微流控芯片技术流程图
《微流控芯片》PPT幻灯片PPT
![《微流控芯片》PPT幻灯片PPT](https://img.taocdn.com/s3/m/799ad0c0bcd126fff7050bf2.png)
高效便捷的操作
• 荧光+微流控技术 • 支持全血样本 • 4~10分钟完成检测 • 美国原产试剂
Micropoint Confidential 微点公司内部文件,不得外传。
准确可靠的结果
• 结果与大型免疫测试
仪一致(如西门子、 贝克曼)
• mLabs®检测仪总体精 密度CV<10%;
Micropoint Confidential 微点公司内部文件,不得外传。
BBNNBPPNBBNPNBPPNBBPNNBPPNP
Micropoint Confidential 微点公司内部文件,不得外传。
mLabs微流控芯片的性能表现
• 精确控制(在CUTOFF时的CV为8%) • 提高检测速度(4~8分钟) • 适应不同的样品和试剂(成品率高) • 提供一个更好的参数控制反应(反应模型可设计) • 宽动态范围(pg/ml-μg/ml )
原来,在这种水母的体内有一种叫水母素的物质,在与钙离子结 合时会发出蓝光,而这道蓝光未经人所见就已被一种蛋白质吸收, 改发绿色的荧光。这种捕获蓝光并发出绿光的蛋白质,就是绿色 荧光蛋白。
Micropoint Confidential 微点公司内部文件M,icr不op得oi外nt传Co。nfidential 微点公司内部文件,不得外传。
Micropoint Confidential 微点公司内部M文ic件rop,oi不nt 得Co外nfi传de。ntial 微点公司内部文件,不得外传。
高效便捷的操作
• 德国设计 • 触摸屏设计 • 全中文界面
Micropoint Confidential 微点公司内部文件M,icr不op得oi外nt传Co。nfidential 微点公司内部文件,不得外传。
微流控芯片PPT课件
![微流控芯片PPT课件](https://img.taocdn.com/s3/m/fb719d647fd5360cba1adbe3.png)
芯片实验室应用和发展
• 核酸的扩增,分离及测序仍是微流控芯片 应用的主要领域。最早的关于核酸的应用 是在微流控芯片上实现DNA酶解和限制性 片断电泳,后来又发展了集成细胞或细菌 裂解,PCR扩增和电泳分离的微流控芯片 检测。在PCR技术上,PCR体系的反应体 积也从微升级降到纳升级,极大地缩短了 反应时间;
• 凡是能控制微通道闭合和开启状态的部件,并具有低泄漏, 低功耗,响应快,线性操作等性能,均能作为微流控芯片 中的微阀。 • 微反应器是一种单元反应界面为微米级的微型化学反应系 统,随着微反应器线性尺度的减小,对化学反应非常重要 的浓度,压力,密度,温度等梯度很快得到增加,从而使 混合和反应时间缩短到毫秒级以下。 • 生物样品分析如DNA杂交,酶反应,蛋白折叠等均涉及到 样品的快速均匀混合,反应物的混合程度直接影响着反应 的速率和产物的得率;微通道中通道较短,体积较小,反 应时间很短,反应相对难以完成,所以快速均匀混合显得 尤其重要,因此微混合器也就成为微流控集成设计的重要 组成部分。
操作程序简述
• 不同功能的微流控芯片的制作 • 样品处理 利用不同的方法如微过滤或双向 电泳分离细胞、DNA等样品; • 生物化学反应 依照微流控芯片的功能类型, 在控制温度的微量反应池中进行PCR扩增 DNA、酶反应或免疫反应; • 结果检测 经芯片杂交后,检测激光激发的 荧光信号或酶的显色反应。
0.3 % MC with EtBr
Buffer
Analysis
detection
Sample Separation of x174-Hae Ⅲ Digest
Gel electrophoresis
1-3h Capillary electrophoresis
sample
微流控芯片PPT课件
![微流控芯片PPT课件](https://img.taocdn.com/s3/m/c48b2f39f8c75fbfc67db26a.png)
2021
5
1.1 硅材料
优点
具有良好的化学惰性和热稳定性 良好的光洁度,加工工艺成熟, 可用于制作聚合物芯片的模具等
缺点
易碎,价格贵 不能透过紫外光 电绝缘性能不够好 表面化学行为较复杂
2021
6
1.2 玻璃石英
优点 缺点
很好的电渗性质 优良的光学性质 可用化学方法进行表面改性 可用光刻和蚀刻技术进行加工 难以得到深宽比大的通道 加工成本较高 封接难度较大
11
聚合物材料的表面要有合适的修饰改性方法
用于制作微流控芯片的高分子聚合物主要有三类:热塑 性聚合物、固化型聚合物和溶剂挥发型聚合物。
热塑性聚合物有聚酰胺、聚甲基丙烯酰甲酯、聚碳酸酯、 聚丙乙烯等;
固化型聚合物有聚二甲基硅氧烷(PDMS)、环氧树脂 和聚氨酯等,它们与固化剂混合后,经过一段时间固化变 硬后得到微流控芯片;
202154liga与准liga技术的主要特点对比特点liga技术准liga技术光源同步辐射x光普通紫外光波长为350450nm掩模板以金为吸收体的x射线掩模板标准铬掩模板一般100最高可达500一般10最高可达30胶膜厚度几十微米到1000m几微米到几十微米最高可达680生产周期较长较短生产成本较高较低约为liga技术的1100侧壁垂直度大于899大于88最小尺寸亚微米微米加工温度常温至50左右常温至50左右加工材料塑料金属陶瓷等塑料金属陶瓷等202155激光烧蚀法直接根据计算机cad的数据在金属塑料陶瓷等材料上加工复杂的微结构是一种非接触的加工方式
密接触,容易损坏掩膜与光
胶层。
2021
34
非接触式曝光
非接触式曝光是指掩膜和 基片上的光胶层不直接接触 实现图形复印曝光的方法。 ➢优点:克服接触式曝光容易 损坏掩膜和基片的缺点。 ➢缺点:由于光的衍射效应 会使图形的分辨率下降。
微流控ppt课件
![微流控ppt课件](https://img.taocdn.com/s3/m/a0fa055af18583d04864591c.png)
6
完全电动单通道辅助进样
完全电动单通道辅助进样简称电动进样,指 的是以电动力作为其上样、取样的驱动力, 通过电压切换,在十字交叉口处形成样品区 带并将其引入芯片样品处理通道的方法。
依据电压施加策略的不同,分为简单、悬浮、 门、夹流进样。
缺点:存在进样歧视效应,即由于样品中 各组分的电动淌度不一样,电动淌度大的 进样量大,导致区全压力单通道辅助进样
完全压力单通道辅助进样指的是仅利用压力将样品 区带引入样品处理通道的方法,简称压力进样。
在压力作用下流体的行为与样品组成、管壁带电状 态等基本无关,因此压力进样方法所引入的样品区 带在很大程度上可代表样品中各组分的真实组成, 但向微通道内施加压力操作繁琐,所需设备较精密、 较昂贵,所以该方法实际应用面较窄,主要集中于 芯片液相色谱类操作。
液滴的形成是水、油两相表面张力和剪切力 共同作用的结果。通过改变油相和水相的流 速,即改变表面张力和剪切力的相对大小, 可得到大小不同的液滴。
22
23
反应物的引入
直接进样:当反应比较简单时,可用注射泵 直接将反应物包入液滴,以液滴形成时的条 件作为反应的初始条件,若反应步骤较多, 可以在芯片下游利用旁路通道向液滴内加入 另一种反应物,开始下一步反应。
26
27
一次性试样引入
28
1.3 气/固样品进样
气态样品也可以直接进样。 固态样品在微粒化后,经气或液体携带可
被引入芯片样品处理通道。
29
30
2 样品处理技术
2.1 萃取
2.1.1 固相萃取 2.1.2 液液萃取
2.2 过滤 2.3 电泳 2.4 色谱
微流控芯片工艺流程
![微流控芯片工艺流程](https://img.taocdn.com/s3/m/bf961050640e52ea551810a6f524ccbff021ca74.png)
微流控芯片工艺流程
一、设计绘制版图
二、光刻掩模版制作
掩模板就是将上面设计好的特定几何图形通过一定的方法以一定的间距和布局做在基板上,制作各种功能图形并精确定位。
一般使用的方法:
1、接触式曝光机实现同比例的图形转移
2、Stepper曝光机台转移图形与版图尺寸实际比例一般是4:1或者5:1,实现将版图图形缩小4~5倍之后投射于目的片上。
3、电子束直写的技术实现表面nm图形的转移,借助掩模版对光刻胶的压力、同时辅助紫外曝光,最终实现纳米级图形的转移。
4、通过激光加工或者腐蚀的方式,实现表面镂空的图形设计
三、光刻、刻蚀
四、倒模
五、键合
回答完毕。
说一下微流控技术的使用流程
![说一下微流控技术的使用流程](https://img.taocdn.com/s3/m/186dfcebb04e852458fb770bf78a6529647d35ae.png)
微流控技术的使用流程什么是微流控技术?微流控技术是一种利用微小空间,以微量样品进行实验和分析处理的技术。
通过对微尺度下流体的操控,实现了对样本及试剂的高效混合、分离、反应等处理,具有样品量少、操作简便、实验速度快、成本低等优势。
微流控技术的使用流程使用微流控技术进行实验和分析处理,通常需要以下几个步骤:1. 设计与制备芯片微流控芯片是微流控技术的核心部件,其结构和功能的设计与制备直接决定了实验的成功与否。
在实验之前,首先需要根据实验需求,设计芯片的结构和功能。
可以使用专业的设计软件进行设计,如AutoCAD、Solidworks等。
设计完成后,将设计文件导入到芯片制造设备中,通过光刻、腐蚀等工艺步骤进行芯片制备。
制备完成的芯片可以直接用于后续的实验。
2. 样品与试剂的准备在进行微流控技术实验之前,需要准备好需要处理的样品和试剂。
样品可能是生物样本、化学物质等,而试剂通常是各种反应液。
样品和试剂的准备需要严格按照实验的要求进行,遵循原则是保证实验结果的准确性和可重复性。
3. 连接设备在进行微流控技术实验之前,需要将芯片与实验设备进行连接。
实验设备通常包括微流控芯片阀门控制设备、样品注射泵、显微镜等。
通过正确地连接这些设备,能够保证实验的顺利进行。
4. 样品的加载样品的加载是微流控技术实验的重要一步。
通过微流控芯片上的微通道和阀门结构,将样品精确地输入到芯片中。
在加载样品时,要注意控制样品的流速和流量,保证样品在芯片中的分布均匀。
5. 实验的操作及观察实验过程中,根据实验的需求和步骤,控制设备的操作参数。
可以通过操作电脑上的软件进行控制,也可以通过物理开关进行控制。
在实验过程中,需要通过显微镜等设备观察实验现象。
根据需要,可以进行实时的观测和记录实验结果。
6. 结果分析与数据处理实验完成后,需要对实验结果进行分析和处理。
根据实验目的,可以使用不同的数据处理方法,如图像分析、曲线拟合等。
通过对实验结果的分析,可以得到所需的数据和结论。
微流控芯片的制作
![微流控芯片的制作](https://img.taocdn.com/s3/m/f6f5ecb0cf84b9d529ea7aed.png)
PDMS-玻璃杂合芯片快速制作方法详解(初稿)前言本文以实战制作高度15~80µm的通道为例,详细介绍的PDMS-玻璃杂合芯片的快速制作方法.注意:进入芯片加工间需穿实验服,进行芯片制作时需带上无粉乳胶手套。
目录一、快速制作SU—8阳模步骤:1. 硅片清洗2.基片加热除湿3.倒胶匀胶4.SU-8基片前烘5.SU—8基片曝光6.SU—8基片后烘7.显影8.坚模二、制作PDMS玻璃杂合芯片步骤1.制备PDMS预聚体2.除去PDMS预聚体中的气泡3.倒胶及PDMS预聚体固化4.揭模,切边,打孔5.键合6.粘蓄液池(可选)三、PDMS-玻璃杂合芯片制作中其他相关细节详解一、快速制作SU—8阳模步骤:一、硅片清洗1.丙酮清洗目的:去除或软化硅片表面有机物操作:带上一次性PE手套。
硅片用玻璃棒隔开,将丙酮倒入烧杯,液面高于硅片顶端所在平面2cm左右,然后放入超声机,超声40分钟左右(对于旧硅片,可以升温超声,时间也可适当延长);丙酮清洗后,将丙酮小心倒入装丙酮的空瓶,标明“回收”.2、浓硫酸清洗目的:去除硅片表面的无机物和有机物操作:带上乳胶手套,再带上一次性EP手套,穿实验服。
丙酮清洗过的硅片,先用自来水多涮洗几次,较彻底地去除残余丙酮,避免硫酸和丙酮反应;然后将双氧水倒入烧杯至目标体积的1/4。
然后将烧杯移至合成间的通风厨,小心缓慢将浓硫酸倒入烧杯至目标体积,之后在烧杯上盖上一个玻璃培养皿以减少酸雾的挥发。
3个小时后,浓硫酸与双氧水反应基本结束,将烧杯移至超声机(注意作上浓硫酸的标记以避免别人误伤)超声30min左右,即可将浓硫酸回收.硫酸回收,一定要倒入装硫酸的瓶子,若没有,可用装过乙醇或丙酮的瓶子,但一定要多用自来水多清洗几次,以避免硫酸与之反应,发生安全事故。
将硫酸倒出时,注意倾倒角度,避免烧杯内的硅片和玻璃棒滑落.(此步相对较危险,一定要注意安全。
)3.去离子水清洗(18。
2)目的:清除浓硫酸和硅片表面一些残余小颗粒操作:带上一次性PE手套。
微流控芯片的使用方法
![微流控芯片的使用方法](https://img.taocdn.com/s3/m/0b7da8d0951ea76e58fafab069dc5022aaea46fd.png)
微流控芯片的使用方法一种用于单细胞分析的微流控芯片质谱系统及其使用方法,包括毛细管a、毛细管b、毛细管c;所述微流控制芯片有两个进口和一个出口,所述毛细管a和毛细管b一端分别与微量注射泵a和微量注射泵b出口端相连,另一端分别与微流控芯片的进口Ⅰ和进口Ⅱ相连;所述毛细管c一端与微流控芯片的出口相连,另一端通过商用雾化系统与电感耦合等离子体质谱仪相连;一种用于单细胞分析的微流控芯片质谱系统对单细胞进行检测的使用方法:步骤1,准备进样;步骤2,细胞的有序排列;步骤3,单细胞束形成;步骤4,单细胞液流雾化;步骤5,单细胞的定量分析;步骤6,重复测定。
不受限于特定流体条件限制,在宽范围的流速下形成稳定高效的单细胞排列。
权利要求书1.一种用于单细胞分析的微流控芯片质谱系统,其特征在于,包括微量注射泵a、微量注射泵b、微流控芯片、毛细管a、毛细管b、毛细管c;所述微流控制芯片有两个进口和一个出口,两个进口分别是进口Ⅰ和进口Ⅱ,所述毛细管a一端与微量注射泵a出口端相连,另一端与微流控芯片的进口Ⅰ相连,毛细管a作为细胞悬浮液进口通道;所述毛细管b一端与微量注射泵b出口端相连,另一端与微流控芯片的进口Ⅱ相连,毛细管b作为补充标准溶液进口通道;所述毛细管c一端与微流控芯片中位于汇合通道末端的出口相连,另一端通过商用雾化系统与电感耦合等离子体质谱仪相连,毛细管c作为单细胞出口通道。
2.根据权利要求1所述的一种用于单细胞分析的微流控芯片质谱系统,其特征在于:所述微流控制芯片还包括螺旋缠绕八圈的盘状微米级单细胞分离通道、螺旋缠绕一圈的微米级多功能通道及微米级汇流通道组成,所述微米级单细胞分离通道和微米级多功能通道在出口处相连形成微米级汇流通道,在微米级单细胞分离通道内均匀设置有微障碍物;微米级单细胞通道宽度为100~500μm,总长为8.9~44.5cm,微米级单细胞通道内微障碍物长度50~250μm,宽度为50~250μm,共计52~210个;微米级多功能通道宽度为200~1000μm,长度为1.0~5.0cm;微米级汇流通道宽度为200~500μm;整体高度均为50~100μm;微流控芯片的面积为0.3cm2~4.0cm2。
微流控芯片制作流程
![微流控芯片制作流程](https://img.taocdn.com/s3/m/bfcd8b4003768e9951e79b89680203d8ce2f6aa2.png)
微流控芯片制作流程
微流控芯片是一种基于微纳米技术的微型化流体控制系统,可以实现微小流体的精确控制和操作。
它具有体积小、成本低、操作简便等优点,被广泛应用于生物医学、化学分析、环境监测等领域。
下面介绍微流控芯片的制作流程。
1. 设计芯片结构
首先需要根据实际需求设计芯片的结构,包括通道、阀门、混合器等。
设计软件可以使用AutoCAD、SolidWorks等,也可以使用专业的微流控芯片设计软件,如COMSOL Multiphysics、CoventorWare 等。
2. 制作掩膜
将设计好的芯片结构转化为掩膜,掩膜是用于制作芯片的模板。
掩膜可以使用光刻技术制作,即将芯片结构图像投射到光刻胶上,然后通过光刻和蚀刻等步骤制作出掩膜。
3. 制作芯片
将掩膜放置在芯片材料上,如玻璃、聚合物等,然后通过蚀刻、离子注入等步骤制作出芯片结构。
制作过程中需要注意控制温度、时间、压力等参数,以保证芯片结构的精度和质量。
4. 封装芯片
将制作好的芯片与外部设备连接,如泵、检测器等,然后进行封装。
封装可以使用胶水、热熔膜等材料,以保证芯片的稳定性和密封性。
5. 测试芯片
制作好的芯片需要进行测试,以验证其性能和功能。
测试可以使用显微镜、荧光显微镜、高压液相色谱等设备,对芯片的流体控制、混合、分离等功能进行测试。
以上就是微流控芯片的制作流程,其中每个步骤都需要精细的操作和严格的控制,以保证芯片的质量和性能。
随着微纳米技术的不断发展,微流控芯片将会在更多的领域得到应用。
微流控芯片制作流程
![微流控芯片制作流程](https://img.taocdn.com/s3/m/8a7cdb1459fb770bf78a6529647d27284b733733.png)
微流控芯片制作流程
微流控芯片是一种小型化、高灵敏度和高通量的实验平台,广泛应用于微生物学、生物医学、化学分析等领域。
其制作流程主要包括以下步骤:
1.芯片设计:包括芯片结构、流道形状、流速计算等。
2.芯片制作:主要有光刻、电子束曝光、薄膜沉积等步骤。
其中光刻是最常用的制作方法,通过将芯片表面涂覆光刻胶,然后使用光刻机进行曝光和显影,以形成所需的芯片结构。
3.芯片表面修饰:包括化学修饰、生物修饰等,可以在芯片表面引入生物分子或化学分子,以实现特定的实验目的。
4.芯片封装:将制作好的芯片与压力控制系统、显微镜等设备进行连接和封装,以实现实验的自动化和可重复性。
5.实验操作:在芯片内加入样品和试剂,通过压力控制系统控制流速和流动方向,进行实验操作并观察结果。
微流控芯片制作流程繁琐,需要多种工艺的配合和精密的设备,但其具有高效、经济、低样品消耗等优点,在科研和临床应用中具有广泛的应用前景。
- 1 -。
微流控芯片PPT课件
![微流控芯片PPT课件](https://img.taocdn.com/s3/m/88ac23f8f021dd36a32d7375a417866fb84ac081.png)
在化学分析领域的应用
化学合成
药物分析
微流控芯片可用于小规模和高通量的化学 合成,提高合成效率和产物纯度。
用于药物的分离、纯化和分析,提高药物 分析的准确性和灵敏度。
环境监测
食品安全
用于检测水、土壤、空气等环境中的有害 物质和污染物。
用于检测食品中的农药残留、重金属等有 害物质。
在环境监测领域的应用
感谢您的观看
THANKS
食品安全
用于快速检测食品中的有害物质,提高食品安全监管效率。
微流控芯片面临的挑战与解决方案
制造工艺
目前微流控芯片制造工艺成本较高,需要进一步降低成本,提高 生产效率。
流体控制
微流控芯片中的流体控制精度和稳定性有待提高,需要加强相关技 术研发。
交叉污染
不同样本间的交叉污染问题需引起重视,应加强清洗和隔离技术的 研究。
柔性电子技术的不断发展,将推动微 流控芯片在可穿戴设备、生物医学等 领域的应用。
智能化
通过与人工智能、机器学习等技术结 合,微流控芯片将具备更强的数据处 理和决策能力。
微流控芯片在未来的应用前景
生物医学研究
用于疾病诊断、药物筛选和个性化医疗等领域。
环境监测
用于实时监测空气、水质等环境参数,保障公共卫生安全。
04 微流控芯片的应用实例
在生物医学领域的应用
疾病诊断
微流控芯片可用于快速检测和诊断各 种疾病,如癌症、传染病等。
药物筛选
通过微流控芯片技术,可以快速筛选 和测试新药的有效性和安全性。
细胞培养和分化
微流控芯片可以模拟细胞生长和分化 的微环境,用于研究细胞生物学和再 生医学。
基因检测
利用微流控芯片进行基因突变、基因 表达等检测,有助于疾病的预防、诊 断和治疗。
微流控芯片制作流程
![微流控芯片制作流程](https://img.taocdn.com/s3/m/a921dbcb49649b6648d747ba.png)
微流控芯片(PDMS芯片)制作流程:
1、需相应的芯片结构图纸(广泛使用CAD制图软件)用菲林做出掩膜;
2、根据掩膜的大小(一般用
3、4英寸较多)配对相应的硅片做模具基底;
3、用匀胶机把光刻胶(SU-8)甩到想要的通道结构高度后利用掩膜与紫外光刻原理把光刻胶暴光后,(透光与不透光在显影后的反应是?)
4、硅片模具做出来后,放入较平的容器里,四周最好包好铝膜(方便后面剥落),PDMS预聚物的AB胶比例是10:1,用真空搅拌器搅拌均匀并抽掉里面的空气后,倒入适当的PDMS。
5、之后放入烘箱80度烘30min,达到凝固后晾干后剥落,再进行之前CAD图纸的标记切割线进行切割。
6、切割好半成品(有通道结构)后,用打孔器进行打孔。
7、然后在凝固一个平整的PDMS(载玻片),切与芯片大小相同,进行等离子表面活化,最后键合后再进行65度烘箱烘烤3个小时以上(烘的时间越长,键合强度越高)
最终解释权归苏州汶颢微流控技术股份有限公司所有
|苏州汶颢微流控技术股份有限公司1。
微流控芯片及分离多种细胞的系统的制作流程
![微流控芯片及分离多种细胞的系统的制作流程](https://img.taocdn.com/s3/m/e5fcaf14d4d8d15abf234e97.png)
本技术新型提供一种微流控芯片,包括基片和盖片,基片表面一端依次设有鞘液入口及细胞悬浮液入口,基片表面中部相对设有两个连续相油入口,基片表面另一端设有五个液滴出口,鞘液入口及细胞悬浮液入口上均连接有微通道,两个连续相油入口连接的微通道与并联通道形成十字交叉,从十字交叉处连接出的微通道呈辐射状分成五条分离通道分别与五个液滴出口相连接,十字交叉端与五条分离通道的汇聚端之间连接的微通道上设有液滴观察区;五条分离通道的汇聚端的两侧相对设置有两个分离微电极。
本技术新型还提供一种使用所述微流控芯片的分离多种细胞的系统。
本技术新型能提高细胞分选效率和降低成本。
权利要求书1.一种微流控芯片,包括基片和盖片,其特征在于,基片表面一端依次设有鞘液入口(11)及细胞悬浮液入口(12),基片表面中部相对设有两个连续相油入口(13),基片表面另一端设有五个液滴出口(14),鞘液入口(11)及细胞悬浮液入口(12)上均连接有微通道(15),从鞘液入口(11)连接出的微通道(15)分成两条支路并联至细胞悬浮液入口(12)的微通道(15)的两侧,鞘液入口(11)的微通道(15)与细胞悬浮液入口(12)的微通道(15)合并形成并联通道(16),两个连续相油入口(13)连接的微通道(15)与并联通道(16)形成十字交叉,从十字交叉处连接出的微通道(15)呈辐射状分成五条分离通道(17)分别与五个液滴出口(14)相连接,十字交叉端与五条分离通道(17)的汇聚端之间连接的微通道(15)上设有液滴观察区(18),液滴观察区(18)的微通道(15)形成多通道结构;五条分离通道(17)的汇聚端的两侧相对设置有两个分离微电极(19),基片上设有微通道(15)的表面与盖片键合形成所述微流控芯片。
2.根据权利要求1所述的微流控芯片,其特征在于,所述微通道(15)的宽度为80至380微米。
3.根据权利要求1所述的微流控芯片,其特征在于,所述微通道(15)的深度为80至100微米。
一张图看懂微流控芯片产业ppt课件
![一张图看懂微流控芯片产业ppt课件](https://img.taocdn.com/s3/m/ad4b1e662cc58bd63186bdc0.png)
14
08 微流控芯片相关企业
国内企业
目前,国内也涌现了大量初创微流控企业,主要集中分布在北上深及其周边地区,企业类型 分为芯片设计制造、分子诊断、细胞检测、免疫诊断、生化检测以及综合性企业,其中上市 公司也有近十家,但是国内微流控企业真正商业化的产品还屈指可数,与国外企业在微流控 产品商业化上仍有较大差距。
精选课件
PDMS芯片
玻璃芯片
8
07 微流控芯片的应用
历经二十多年的研究与发展,如今微流控芯片的含义已越来越丰富,其应用领域也从分析化
学平台扩展至医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂
的检测、微化工等众多新领域。
分子诊断
医学研究
药物合成
蛋白质晶型筛选
微流控芯片
3D打印
9
4
精选课件
05 微流控芯片的分类
按应用领域
1.环境分析与监测类芯片
空气质量检测芯片
水质实时监测芯片
2.细胞培养与研究类芯片
重金属监测类芯片
有毒有害化合物类
细胞层受创愈合研究芯片
精选课件
细胞相互作用研究
流式细胞计数芯片
细胞常规培养芯片
5
05 微流控芯片的分类
按应用领域
3.化学分析类微流控芯片
芯片毛细管电泳类
微化工
传统化工过程中的“三传一反”在微尺度下可得到强化,基于微流控技术发展起来的微化工 ,可实现化工过程“更好”、“更快”、“更安全环保”、“更经济”的优势,有望解决传 统化工存在的设备投资大、运行和维护成本高、过程能耗、安全系数高等问题。
“更好”
“更快”
高收率 更好的选择性
高时空收率 高生产能力