如果每天加工8小时,磨完这些面粉需要多少天?二、同时出发,相背而行1、甲、乙两人同时从学校出发向反方向行去。
甲每分钟走60米,乙每分钟走70米,5分钟后两人相距多少米?2、两辆汽车同时从一个工厂出发,相背而行,一辆汽车每小时行33千米,另一辆汽车每小时行42千米。
多少分钟后两车相距15千米?三、同时出发、相向而行,不相遇1、甲、乙两站间的铁路长560千米,两列火车同时从两站相对开出,一列火车每小时行63.5千米,另一列火车每小时行80.5千米,3小时后两列火车还相距多少千米?2、货车和客车同时从甲、乙两地相对开出,货车每小时行57.5千米,客车每小时行45.8千米,3小时后两车相距100千米,甲、乙两地相距多少千米?3、师徒两人共同加工312个零件,师傅每小时加工45个,徒弟每小时加工35个,加工几小时后还剩40个?四、不同时出发,相向而行1、甲、乙两列火车从两地相对行驶。
行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)
行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。
1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。
1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。
2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。
如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。
(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。
方向不一样,处理问题就会不一样。
(3)所行走的路线是环形的,还是直线型的。
如果是环形的,要考虑再次相遇的可能。
【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。
小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。
【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。
【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。
两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。
小学六年级应用题归类练习 相遇问题
相遇问题(一)求相遇路程1、两列火车从两个车站同时出发相对开出,甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?2、两列火车从两个车站同时相对开出。
甲车每小时行44千米,乙车每小时行52千米,经过2.5小时后两车还相距85千米。
两个车站之间的铁路长多少千米?3、甲、乙两列火车从两地相对行驶,甲车每小时行44千米,乙车每小时行52千米。
甲车开出1.5小时后乙车才开出,再经过2小时两车相遇。
甲乙两地相距多少千米?4、一列客车和一列货车同时从两地相对开出,4.5小时后相遇。
客车每小时行65千米,是货车的1.3倍。
两地间的铁路长多少千米?5、两辆汽车分别从甲乙两地同时出发相对而行。
甲车每小时行40千米,乙车每小时行45千米,两车在距中点20千米处相遇。
甲乙两地相距多少千米?6、甲、乙两辆汽车同时从A地出发去B地,甲车每小时行45千米,乙车每小时比甲车多行9千米,乙车到达B地后立即返回甲地,途中与甲车相遇,已知乙车共行驶了6小时,A、B两地相距多少千米?(二)求相遇时间1.甲乙两地相距6400米,两人同时从两地相对而行,一个人骑自行车每分钟行200米,另一个人骑摩托车每分钟行600米,经过几分钟两人相遇?2.甲乙两地相距6400米,两人同时从两地相对而行,一个人骑自行车每分钟行200米,另一个人骑摩托车每分钟行600米,经过几分钟两人还相遇800米?3.甲乙两地相距325.5千米,两车从两地相对而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后乙车才出发,再经过几小时两车相遇?4.一辆汽车和一辆拖拉机同时从甲城出发开往乙城。
汽车每小时行49千米,拖拉机每小时行35千米。
出发后6小时,汽车先到达乙城。
再经过几小时拖拉机才能到达乙城?5.卡车每小时行45千米,轿车的速度是卡车的1.4倍,它们从相距189千米的两地同时相向行驶。
①经过几小时两车相遇?②相遇时两车各行了多少千米?③如果出发时间是上午8:15,相遇时是几时几分?(三)求相遇速度1、两地相距270米,小东和小英同时从两地出发,相对走来。
小学六年级数学应用题行程问题(可锻炼学生思维)
1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了 公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用 秒.、B 两城相距56千米.有甲、乙、丙三人.甲、乙从A 城,丙从B 城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经 小时,乙在甲丙之间的中点6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了 步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走 米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有 公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C 时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B ;第二个人在C 处下车后继续步行前往B 地.结果三个人同时到达B 地.那么,C 距A 处多少千米D 距A 处多少千米13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时公里,骑车人速度为每小时公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时千米.已知A 、C 两镇水路相距50千米,水流速度为每小时千米.某人从A 镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.AD、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑米,乙每秒钟跑米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同11.一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间(按小时计算)14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.。
六年级相遇问题应用题
六年级相遇问题应用题1、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?3、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?5、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?6、两辆车从甲乙两地同时相对开出,4时相遇。
慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?7、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。
A、B两地的最短距离多少米?最长距离多少米?8、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?9、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?10、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?12、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?13、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
六年级数学行程相遇问题专项应用题30道
六年级数学行程问题应用题1、甲乙两车同时从AB两地相对开出.甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时.求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出.货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇.甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米.现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点.求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行.甲车每小时行75千米,乙车行完全程需7小时.两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米.两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇.慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米.A、B两地的最短距离多少米?最长距离多少米?18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?21、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地.求A,B两地相距多少千米?22、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米.两车相遇时,乙车离中点20千米.两地相距多少千米?23、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇.已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?24、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?25、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?26、客货两车同时从甲、乙两地相对开出,途中相遇后继续前进,各到达对方出发地后立即返回,途中第二次相遇,两次相遇地点间相距120千米客车每小时行60千米,货车每小时行48千米,甲乙两地相距多少千米?27、一辆客车和一辆货车同时从A,B两地相对开出,5小时相遇,相遇后两车又各自继续向前行驶3小时,这时客车离B地还有180千米,货车离A地还有210千米,AB两地相距多少千米?28、甲乙由AB两地相向出发,甲速是乙速的4/5,甲乙到达B,A地后,向AB相向返回,且甲速提高1/4乙速提高1/3,已知甲乙两次相遇点相距34km,求AB两地间距离?29、小明5点多起床一看钟,6字恰好在时针和分针的正中间(即两针到6的距离相等),这时是5点几分?30、一艘游船在长江上航行,从A港口到B港口需航行3小时,回程需要4小时30分钟,请问一只空桶只靠水的流动而漂移,走完同样长的距离,需用几小时?答案:1.解:AB距离=(4.5×5)/(5/11)=49.5千米2、解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、解:速度和=9+7=16千米/小时那么经过(150-6)/16=144/16=9小时相距150千米11、速度和=42+58=100千米/小时相遇时间=600/100=6小时相遇时乙车行了58×6=148千米或者甲乙两车的速度比=42:58=21:29所以相遇时乙车行了600×29/(21+29)=348千米12、将两车看作一个整体两车每小时行全程的1/64小时行1/6×4=2/3那么全程=188/(1-2/3)=188×3=564千米13、解:二车的速度和=600/6=100千米/小时客车的速度=100/(1+2/3)=100×3/5=60千米/小时货车速度=100-60=40千米/小时14、解:速度和=(40-4)/4=9千米/小时那么还需要4/9小时相遇15、甲车到达终点时,乙车距离终点40×1=40千米甲车比乙车多行40千米那么甲车到达终点用的时间=40/(50-40)=4小时两地距离=40×5=200千米16、解:快车和慢车的速度比=1:3/5=5:3相遇时快车行了全程的5/8慢车行了全程的3/8那么全程=80/(5/8-3/8)=320千米17、解:最短距离是已经相遇,最长距离是还未相遇速度和=100+120=220米/分2小时=120分最短距离=220×120-150=26400-150=26250米最长距离=220×120+150=26400+150=26550米18、解:原来速度=180/4=45千米/小时实际速度=45+5=50千米/小时实际用的时间=180/50=3.6小时提前4-3.6=0.4小时19、算术法:相遇后的时间=12×3/7=36/7小时每小时快12千米,乙多行12×36/7=432/7千米相遇时甲比乙多行1/7那么全程=(432/7)/(1/7)=432千米20、解:乙的速度=52×1.5=78千米/小时开出325/(52+78)=325/130=2.5相遇21、解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米22、解:甲乙速度比=40:45=8:9甲乙路程比=8:9 相遇时乙行了全程的9/17那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米23、解:把全程看作单位1甲乙的速度比=60:80=3:4E点的位置距离A是全程的3/7二次相遇一共是3个全程乙休息的14分钟,甲走了60×14=840米乙在第一次相遇之后,走的路程是3/7×2=6/7那么甲走的路程是6/7×3/4=9/14 实际甲走了4/7×2=8/7那么乙休息的时候甲走了8/7-9/14=1/2那么全程=840/(1/2)=1680米24、解:相遇时未行的路程比为4:5那么已行的路程比为5:4时间比等于路程比的反比甲乙路程比=5:4时间比为4:5那么乙行完全程需要10×5/4=12.5小时那么AB距离=72×12.5=900千米25、解:甲乙的相遇时的路程比=速度比=4:5那么相遇时,甲距离目的地还有全程的5/9 所以AB距离=4×2/(5/9)=72/5=14.4千米26.、解:客车和货车的速度比=60:48=5:4将全部路程看作单位1那么第一次的相遇点在距离甲地1×5/(5+4)=5/9处二次相遇是三个全程那么第二次相遇点距离乙地1×3×5/9-1=5/3-1=2/3处也就是距离甲地1-2/3=1/3处所以甲乙距离=120/(5/9-1/3)=120/(2/9)=540千米27、解:两车每小时共行全程的1/5那么3小时行全程的1/5×3=3/5所以全程=(180+210)/(1-3/5)=390/(2/5)=975千米28、解:将全部的路程看作单位1因为时间一样,路程比就是速度比甲乙路程比=速度比=4:5乙的速度快,乙到达A点,甲行了1×4/5=4/5此时乙提速1/3,那么甲乙速度比=4:5×(1+1/3)=3:5甲走了1-4/5=1/5,那么乙走了(1/5)/(3/5)=1/3此时甲提速,速度比由3:5变为3(1+1/4):5=3:4甲乙距离1-1/3=2/3相遇时乙一共走了1/3+(2/3)×4/(3+4)=1/3+8/21=5/7也就是距离A地5/7的全程第一次相遇时的相遇点距离A地4/9全程那么AB距离=34/(5/7-4/9)=34/(17/63)=126千米29、解:设此时是5点a分分针每分钟走1格,那么时针每分钟走5/60=1/12格根据题意a-30=5-a/1213/12a=35a=420/13分≈32分18秒此时是5点32分18秒此处的30和5表示30格和5格,即钟面上的1格看作特殊的行程问题30、解:顺流速度1/3,逆水速度=1/4.5=2/9 流水速度=(1/3-2/9)/2=1/18 需要1/(1/18)=18小时。
小学六年级相遇问题练习题
小学六年级相遇问题练习题题目一:小明从家出发去学校,小红从学校出发去家,他们在路上相遇了。
请问,他们谁离学校更近?解析:相遇问题是一个经典的运动问题,在解答该问题之前,我们需要理解一些基本的概念和原理。
首先,我们需要了解速度的概念。
速度是指单位时间内运动的距离。
可以用公式来表示:速度 = 路程 / 时间。
其次,我们需要知道时间的概念。
时间是指运动的持续时间,通常以小时、分钟等单位表示。
在解决这个问题之前,我们需要提醒注意:小明和小红的速度是不同的。
假设小明的速度为V1,小红的速度为V2。
小明离学校的距离为D1,小红离学校的距离为D2。
根据题目中给出的信息,我们可以得到以下两个方程:D1 = V1 * t1 (1)D2 = V2 * t2 (2)其中,t1代表小明走了多长时间,t2代表小红走了多长时间。
又因为小明和小红在路上相遇了,所以他们走的总时间是相同的,即t1 = t2。
将t1 = t2代入方程(1)和(2)中,可以得到:D1 = V1 * t (3)D2 = V2 * t (4)由于小红离学校更近,则有D2 < D1。
因此,根据给定的条件以及推导出的公式,我们可以得出结论:小红离学校更近。
题目二:小明和小红同时从家出发,小明向北走,小红向东走。
两人相遇后交换方向继续走,小明向东走,小红向北走,再次相遇后就回家。
请问,小明和小红各自走过的总路程一样吗?解析:本题中,涉及到的是两个人在平面上移动的问题,并且两人的速度是相同的。
假设小明和小红的速度均为V,他们相遇时的时间为t。
首先,我们需要明确相遇后的情况。
小明向东走,小红向北走,经过时间t后,他们相遇。
此时,小明向东已经走过的距离为D1,小红向北已经走过的距离为D2。
根据题目的要求,相遇后他们交换方向继续走。
小明向北走,小红向东走,再次相遇时他们回家。
此时,小明向北已经走过的距离为D3,小红向东已经走过的距离为D4。
根据给定的信息,我们可以得到以下两个方程:D1 + D4 = D2 + D3 (5)D1 + D2 = D3 + D4 (6)将方程(6)左右两边的D1 + D2代入方程(5)中,可以得到:D1 + D4 = (D1 + D2) + D3化简后可得:D4 = D2 + D3 (7)将方程(6)左右两边的D3 + D4代入方程(5)中,可以得到:D1 + D4 = D2 + (D3 + D4)化简后可得:D1 = D2 (8)由方程(7)可得,D4 = D2 + D3,结合方程(8)可得,D4 = D2 + D1。
六年级数学相遇问题应用题
六年级数学相遇问题应用题六年级数学相遇问题引言相遇问题是六年级数学中一个常见的应用题,通过求解两个人相遇的时间、距离等问题,培养学生的综合运算能力和问题解决能力。
本文整理了几个典型的相遇问题,供学生练习和巩固知识。
问题一:两人同时从A、B两地出发,相向而行,相遇后又继续按原速度返回,求相遇后两人走过的总路程。
已知:两地距离为d,两人的速度分别为v1和v2。
要求:求两人相遇后所走过的总路程。
解答: 1. 两人相遇时,他们走的总时间是路程d除以两人速度之和:t = d / (v1 + v2)。
2. 相遇后,两人又按原速度返回,所以总路程是相遇前走过的路程的两倍:总路程 = 2 * (d + t * v1)。
问题二:两人从A地和B地同时出发,以不同速度相向而行,相遇后互换速度继续走,再次相遇时,两人相遇点距离起点距离多少?已知:两地距离为d,两人的速度分别为v1和v2。
要求:求两人第二次相遇点距离起点的距离。
解答: 1. 两人第一次相遇时,他们共同走的路程是总路程的一半:路程 = d / 2。
2. 第一次相遇后,两人互换速度继续走,所以他们再次相遇时,路程相当于两个人分别走过的路程之和等于总路程:2 * (v1 * t1 + v2 * t2) = d。
3. t1和t2分别为两个人相遇前的时间,可以通过已知条件求得。
4. 第二次相遇点距离起点的距离等于两个人相遇前走过的路程之和,即 v1 * t1 + v2 * t2。
结语通过解决相遇问题,可以培养学生的综合运算能力和问题解决能力。
以上是两个典型的相遇问题,供同学们练习和巩固知识。
希望本文对学生们的学习有所帮助。
小学六年级数学应用题总复习行程及流水问题
小学六年级数学应用题总复习:行程及流水问题及答案一、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:1、基本题型:一辆车从甲地到乙地。
(1)、路程=速度×时间(2)、速度=路程÷时间(3)、时间=路程÷速度2、相遇问题:两辆车同时相向而行或在封闭路线中同时相背而行.(1)、路程=速度和×相遇时间(2)、相遇时间=路程÷速度和(3)、其中一辆车的速度=路程÷相遇时间-另一辆车的速度3、追击问题:同时同向而行(速度慢的在前,快的在后)(1)、追击时间=追击路程÷速度差(2)、速度差=追击路程÷追击时间(3)、追击路程=追击时间×速度差例1:甲在乙的后面28 千米,两人同时同向而行,甲每小时行16 千米,乙每小时行9 千米,甲几小时追上乙?分析:甲每小时比乙多行(16—9 )千米,也就是甲每小时可以追近乙(16—9 )千米,这是速度差。
已知甲在乙的后面28 千米(追击路程),28 千米里包含着几个( 16-9 )千米,也就是追击所需要的时间。
列式 2 8 ÷ ( 16-9 )=4 (小时)模拟试题1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2。
5米/秒和3。
5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
六年级数学相遇问题应用题(一)
六年级数学相遇问题应用题(一)六年级数学相遇问题问题描述一个小学上午有两个班级,甲班有50名学生,乙班有60名学生。
假设所有学生在早上8点钟准时到达学校,并且以每分钟60米的速度相向而行。
当两个班级的学生相遇时,甲班的学生刚好走了100米的距离。
问相遇时是几点几分?解题步骤1.计算甲班学生走100米所需的时间2.计算相遇时的时间解题过程1.计算甲班学生走100米所需的时间:–甲班一个学生每分钟走60米,所以甲班50名学生每分钟共走50 * 60 = 3000米。
–要走100米,所需时间为100 / 3000 = 1/30分钟。
2.计算相遇时的时间:–甲、乙班的学生相遇时,甲班的学生已经走了100米,相当于走了100 / 60 = 5/3分钟。
–相遇时的时间为早上8点加上1/30分钟再加上5/3分钟。
计算结果相遇时的时间为早上8点1分40秒。
答案验证•甲班50名学生走每分钟3000米,相遇时走了100米,符合题目要求。
•相遇时的时间为8点1分40秒,符合题目要求。
注意:由于题目中没有提到甲、乙班的学生是直线相向而行,因此假设他们是在同一直线上相向而行。
相关应用题1.甲班有80名学生,乙班有60名学生。
如果两个班级以每分钟80米的速度相向而行,当两个班级的学生相遇时,甲班的学生刚好走了160米的距离。
问相遇时是几点几分?解题步骤:–计算甲班学生走160米所需的时间–计算相遇时的时间解题过程:–计算甲班学生走160米所需的时间:•甲班一个学生每分钟走80米,所以甲班80名学生每分钟共走80 * 80 = 6400米。
•要走160米,所需时间为160 / 6400 = 1/40分钟。
–计算相遇时的时间:•甲、乙班的学生相遇时,甲班的学生已经走了160米,相当于走了160 / 80 = 2分钟。
•相遇时的时间为早上8点加上1/40分钟再加上2分钟。
计算结果:相遇时的时间为早上8点2分15秒。
2.甲班有60名学生,乙班有75名学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小红家距小明家390米,两人同时从家里出发, 相向而行。小红每分走60米,小明每分走70米。
小红走 走的时间 的路程
小明走 的路程
两人所走 路程的和
1分 60米 70米 130米
2分 120米 140米 260米
3分 180米 210米 390米
70米
小明家Biblioteka 60米小红家小红和小明两人同时从家里出发,相向 而行。小红每分钟走60米,小明每分 钟走70米,3分钟相遇。他们两家相 距多少米?
甲乙两人同时从学校出发, 相背而行。甲每分钟走52米, 乙每分钟走48米。两人走了 10分钟时相距多少米?
甲乙两人从甲乙两地相向而行,甲先 出发2小时后,乙再出发,又经过2小 时,两人相遇。甲每小时行3千米,乙 每小时行4千米。两地相距多少千米?
甲
乙
地
地
60米
70米
速度和×时间=路程 小红走的路程+小明走的路程=总路程
再快来来试试一一试试!! 两列两火列车火从车两从个两车个站车同站时同相时向相开向出开。 出甲。车甲每车小每时小行时4行44千4米千,米乙,车乙每车小每时 小行时5行25千2米千,米经,过经2过小2时小后时两后车两相车遇 还。相两距个1车5米站。之两间个的车铁站路之长间多的少铁千路米长? 多少千米?
小学数学第八册
口答: 小兰每分钟走10米,5分钟走了多少米?
10 × 5 = 50(米) 速度 × 时间 = 路程 路程 ÷ 速度 = 时间 路程 ÷ 时间 = 速度
1、两个人从不同的地方出发,他们的 方向可能有哪些情况?
(相向、相背、同向)
2、两人从同一地点出发的方向,可能 有哪些情况?
(相背、同向)