单项式与多项式的乘法
《单项式与多项式相乘》教案
《单项式与多项式相乘》教案第一章:单项式与多项式的概念回顾1.1 回顾单项式的定义:一个数或字母的乘积称为单项式,如2x, 3y^2等。
1.2 回顾多项式的定义:由多个单项式通过加减运算组成的表达式,如ax^2 + bx + c等。
第二章:单项式与多项式的相乘规则2.1 介绍单项式与多项式相乘的规则:将单项式分别与多项式中的每一项相乘,将结果相加。
2.2 示例:假设要计算单项式3x与多项式2x^2 + 4x + 1相乘,则将3x分别与2x^2, 4x, 1相乘,将结果相加。
第三章:单项式与多项式相乘的计算步骤3.1 步骤1:将单项式与多项式中的每一项相乘。
3.2 步骤2:将乘积相加。
3.3 步骤3:简化结果,合并同类项。
3.4 示例:计算单项式-2x与多项式3x^2 + 5x 2相乘,按照步骤1、步骤2、步骤3进行计算。
第四章:单项式与多项式相乘的练习题4.1 设计一些练习题,让学生独立完成,加深对单项式与多项式相乘的理解。
4.2 练习题可以包括不同类型的单项式和多项式,以及不同难度的问题。
第五章:单项式与多项式相乘的应用题5.1 设计一些应用题,让学生将所学知识应用于实际问题中。
5.2 应用题可以涉及不同领域的实际问题,如面积、体积计算等。
第六章:单项式与多项式相乘的拓展概念6.1 介绍单项式与多项式相乘的拓展概念,如分配律的应用。
6.2 解释分配律:单项式乘以多项式中的每一项,将结果相加。
6.3 示例:使用分配律计算单项式4x与多项式(2x + 3)相乘。
第七章:单项式与多项式相乘的技巧与策略7.1 提供一些技巧与策略,帮助学生更高效地解决单项式与多项式相乘的问题。
7.2 技巧1:先乘除后加减,按照运算顺序进行计算。
7.3 技巧2:先简化多项式,再进行相乘。
7.4 示例:运用技巧解决复杂的单项式与多项式相乘问题。
第八章:单项式与多项式相乘的错误分析8.1 分析学生在单项式与多项式相乘中常见的错误。
八年级数学单项式与多项式的乘法1
式的每一项 ,再把所有的积相加 .即
m(a b c) ma mb mc (m, a,b,c都是单项式)
注意:
(1) 单项式与多项式相乘,结果是一 个多项式,其项数与因式中多项式的项 数相同.
(2) 计算时,要注意符号问题,多项式中 每一项都包括它前面的符号,同时还要注 意单项式的符号.
.
2.例题讲解.
例1 计算 : (1)0.5ab( 2 ab2 2ab); 3
(2)x(x2 xy y2 ) y(x2 xy y2 );
(3)4ab[2a2b (ab ab2 ) 3b].
解:
(1)0.5ab(2 ab2 2ab) 3
1 a b(2 a b2 2a b) 23
1 ab2c 1 a2b2 (8b3c6 )
24
a3b7c7.
2. 什么叫多项式? 几个单项式的代数和叫做多项式.
如: 2x2 x 1.它的项是: 2x2, x, 1.
3. 乘法对加法的分配律.
a(b c) ab ac
二.讲授新课.
计算:
2a(2a2 3a 1) (2a) 2a2 (2a)(3a) (2a) 1 4a3 6a2 2a. 1. 单项式与多项式相乘的法则 :
(4)( x2 )3 2x3[x3 x2 (4x 1)].
四.小结.
1.单项式与多项式相乘的依据是乘法 对加法的分配律.
2.单项式与多项式相乘,其积仍是多 项式,项数与原多项式的项数相同,注 意不要漏乘项.
3.积的每一项的符号由原多项式各项 符号和单项式的符号来决定,注意运用 去括号法则.
4ab[2a2b (ab 3b ab2 3b)]
单项式与多项式相乘
单项式与多项式相乘教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴ (-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如(99,河北)下列运算中,不正确的为()A. B.C. D.八、布置作业P112 A组 1.(2)(4)(6)(8),2,3.(2)参考答案:略单项式与多项式相乘。
单项式乘单项式、多项式乘多项式、同底数幂相除、单项式相除
单项式乘单项式:1、如=⨯=⨯⨯⨯=⨯⨯⨯101010105103725251553)()())((‗‗‗‗‗ 2、==∙∙∙=+abcc c bc acb a 252525)()(.‗‗‗‗‗一般的,单项式与单项式相乘,把它们的‗‗‗‗‗、‗‗‗‗‗‗‗‗‗‗分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
运用单项式乘单项式法则时可按以下三个步骤进行:①先把各因式的系数相乘,作为积的系数;②把各因式的同底数幂相乘,底数不变、指数相加;③只在一个单项式里出现的字母连同它的指数作为积的一个因式.单项式与单项式相乘,结果仍是单项式. 3、(1)计算:(-5a ²b )(-3a )=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗. (2)计算(2x )³(-5xy ²)=‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗.(3)())((10810436⨯⨯=‗‗‗‗‗‗‗‗‗‗‗‗ 4、计算(1));21())3222(4(y y xxy ∙∙-- (2)a abc abc 12()31()21-32∙∙-(³b )单项式乘多项式:1、p (a+b+c )=pa+pb+pc(根据乘法的分配律得到这个等式) 2、一般的,单项式与多项式相乘,就是用单项式去乘多项式的‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗ 3、计算:(1)(-4x ²)(3x+1) (2)ab 32(²-2ab)ab 21∙4、(x ²+ax+1)(-6x ³)的计算结果不含x4的项,则a=‗‗‗‗‗.5、已知单项式-ba y x 832+与单项式b a yx y -∙324的和是单项式,求这两个单项式的积.6、先化简再求值:(1)已知x ²-3=0, (2)已知02)1(2=+--b a ,求x (x ²-x )-x ²(5+x )+9的值. 求3ab ⎥⎦⎤⎢⎣⎡--∙b ab ab a 231(36的值.多项式乘多项式:1、(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq可以先把其中一个多项式如p+q,看成一个整体,运用单项式与多项式相乘的法则计算.总体上看,计算结果可以看作由a+b的每一项乘p+q的每一项,再把所得的积相加而得到的,即(a+b)(p+q) =ap+aq+bp+bq.一般的,多项式与多项式相乘,先用一个多项式的‗‗‗‗‗‗‗‗乘另一个多项式的‗‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗‗.2、计算:(1)(3x+1)(x+2);(2)(x³-2)(x³+3)-(x³)²+x²·x;3、若a+b=m,ab=-4,则(a-2)(b-2)= ‗‗‗‗‗‗‗;4、若多项式(x²+mx+n)(x²-3x+4)展开后不含x³和x²的项,则m=‗‗‗‗‗,n=‗‗‗‗.5、如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白的面积,其面积是‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.6、先化简,再求值:①(a+b)(a-b)+b(a+2b)-b²②已知x²-5x=3,求(x-1)(2x-1)-(x+1)²+1 其中a=1,b=-2; 的值.7、解方程(3x-2)(2x-3)=(6x+5)(x-1)-1.8、有若干张如图所示的正方形和长方形卡片,如果要拼成一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片‗‗‗‗‗‗张,B类卡片‗‗‗‗‗‗张,C类卡片‗‗‗‗‗‗张,请你在右下角的大矩形中画出一种拼法.同底数幂的除法:∵,)(a aa amnn m n nm ==∙+--(a ≠0,m ,n 都是正整数,并且m >n)∴aa anm nm-=÷.一般地,我们有 ∴aa anm n m-=÷(a ≠0,m ,n 都是正整数,并且m >n).即同底数幂相除,底数‗‗‗‗‗‗,指数‗‗‗‗‗‗.注意:(1)底数可以是单项式,也可以是多项式;(2)底数不能为0;(3)当三个数或三个以上的同底数幂相除时,也具有这一性质. 任何一个不等于0的数的0次幂都等于1,那么a =‗‗‗‗.(a ≠0). 1、 若(x-1)=1,则x取值范围是‗‗‗‗‗‗. 2、 计算(1);28x x ÷(2);)()(25ab ab ÷(3))-()()-25xy xy xy ÷÷-(. (4)(x-2y)³÷(2y-x)² 3、①若,4,3==a ay x则=-ayx ‗‗‗‗‗‗;②若,5,342==y x 则22yx -的值为‗‗‗‗‗‗.③若n m x xnm,(,8,4==是正整数),则xnm -3的值是‗‗‗‗‗‗.④求2416÷÷nm=‗‗‗‗.零指数幂:5、若(x-3)无意义,则(x²)³÷(x²·x)的值是‗‗‗‗‗‗. 5、计算:①)-3(0n (n≠3)=‗‗‗‗‗‗;②若1)2(0=-x ,则x的取值范围是‗‗‗‗‗‗; 6、若(2x+y-3)无意义,且3x+2y=8,则3x²-y=‗‗‗‗.7、计算: ①);3410(y y y÷÷ ②))()(5(32243aa a -÷⎥⎦⎤⎢⎣⎡∙ ③3(3)1()32330-÷++-8、①已知,27,9==a an m求anm 23-的值.②已知,6,433==y x求2792yx yx --+的值.单项式相除:∵4a ²x ³·3ab ²=12a ³b ²x ³, ∴12a ³b ²x ³÷3ab ²=4a ²x ³.一般的,单项式相除,把‗‗‗‗‗与‗‗‗‗‗‗‗‗‗‗分别相除作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的‗‗‗‗‗‗‗‗‗‗.1、①计算2x x 46÷的结果是‗‗‗‗‗‗‗‗; ②‗‗‗‗‗‗‗‗‗÷.56)65(32y a ax x y =- 2、已知,72223288b b a b a n m =÷那么m=‗‗‗‗‗‗‗,n=‗‗‗‗‗‗‗.3、计算()3()6(101046⨯÷⨯=‗‗‗‗‗‗‗‗‗‗‗‗‗;4、一个单项式与单项式ba n n 1136---的积为,172c ba n n +则这个单项式是‗‗‗‗‗‗‗‗‗‗‗.5、计算:(1)-8a ²b ³÷6a ²b ÷b ²; (2)(-0.3a ²b ³c ²)÷(-3ab )²·(10a ³b ²c ); (3);)2()2()2-(22123y x x y y x n n --++÷∙ (4));)103(10638⨯⨯÷6、已知,2,3==x xn m求x nm 23-的值.。
初二数学单项式与单项式、多项式相乘
单项式与单项式、多项式相乘
1.幂的运算性质有哪几条?
一、单项式与单项式相乘
问题光的速度约为3×105km/s,太阳光照射到地球上需要的时间大约是5×102s,你知道地球与太阳的距离约是多少吗?
如果将上式中的数字改为字母,比如a c5·b c2,怎样计算这个式子?
单项式与单项式的乘法法则:单项式与单项式相乘,把它们的、分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
注意:(1)系数相乘;
(2)相同字母的幂相乘;
(3)其余字母连同它的指数不变,作为积的因式.
例1 计算:
针对训练:
二、单项式与多项式相乘
如图,试求出三块草坪的总面积是多少?
如果把它看成一个大长方形,那么它的边长为________,面积可表示为_________.
单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式乘多项式的,再把所得的积.注意:(1)依据是乘法分配律
(2)积的项数与多项式的项数相同.
例1
例2
例3
计算
某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-2x+1,那么正确的计算结果是多少?。
1.4整式的乘法单项式与多项式相乘(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了单项式与多项式相乘的基本概念、步骤和在实际数学题中的应用。通过实践活动和小组讨论,我们加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在计算3x * (2x^2 - 4x + 1)的过程中,可能会将6x^3和-12x^2合并为-6x^2,导致结果错误。
(3)多项式乘以多项式的初步认识:本节课虽以单项式与多项式相乘为主,但学生需对多项式乘以多项式的概念有所了解,为后续学习打下基础。
针对以上教学难点,教师应采取以下方法帮助学生突破:
五、教学反思
在本次教学过程中,我深刻地感受到了学生在学习单项式与多项式相乘这一知识点时的困惑和挑战。首先,我发现学生们在符号处理上容易出现错误,尤其是在处理负号和指数时。这让我意识到,在后续的教学中,我需要更加重视对学生进行符号运算的训练,强调符号的运用规则。
另外,我在教学过程中发现,学生们在合并同类项这一环节也存在着一定的困难。为了帮助学生克服这一难点,我尝试通过举例和对比分析,让学生更直观地理解如何合并同类项。但我也认识到,仅仅依靠讲解和举例可能还不够,我需要在课后设计一些针对性的练习题,让学生在练习中掌握这一技能。
3.重点难点解析:在讲授过程中,我会特别强调符号处理和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与单项式与多项式相乘相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过具体的数学题目,让学生亲自操作,演示单项式与多项式相乘的基本原理。
乘法公式精选题(含答案)
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
单项式乘多项式
单项式乘多项式
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的.分别相乘,其余的字母连同它的指数不变,一起作为积的因式。
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
这时容易出现的错误是,将系数相乘与指数相加混滑。
②相同字母的幕相乘,运用同底数.的乘法运算性质。
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。
④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
《单项式与多项式相乘》教案
《单项式与多项式相乘》教案一、教学目标知识与技能:1. 学生能理解单项式与多项式相乘的概念。
2. 学生能够运用分配律正确地进行单项式与多项式的乘法运算。
过程与方法:1. 学生通过观察、分析、归纳,掌握单项式与多项式相乘的法则。
2. 学生通过小组合作、讨论,提高解决问题的能力。
情感态度与价值观:1. 学生培养对数学的兴趣,树立自信心。
2. 学生学会运用数学知识解决实际问题,培养应用意识。
二、教学重点与难点重点:1. 单项式与多项式相乘的概念。
2. 单项式与多项式相乘的法则。
难点:1. 理解并运用分配律进行单项式与多项式的乘法运算。
三、教学方法情境教学法、启发式教学法、小组合作学习法。
四、教学准备PPT、黑板、粉笔、练习题。
五、教学过程1. 导入新课教师通过PPT展示生活中的实例,引导学生思考如何计算单项式与多项式的乘法。
2. 探究新知(1)教师引导学生观察、分析实例,引导学生发现单项式与多项式相乘的规律。
(2)教师引导学生运用分配律,进行单项式与多项式的乘法运算。
(3)教师通过讲解,让学生理解并掌握单项式与多项式相乘的法则。
3. 巩固练习教师布置练习题,学生独立完成,集体讲解答案。
4. 课堂小结教师引导学生总结本节课所学内容,巩固单项式与多项式相乘的法则。
5. 课后作业教师布置课后作业,让学生进一步巩固所学知识。
六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考单项式与多项式相乘的问题。
2. 启发式教学:教师引导学生观察、分析、归纳,培养学生的逻辑思维能力。
3. 小组合作学习:鼓励学生之间互相讨论、交流,提高学生的问题解决能力。
4. 适时反馈:教师应及时关注学生的学习情况,对学生的疑问进行解答,确保学生掌握所学知识。
七、教学内容1. 单项式与多项式相乘的概念。
2. 单项式与多项式相乘的法则。
3. 运用分配律进行单项式与多项式的乘法运算。
八、教学步骤1. 导入新课:通过实例引入,引导学生思考单项式与多项式相乘的问题。
单项式乘以多项式的运算法则
单项式乘以多项式的运算法则单项式乘以多项式的运算法则是在代数运算中经常应用的一种运算方法,它依据了代数的基本运算法则和数学公式。
单项式是指仅有一个项的代数表达式,而多项式则是由多个项相加或相减而成的代数表达式。
单项式乘以多项式的运算法则是将单项式作为乘数,将多项式作为被乘数,在符号“×"(乘号)的作用下进行相乘运算的规则。
为了更好地理解单项式乘以多项式的运算法则,需要了解以下概念和基本运算法则:1. 单项式:单项式是指仅有一个项的代数表达式,通常由系数和字母的乘积组成。
例如,5x、-2xy、3x^2等都是单项式。
2. 多项式:多项式是由多个单项式相加或相减而成的代数表达式。
例如,4x^2 + 2xy - 3y^2、3a^3b - 5ab^2 + 2a^2b^3等都是多项式。
3.乘法法则:乘法法则是指两个数相乘的运算规则。
对于代数式的乘法,乘法法则适用于将两个代数式相乘的运算。
综上所述,单项式乘以多项式的运算法则可以总结如下:1.单项式乘以多项式的运算法则是应用乘法法则的基础上的运算。
即将单项式的每一项与多项式进行相乘。
例如,将单项式3x与多项式4x^2 + 2xy - 3y^2相乘,可以按照以下步骤进行计算:首先,将单项式3x与多项式中的每一项相乘:3x×4x^2=12x^33x × 2xy = 6x^2y3x × -3y^2 = -9xy^2然后,将得到的结果相加,得到最终的计算结果:12x^3 + 6x^2y - 9xy^22.对于多项式中每一项与单项式进行相乘的计算步骤相同,都是将单项式的每一项与多项式中的每一项进行相乘,然后将得到的结果相加。
例如,将多项式2a^2b + 3ab - 4b与单项式5x进行相乘,可以按照以下步骤进行计算:首先,将多项式中的每一项和单项式进行相乘:(2a^2b) × 5x = 10a^2bx(3ab) × 5x = 15abx(-4b) × 5x = -20bx然后,将得到的结果相加10a^2bx + 15abx - 20bx3.在乘法的过程中,需要注意字母的指数运算法则。
《单项式与多项式相乘》教学反思
《单项式与多项式相乘》教学反思《单项式与多项式相乘》是八年级数学第十四章整式的乘法的第二课时,它是在学习了单项式乘以单项式的基础上进行的。
这一课时,课本上的内容比较简单,但在互动过程中,也并不是很好,所以为了学生更好的掌握本节课所学内容,在本节课学习之前做了充分的复习与巩固。
这节课的教学设计现在来看是比较成功的。
在课本的内容上增加了一些练习,从复习什么是多项式?多项式的项?单项式与单项式的乘法法则以及注意事项。
之后利用图片引入单项式与单项式相乘问题。
再通过自学提纲指导,引导学生自学教材,总结、归纳出单项式与多项式相乘的法则。
并通过具体的习题达到熟练掌握的目的,并从中总结出应用法则计算时应注意的事项。
最后完成变式训练,检测学习效果。
从教学效果来看,学生配合到位、参与积极,很好的完成了本节课的教学,在对学生的回答问题上,也及时的给与了评价和鼓励,激发了他们对数学的兴趣。
学生在自主探究中掌握单项式与多项式相乘的法则,重点、注意点强调训练到位。
教学环节比较流畅,时间分配基本合理,教学效果良好。
在教学过程中仍有很多需要改进的地方。
1.在导入和学生自主学习环节之间的过渡有些生硬,显得不自然。
2.板书字体不是很好,板演时间有点短。
经过这一课时的教学,我深深感到,上好一节课,教师除了要仔细认真地钻研教材之外,还要全面分析了解学生,从学生的实际出发,认真备好教学中的每一个环节,真正做到以学生为主体,教师为主导的课堂教学,使学生能够真正的爱上数学,体验数学的乐趣。
《单项式与多项式相乘》教案
《单项式与多项式相乘》教案第一章:单项式与多项式的概念引入1.1 教学目标让学生了解单项式和多项式的定义。
能够区分单项式和多项式。
1.2 教学内容定义单项式和多项式。
举例说明单项式和多项式的区别。
1.3 教学步骤1. 引入单项式和多项式的概念。
2. 通过示例让学生理解单项式和多项式的定义。
3. 让学生练习区分单项式和多项式。
1.4 作业让学生完成课后练习,练习区分单项式和多项式。
第二章:单项式与多项式的乘法规则2.1 教学目标让学生掌握单项式与多项式相乘的规则。
2.2 教学内容单项式与多项式相乘的规则。
2.3 教学步骤1. 引入单项式与多项式相乘的概念。
2. 通过示例讲解单项式与多项式相乘的规则。
3. 让学生练习单项式与多项式相乘。
2.4 作业让学生完成课后练习,练习单项式与多项式相乘。
第三章:单项式与多项式的乘法运算3.1 教学目标让学生能够进行单项式与多项式的乘法运算。
3.2 教学内容单项式与多项式相乘的运算方法。
3.3 教学步骤1. 回顾单项式与多项式相乘的规则。
2. 通过示例讲解单项式与多项式相乘的运算方法。
3. 让学生练习单项式与多项式相乘的运算。
3.4 作业让学生完成课后练习,练习单项式与多项式相乘的运算。
第四章:单项式与多项式的乘法应用4.1 教学目标让学生能够应用单项式与多项式相乘的知识解决实际问题。
4.2 教学内容单项式与多项式相乘的应用。
4.3 教学步骤1. 引入单项式与多项式相乘的应用问题。
2. 通过示例讲解单项式与多项式相乘的应用方法。
3. 让学生练习解决实际问题,应用单项式与多项式相乘的知识。
4.4 作业让学生完成课后练习,解决实际问题,应用单项式与多项式相乘的知识。
第五章:单项式与多项式的乘法综合练习5.1 教学目标让学生能够综合运用单项式与多项式相乘的知识。
5.2 教学内容单项式与多项式相乘的综合练习。
5.3 教学步骤1. 引入单项式与多项式相乘的综合练习。
2. 通过示例讲解单项式与多项式相乘的综合方法。
单项式与多项式相乘
单项式与多项式相乘:
(1)单项式与多项式相乘就是用单项式去乘多项式的每一项,再把所得的积相加,即:m(a+b+c)=ma+mb+mc,实际上就是根据乘法对加法的分配律来进行计算。
也就是将单项式与多项式相乘转化为若干组单项式与单项式的乘法运算。
(2)单项式与多项式相乘的积仍是一个多项式,而且积的项数和乘式中的多项式的项数相同,在运算过程中不要漏乘造成漏项。
(3)运算时要注意符号,因为多项式由若干个单项式组成,其中每一个单项式都包括前面的符号,因此要注意确定积中每一项的符号。
(4)最后结果一般按某一字母的降幂或升幂排列。
单项式与多项式的乘法
由①,②表示同一量,所以m(a+b+c)=ma+mb+mc
问题4
m(a+b+c)=ma+mb+mc 中,m是单项式。(a+b+c) 是多项式,你能用语言叙述单项 式与多项式相乘该怎样计算吗?
怎样叙述单项式与多项 式相乘的法则?
m(a+b+c)=ma+mb+mc
(m、a、b、c都是单项式)
单项式与多项式相乘法则
问题1
怎样算简便?
1 1 1 6 ( ) 2 3 6
=6×
1
2
+6×
1 3
- 6× 6
1
=3+2-1 =4
问题2
问题 如果上述算式中的数字 换成字母m,a,b,c其中它们表示的 都是有理数,那么我们还可以仿 上式计算m(a+b+c)吗?
m
①
ma
② ③
mb mc
a c b a+b+c (1)大长方形的长是________面积 m(a+b+c) 是________ (2)①、②、③三个小长方形的 ma、mb、mc 面积分别是_____________. (3)由(1)、(2)得出等式 m(a+b+c)=ma+mb+mc _______________________.
二.填空
1.单项式与多项式相乘,就是用单项式去乘 相加 多项式的________,再把所得的积________ 每一项
4a-4b+4 2.4(a-b+1)=___________________
3.3x(2x-y2)=___________________
4.-3x(2x-5y+6z)=___________________
单项式与多项式的乘法(公开课)
单项式与多项式的区别与联系
区别
单项式只包含一个项,而多项式包含 有限个项;单项式的次数是各字母指 数之和,而多项式的次数是多项式中 次数最高的单项式的次数。
联系
单项式和多项式都是代数式的基本组 成部分;单项式可以看作是特殊的多 项式,即只包含一个项的多项式。
03 单项式与多项式的乘法运 算规则
单项式乘以单项式
注意事项
在分组时需要注意各组之间不能有重复项,且分组后每组 内必须能进行化简。
05 乘法运算的应用举例
在代数式化简中的应用
利用单项式乘多项式法则化简代数式
通过单项式与多项式中各项的相乘,可以将复杂的代数式化简为更简单的形式, 便于后续的计算和分析。
利用多项式乘多项式法则化简代数式
通过多项式与多项式中各项的相乘,可以进一步化简代数式,得到更简洁的结果 。
乘法运算的拓展与应用前景
更高阶的代数运算
单项式与多项式的乘法是代数学的基础,掌握这一技能有助于我们后续学习更高阶的代数运算,如因式分解、分式的 运算等。
在数学其他领域的应用
乘法运算在数学的其他领域也有广泛应用,如解析几何、微积分等,这些领域的问题往往需要运用单项式与多项式的 乘法进行求解。
在实际问题中的应用
除了在数学领域的应用外,单项式与多项式的乘法在实际问题中也有广泛应用,如物理、化学、经济学 等领域的问题往往需要运用这一技能进行建模和求解。
THANKS FOR WATCHING
感谢您的观看
为后续学习更复杂的数学知识 和解决实际问题打下基础。
乘法运算的重要性
乘法运算是数学中最基本的运算之一, 是学生学习数学的基础和关键。
掌握乘法运算可以提高学生的计算能 力和解决问题的效率。
单项式和多项式相乘的法则
单项式和多项式相乘的法则好嘞,今天我们聊聊单项式和多项式相乘的那些事儿。
哎呀,这可是个有趣的话题,听起来复杂,但其实说白了就是简单的数学游戏嘛。
想象一下,单项式就像一个单打独斗的小英雄,而多项式就像是一支大队伍,里面有好几个小伙伴。
它们合起来,嘿嘿,简直是“强强联手”的节奏呀!你瞧,单项式一般就一个变量,像是个小单人沙发,坐着刚刚好。
比如说3x,简单明了,没什么花里胡哨的。
可是多项式就不一样了,像是个聚会,里面有几个小伙伴,比如说2x² + 3x + 5,简直热闹得很。
每一个小伙伴都有自己的特点,组合在一起就是一幅生动的画卷。
单项式和多项式相乘的时候,我们得学会一个法则,叫“分配律”。
乍一听这名字,可能觉得有点儿高大上,其实就是把单项式“派发”给多项式里面的每一个小伙伴。
想象一下,就像过年时给每个人发红包,你得把自己的红包分给每一个人。
举个例子,假设我们要把3x这个单项式和2x² + 3x + 5这个多项式相乘,先把3x给每个小伙伴发红包,先是2x²,结果就是6x³,接着是3x,得到了9x²,最后是5,得出的结果是15x。
嘿,这就是3x和多项式相乘的结果了,真是一场盛大的派对!再来看看它们相乘的结果,6x³ + 9x² + 15x,这就像是一场令人振奋的音乐会,每一个项都在奏响自己的旋律。
数学的魅力就在于此,虽然过程看似繁琐,但结果往往让人心旷神怡,像一首美妙的乐曲,真让人忍不住想要拍手称赞。
再说了,这里还有个小秘密,单项式和多项式相乘的结果,都是单项式和多项式的组合,简直就像是“大鱼大肉”与“米饭”搭配在一起,分不开啊。
记得嘛,结果的每一项都是可以合并的,像是“好朋友”聚在一起,一起欢聚,搞得热热闹闹。
我们还得记住一个小细节,乘法的顺序不影响结果,这就像换个顺序给朋友送红包,最后还是你那一份,心意没变。
比如说3x乘以(2x² + 3x + 5),和(2x² + 3x + 5)乘以3x,结果都是一样的,都是6x³ + 9x² + 15x,真是太神奇了!这种特点在数学里可不少见,感觉真是让人感慨万千。