pnp npn三极管开关典型接法
PNP光电开关接线图(苍松借鉴)
PNP光电开关接线图(苍松借鉴)
PNP光电开关接线图
⼀、接近开关有两线制和三线制之区别,三线制接近开关⼜分为NP
N型和PNP型,它们的接线是不同的。
请见下图所⽰:
⼆、两线制接近开关的接线⽐较简单,接近开关与负载串联
后接到电源即可。
三、三线制接近开关的接线:红(棕)线接电源正端;蓝线
接电源0V端;黄(⿊)线为信号,应接负载。
⽽负载的另
⼀端是这样接的:对于NPN型接近开关,应接到电源正端;
对于PNP型接近开关,则应接到电源0V端。
四、接近开关的负载可以是信号灯、继电器线圈或可编程控
制器PLC的数字量输⼊模块。
五、需要特别注意接到PLC数字输⼊模块的三线制接近开关
的型式选择。
PLC数字量输⼊模块⼀般可分为两类:⼀类的公共输⼊端为电源0V,电流从输⼊模块流出(⽇本模式),此时,⼀定要选⽤NPN型接近开关;另⼀类的公共输⼊端为电源正端,电流流⼊输⼊模块,即阱式输⼊(欧洲模式),此时,⼀定要选⽤PNP型接近开关。
千万不要选错了。
六、两线制接近开关受⼯作条件的限制,导通时开关本⾝产
⽣⼀定压降,截⽌时⼜有⼀定的剩余电流流过,选⽤时应予考虑。
三线制接近开关虽多了⼀根线,但不受剩余电流之类不利因素的困扰,⼯作更为可靠。
七、有的⼚商将接近开关的“常开”和“常闭”信号同时引
出,或增加其它功能,此种情况,请按产品说明书具体接线。
附图。
PNP光电开关接线图
PNP光电开关接线图
PNP光电开关接线图
一、接近开关有两线制和三线制之区别,三线制接近开关又分为NP
N型和PNP型,它们的接线是不同的。
请见下图所示:
二、两线制接近开关的接线比较简单,接近开关与负载串联
后接到电源即可。
三、三线制接近开关的接线:红(棕)线接电源正端;蓝线
接电源0V端;黄(黑)线为信号,应接负载。
而负载的另
一端是这样接的:对于NPN型接近开关,应接到电源正端;
对于PNP型接近开关,则应接到电源0V端。
四、接近开关的负载可以是信号灯、继电器线圈或可编程控
制器PLC的数字量输入模块。
五、需要特别注意接到PLC数字输入模块的三线制接近开关
的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开
关。
千万不要选错了。
六、两线制接近开关受工作条件的限制,导通时开关本身产
生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
七、有的厂商将接近开关的“常开”和“常闭”信号同时引
出,或增加其它功能,此种情况,请按产品说明书具体接线。
附图。
三极管开关电路图原理及设计
晶体管开关电路(工作在饱和态)在现代电路设计应用中屡见不鲜,经典的74LS,74ALS等集成电路内部都使用了晶体管开关电路,只是驱动能力一般而已。
TTL晶体管开关电路按驱动能力分为小信号开关电路和功率开关电路;按晶体管连接方式分为发射极接地(PNP晶体管发射极接电源)和射级跟随开关电路。
1. 发射极接地开关电路1.1 NPN型和PNP型基本开关原理图:上面的基本电路离实际设计电路还有些距离:由于晶体管基极电荷存储积累效应使晶体管从导通到断开有一个过渡过程(当晶体管断开时,由于R1的存在,减慢了基极电荷的释放,所以Ic不会马上变为零)。
也就是说发射极接地型开关电路存在关断时间,不能直接应用于中高频开关。
1.2 实用的NPN型和PNP型开关原理图1(添加加速电容):解释:当晶体管突然导通(IN信号突然发生跳变),C1瞬间短路,为三极管快速提供基极电流,这样加速了晶体管的导通。
当晶体管突然关断(IN信号突然发生跳变),C1也瞬间导通,为卸放基极电荷提供一条低阻通道,这样加速了晶体管的关断。
C通常取值几十到几百皮法。
电路中R2是为了保证没有IN输入高电平时三极管保持关断状态;R4是为了保证没有IN输入低电平时三极管保持关断状态。
R1和R3是基极电流限流用。
1.3 实用的NPN型开关原理图2(消特基二极管钳位):解释:由于消特基二极管Vf为0.2至0.4V比Vbe小,所以当晶体管导通后大部分的基极电流是从二极管然后通过三极管到地的,这样流到三极管基极的电流就很小,积累起来的电荷也少,当晶体管关断(IN信号突然发生跳变)时需要卸放的电荷少,关断自然就快。
1.4 实际电路设计在实际电路设计中需要考虑三极管Vceo,Vcbo等满足耐压,三极管满足集电极功耗;通过负载电流和hfe(取三极管最小hfe来计算)计算基极电阻(要为基极电流留0.5至1倍的余量)。
注意消特基二极管反向耐压。
2. 发射极跟随开关电路解释:发射极跟随的优点就是开关速度快,可应用于中高频信号的开关;R2不能太,大了电路容易受干扰;当然也不能太小,否则白白浪费前级的驱动能力。
达林顿管的四种接法与常用型号
达林顿管的四种接法•达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN.前二种是同极性接法,后二种是异极性接法。
NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。
这里也说一下异极性接法。
以NPN+PNP为例。
设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。
达林顿管的接法应为:C1B2应接一起,E1C2应接一起。
等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。
等效三极管极性,和前一三极管相同。
即为NPN型。
PNP+NPN的接法和此类同。
如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。
「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。
同极型达林顿管异极型达林顿管达林顿管的典型应用•1、用于大功率开关电路、电机调速、逆变电路。
2、驱动小型继电器利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。
虚线框内是小功率NPN达林顿管FN020。
3、驱动LED智能显示屏LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。
该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。
图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP 达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。
应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。
对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意4、判断达林顿管等效为何种类型的三极管:首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,和第二只无关!更加重要的是要看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管。
PNP三极管和NPN三极管的开关电路
PNP三极管和NPN三极管的开关电路
大学模拟电子的课程里面肯定讲到了三极管、晶体管的应用。
什么放大倍数,推挽输出、共基极放大电路、共射放大电路等等。
现在想起来还是头晕,其实我自始至终都不怎么会用上面说的那些电路。
工作好几年,三极管用的最多的,其实是开关电路。
下面分别介绍PNP型和NPN型的三极管。
先说PNP型的三极管,常用的型号有9012,8550等等。
如何使用呢,如下图:
FM是一个蜂鸣器,8550是一个PNP型的三极管,C端接地,B端由单片机控制,E端通过FM接VCC。
根据箭头的方向,E端高电压的时候,当B端也是高电压,那么E和C之间是断开的,当B端是低电压,那么E和C直接导通,实现开关的作用。
简单的技巧:三极管上箭头所在方向的二极管,只要二极管正向导通,那么三极管上下就能导通。
NPN的三极管也是同样的道理,这里不做过多解释。
这里可以看到,三极管用作开关管的时候非常简单,根本不会涉及到任何所谓的公式、放大倍数计算等等。
PNP光电开关接线图(苍松借鉴)
PNP光电开关接线图
一、接近开关有两线制和三线制之区别,三线制接近开关又分为NP
N型和PNP型,它们的接线是不同的。
请见下图所示:
二、两线制接近开关的接线比较简单,接近开关与负载串联
后接到电源即可。
三、三线制接近开关的接线:红(棕)线接电源正端;蓝线
接电源0V端;黄(黑)线为信号,应接负载。
而负载的另
一端是这样接的:对于NPN型接近开关,应接到电源正端;
对于PNP型接近开关,则应接到电源0V端。
四、接近开关的负载可以是信号灯、继电器线圈或可编程控
制器PLC的数字量输入模块。
五、需要特别注意接到PLC数字输入模块的三线制接近开关
的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。
千万不要选错了。
六、两线制接近开关受工作条件的限制,导通时开关本身产
生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
七、有的厂商将接近开关的“常开”和“常闭”信号同时引
出,或增加其它功能,此种情况,请按产品说明书具体接线。
附图。
图解PNP和和NPN接近开关的区别
图解PNP和和NPN接近开关的区别NPN和PNP说的是三极管的两种类型,三极管作为无触点电子开关被常用于开关电路,由输入电压信号来控制三极管的导通与断开。
三极管的输入电压信号又是通过接近开关的传感器来给定,于是只要有物体靠近接近开关的传感器,当输入电压信号超过三极管的门槛电压时,三极管就会处于导通状态。
用NPN型开关三极管举例这是NPN型开关三极管的截止状态等效图当三极管的基极输入电压信号趋近于零时,则基极电流也趋近于零,因此三极管的C极跟E极呈断开状态。
假设这是硅材质的NPN型开关三极管,那么只要基极输入电压信号低于0.7V,三极管就会处于截止状态。
这是NPN型开关三极管的饱和状态等效图当开关三极管的基极有输入电压信号,且大于开关三极管的门槛电压时,开关三极管就会处于饱和状态,那么三极管的C极跟E极就会短路,相当于机械开关的闭合动作。
看了开关三极管的饱和与截止简单的介绍,于是看它在接近开关的应用,如下是接近开关的集中接线图。
三线制接近开关一般用的是低压直流电24VDC第一幅图,说的是常开的NPN型接近开关。
棕色线接直流电源正,蓝色线接直流电源负,黑色线是信号线。
此时看到图一中的黑色线跟蓝色线之间有个开关,这个开关就是开关三极管的C极跟E极,只要给接近开关的传感器一个触发信号,开关三极管就会有输入电压信号,开关三极管的C极跟E极就会短路,那么黑色信号线就会得到跟蓝线一样的电平。
因此图一的接近开关属于常开的NPN型接近开关,是低电平输出信号。
区别NPN和PNP接近开关好办让接近开关处于工作状态,看黑色信号线跟棕色处于同一电平还是跟蓝色处于同一电平。
若接近开关的黑色信号线跟蓝色处于同一电平,说明此接近开关是NPN型接近开关,且为低电平信号输出,若黑色信号线跟棕色处于同一电平,说明此接近开关是PNP型接近开关,且为高电平信号输出。
一般情况接近开关都会说明是那种类型的接近开关,写的清清楚楚,只是有时看不清了才用这样的办法进行简单的判别。
三极管开关电路图原理及设计详解
(3)三极管开关没有跃动(bounce)现象。一般的机械式开关在导通的瞬间会有快速的连续启闭动作,然后才能逐渐达到稳定状态。
(4)利用三极管开关来驱动电感性负载时,在开关开启的瞬间,不致有火花产生。反之,当机械式开关开启时,由于瞬间切断了电感性负载样上的电流,因此电感之瞬间感应电压,将在接点上引起弧光,这种电弧非但会侵蚀接点的表面,亦可能造成干扰或危害。
1.3 实用的NPN型开关原理图2(消特基二极管钳位)
解释:由于消特基二极管Vf为0.2至0.4V比Vbe小,所以当晶体管导通后大部分的基极电流是从二极管然后通过三极管到地的,这样流到三极管基极的电流就很小,积累起来的电荷也少,当晶体管关断(IN信号突然发生跳变)时需要卸放的电荷少,关断自然就快。
1.4 实际电路设计
发射极接地开关电路
1.1 NPN型和PNP型基本开关原理图:
上面的基本电路离实际设计电路还有些距离:由于晶体管基极电荷存储积累效应使晶体管从导通到断开有一个过渡过程(当晶体管断开时,由于R1的存在,减慢了基极电荷的释放,所以Ic不会马上变为零)。也就是说发射极接地型开关电路存在关断时间,不能直接应用于中高频开关。
由方程式(1)可知
因此输入电压可由下式求得﹕
图2用三极管做为灯泡开关
由例题1-1得知,欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。
同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子
达林顿管的四种接法与常用型
达林顿管的四种接法达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN.前二种是同极性接法,后二种是异极性接法。
NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。
这里也说一下异极性接法。
以NPN+PNP为例。
设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。
达林顿管的接法应为:C1B 2应接一起,E1C2应接一起。
等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。
等效三极管极性,和前一三极管相同。
即为NPN型。
PNP+NPN的接法和此类同。
如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。
「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。
同极型达林顿管异极型达林顿管达林顿管的典型应用1、用于大功率开关电路、电机调速、逆变电路。
2、驱动小型继电器利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。
虚线框内是小功率NPN达林顿管FN020。
3、驱动LED智能显示屏LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。
该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。
图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PN P达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。
应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。
对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意4、判断达林顿管等效为何种类型的三极管:首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,和第二只无关!更加重要的是要看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管。
如何正确连接和使用三极管
如何正确连接和使用三极管三极管是一种常见的电子元件,被广泛应用于电路中的放大、开关和电流稳定等功能。
正确连接和使用三极管对于保证电路工作的稳定性和性能发挥起着至关重要的作用。
本文将从连接、极性、电流和功率等方面,详细介绍如何正确连接和使用三极管。
一、连接方式三极管通常有三个引脚,分别是基极(B)、发射极(E)和集电极(C)。
正确连接三极管的引脚可以避免电路出现故障或损坏。
通常情况下,基极连接到控制信号源,发射极连接到地或负极,集电极连接到所需输出端。
二、极性三极管具有极性,需要正确连接才能保证正常工作。
通常情况下,三极管具有PNP和NPN两种极性。
正确的极性连接可以通过查找三极管数据手册中的引脚描述或标识来确认。
在连接过程中,要仔细核对引脚的极性,并将其正确地连接到电路中。
三、电流正确连接和使用三极管需要注意电流的限制和控制。
三极管的额定电流通常可以在数据手册中找到。
在实际使用中,电流过大可能会导致三极管损坏,电流过小可能会影响其正常工作或功率放大效果。
因此,在设计电路时,应根据所需功率和电流的要求选择合适的三极管并合理控制电流的大小。
四、功率三极管的功率也是一个需要注意的重要参数。
功率过大会导致三极管过热,甚至损坏,功率过小则可能影响其输出的放大效果。
在实际应用中,应根据所需功率和工作条件来选取适当的三极管,并合理设计散热措施,以确保三极管的正常工作和可靠性。
五、综合考虑除了以上几个方面的注意事项,正确连接和使用三极管还需综合考虑其他因素,例如工作频率、环境温度等。
不同的三极管适用于不同的频率范围,因此,在选择三极管时应根据实际需求来确定合适的型号。
同时,环境温度和散热条件也会影响三极管的性能和可靠性,应注意合理布局,确保散热良好,避免过热问题。
在实际连接和使用三极管时,还应当遵循一些基本原则,例如避免引脚短路、保持引脚间的间距、合理布局电路板等。
此外,还可以使用示波器等仪器来观察三极管输入输出的波形,以判断是否正常工作。
PNP光电开关接线图
PNP光电开关接线图
PNP光电开关接线图
一、接近开关有两线制和三线制之区别,三线制接近开关又分为NP
N型和PNP型,它们的接线是不同的。
请见下图所示:
二、两线制接近开关的接线比较简单,接近开关与负载串联
后接到电源即可。
三、三线制接近开关的接线:红(棕)线接电源正端;蓝线
接电源0V端;黄(黑)线为信号,应接负载。
而负载的另
一端是这样接的:对于NPN型接近开关,应接到电源正端;
对于PNP型接近开关,则应接到电源0V端。
四、接近开关的负载可以是信号灯、继电器线圈或可编程控
制器PLC的数字量输入模块。
五、需要特别注意接到PLC数字输入模块的三线制接近开关
的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开
关。
千万不要选错了。
六、两线制接近开关受工作条件的限制,导通时开关本身产
生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
七、有的厂商将接近开关的“常开”和“常闭”信号同时引
出,或增加其它功能,此种情况,请按产品说明书具体接线。
附图。
NPN PNP三极管开关电路
图1 NPN PNP三极管反相器电路vin无输入电位Q1截止。
Vin高电平时Q1导通,Q2基极得高电位,Q2截止。
图2 两只NPN三极管反相器电路vin无输入电位Q1截止,Q2导接入高电平Q1导通,促使Q2基极电位下级,Q2截止。
图3 PNP三极管开关电路当输入端悬空时Q1截止。
VIN输入端接入低电平时,Q1导通,继电器吸合。
图4 PNP三极管开关电路当vin无输入电位时Q1截止。
Vin接入Q1导通,继电器吸合
图5 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又因有负载电阻,所以输出看作是低电平。
图6 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又载电阻,所以输出看作是高电平。
图7 光藕控制NPN 三极管: 图8 光藕控制NPN 三极管:
图9 光藕控制PNP三极管:图10 光藕控制PNP三极管:。
NPN PNP三极管开关电路
图1 NPN PNP三极管反相器电路vin无输入电位Q1截止。
Vin高电平时Q1导通,Q2基极得高电位,Q2截止。
图2 两只NPN三极管反相器电路vin无输入电位Q1截止,Q2导接入高电平Q1导通,促使Q2基极电位下级,Q2截止。
图3 PNP三极管开关电路当输入端悬空时Q1截止。
VIN输入端接入低电平时,Q1导通,继电器吸合。
图4 PNP三极管开关电路当vin无输入电位时Q1截止。
Vin接入Q1导通,继电器吸合
图5 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又因有负载电阻,所以输出看作是低电平。
图6 三极管上拉电阻:当有高电位输入时Q 导通,因E-C 导通,又载电阻,所以输出看作是高电平。
图7 光藕控制NPN 三极管: 图8 光藕控制NPN 三极管:
图9 光藕控制PNP三极管:图10 光藕控制PNP三极管:。
PLC与PNP或是NPN感应开关接法
PLC与PNP或是NPN感应开关接法
在plc的信号输入中,我们通常会用到PNP或是NPN这两种输出类型的感应开关,这两者的区别在于输出信号类型都不一样的,如图所示:
对于NPN型输出的传感器,当有信号输出时,则信号输出线(黑色)与电源负极线(蓝色)导通,所以输出信号为低电平,根据电路原理,当NPN型传感器的输出信号接入到PLC的输入点时,则另一端公共端M必须接高电平(即电源24V端),所以当一个NPN型的传感器接入到PLC的输入端时,PLC输入端接法应使用源型接法。
对于PNP型输出的传感器,当有信号输出时,则信号输出线(黑色)与电源正极线(棕色)导通,所以输出为高电平,则接入到PLC的输入信号端时,公共端M就必须要要接低电平(即电源的0V),所以此时应接为漏型接法。
npn和pnp接近开关的接线方法
在电子电路中,npn和pnp晶体管是常用的开关元件。
它们可以被使用来控制电流的流动,从而实现电路的开闭和各种电子设备的工作。
在本文中,我将深入探讨npn和pnp接近开关的接线方法,希望能够帮助你更好地理解和应用这些电子元件。
1. 确定器件类型要使用npn或pnp晶体管作为接近开关,我们需要准确地确定器件的类型。
npn晶体管由两个n型半导体夹着一个p型半导体而成,而pnp晶体管则相反,由两个p型半导体夹着一个n型半导体。
在进行接线前,确保你已经清楚了解所使用晶体管的型号和引脚布局。
2. 基本接线方法npn和pnp接近开关的基本接线方法基本相似,但在接线时需要注意极性的选择。
对于npn晶体管,一般来说,电源正极连接到集电极(Collector)引脚,负极连接到发射极(Emitter)引脚,而控制信号则接到基极(Base)引脚。
而对于pnp晶体管,则需要反向接线,电源正极连接到发射极引脚,负极连接到集电极引脚,控制信号接到基极引脚。
3. 接近开关电路设计在进行npn和pnp接近开关的电路设计时,需要考虑输入信号、输出负载和电源电压等因素。
确保连接正确,并通过适当的电阻、电容和其他元件来实现所需的电路功能。
特别需要注意的是,npn和pnp晶体管的极流方向,错误的接线可能导致电路无法正常工作甚至损坏晶体管。
总结回顾:通过本文的讲解,相信你已经对npn和pnp接近开关的接线方法有了更清晰的认识。
在实际应用中,需要根据具体的电路需求和元件参数来选择合适的接线方法,才能确保电路的正常工作和稳定性。
个人观点:在实际应用中,npn和pnp接近开关的接线方法需要特别注意极性的选择,以及与其他元件的匹配和电路设计的合理性。
在接线时,建议使用示波器等工具来检测电路的工作状态,确保接线正确,并对电路性能进行验证。
在接线方法的选择上,需要充分理解电子元件的特性和工作原理,从而更好地应用于实际的电路设计和电子设备中。
希望通过本文的讲解,你能够对npn和pnp接近开关的接线方法有更深入的理解,并能够灵活运用于你的实际项目中。
PNP光电开关接线图
PNP光电开关接线图
一、接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。
请见下图所示:
二、两线制接近开关的接线比较简单,接近开
关与负载串联后接到电源即可。
三、三线制接近开关的接线:红(棕)线接电
源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。
而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。
四、接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。
五、需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。
PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。
千万不要选错了。
六、两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。
三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。
七、有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线。
附图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
左图和右图都是NPN、PNP三极管开关形式的典型接法。
只有一个上拉下拉电阻的区别。
如果是GND~VCC的信号驱动,左图即可。
如果是强弱电流驱动,选右图。
NPN适合做低端驱动,PNP适合做高端驱动。
类似的NMOS和PMOS也是如此。
因此,为了获得相应的控制电位差,把npn的射级对地,你比较容易获得一个开启信号。
如果你把npn的集电极直接接vcc,那么你就需要VCC甚至VCC以上的信号才能开启,驱动起来不方便,更重要的是,随着负载上电压的变化,你的Ib不稳定。
因此一般来说,低端关在低端高端管在高端。
有没有特殊情况呢?是有的,比如npn在高端加自举电路维持一个稳定的ib。
暂不讨论。