数学人教A版《立体图形的直观图》优秀课件1
合集下载
人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)
知识梳理
一、 投影与直观图
1.投影的定义 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这 种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
2.直观图 (1)直观图是观察者站在某一点观察一个空间几何体获得的图形. (2)立体图形的直观图通常是在平行投影下得到的平面图形.
Hale Waihona Puke ① ② ③ ④ ⑤图8-2-4
A.①② B.①②③ C.②⑤ D.③④⑤
2. C 解析:由斜二测画法知,长方形的直观图应为平行 四边形,且锐角为45°,故②⑤正确.
训练题3 如图8-2-5所示是水平放置的三角形的直观图, A′B′∥y′轴,则原图中△ABC是 ( )
下列叙述中,正确的个数为
()
斜二测画法的位置关系与2.度用量斜特征二用测口诀画简法记为画:空间几何体的直观图的具体规则
了解空间几何体的不同表现形式.
用斜二测画法画出正六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面的投影是正六边形的中心O.
九十度,画一半,横不变,纵减半,
第八章 立体几何初步
三、用斜二测画法画空间几何体的直观图
原图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度变为原来的一半”的规则,确定平面图
形的关键点.
点拨:斜二测画法中“斜二测”的意思:
(1)直观图是观察者站在某一点 观 察 一个 空 间几何体获得的图形.
1
C.
① ②
训练题1.下列叙述中,正确的个数为 ( )
①相等的角,在直观图中仍相等;
②长度相等的线段,在直观图中长度仍相等;
③若两条线段平行,则在直观图中对应的线段仍平行;
高一数学(人教A版)立体图形的直观图-2ppt课件
点.
A
O
Bx
例题 已知圆锥的底面半径为1cm,轴长为2cm,画出
它的直观图.
(4)成图.连接SA,SB,整理得到圆锥的直观图.
zS
S
A
O
Bx
O
例题 画一个球的直观图.
球的直观图画法:画球的直观图,一般需要画出球的轮廓 线,它是一个圆.同时还经常画出经过球心的截面圆,它 们的直观图是椭圆,用以衬托球的立体性.
取线段 BD,使BODO1.5,连接 AB,
y
AD,CB,CD 就得到底面的直观图.
D
AO
Cx
B
练习 已知一直棱柱的底面是菱形,两条对角线
AC,BD相交于点O,且 AC 8,BD 6.侧棱长为
4,画出这个几何体的直观图.
(3)画侧棱.在 z 轴正半轴上取 一 点 O , 使 OO , 过 点 A,B,C,D分别作 z 轴的平行线, 并在这些平行线上分别截取长度
z A
B O
C
Ay
BO
Cx
(4)成图.连接 A,B,C,整理就得到正三棱柱的直观
图.
z A
A
B
C
B
C
Ay
BO
Cx B
A
C
【小结】
画法: 画轴
画底面 画侧棱
成图
事实上,现实世界中的物体表示的几何体,还有柱、 锥、台、球等简单几何体,以及大量的简单组合体.对 于这些立体图形,我们如何画出它的直观图呢?下面举 例说明.
六棱柱的直观图.
z
A F
E D
B C
A F
E D
B C
F
AO
B
y
E
Dx
立体图形的直观图_课件
立体几何中常用中学学过的平行投影(斜投影)来画空间图形 的直观图,这种画法叫斜二测画法.
投影规律
平行性不变,但形状、长度、夹角会改变 ;平行直线段或同一直线上的两条线段的比 不变; 在太阳光下,平行于地面的直线在地面上的 投影x轴和y轴,两轴相交于点O;
② 作x'轴,y'轴,两轴相交于O',且使∠x'O'y'=45'或135' ;
③ 已知图中平行于x轴的线段仍与x'轴平行,且保持原长度不
变;平行于y轴的线段仍与y'轴平行,长度变为原来的一半;
④ 连接其余线条,擦去多余的辅助线.
斜二测画法的主要作用是为了画空间几何体
.
四个步骤:取面、画轴、平行性、长
(1)矩形;
(2)平行四边形:
(3)正三角形;
(4)正五边形.
斜二测画法画几何体的主要步骤 :
四个步骤:取面、画轴、平行性、长 度
2.已知长方体的长、 宽、高分别是3cm, 2cm, 1. 5 cm,用斜 二测画法画出它的直观图.
分析:画棱柱的直观图,通常将其底 面水平放置.利用斜二测画法画画出 底面,再画出则棱,就可以得到棱 柱的直观图.长方体是一种特殊的棱 柱,为画图简便,可取经过长方体 的一个顶点的三条棱所在直线作为x 轴、y轴、z轴.
(3)画侧棱.在心轴正半轴上取线段AA'.使AA'=1.5cm.过B,C,D各点分别 作二轴的平行线,在这些平行线上分别截取1.5 cm长的线段BB', cC', DD'. (4) 成图.顺次连接A'. B'. C". D',并加以整理(去掉辅助线,将被遮挡的部 分改为虚线)。就得到长方体的直观图了.
新人教A版必修二 8.2 立体图形的直观图 课件(26张)
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)在斜二测画法中,各条线段的长度都发生了改 变.( ) (2)在几何体的直观图中,原来平行的直线仍然平 行.( ) (3)在平面图形的直观图中,原来垂直的直线仍然垂 直.( )
解析:(1)错误.因为在斜二测画法中,原来与y轴 垂直的线段,其长度不变.
ABCDE的直观图A′B′C′D′E(如图③).
归纳升华 1.在画水平放置的平面图形的直观图时,选取适 当的坐标系是关键,一般要使得平面多边形尽可能多的 顶点在坐标轴上,以便于画点. 2.画平面图形的直观图时,首先画与坐标轴平行 的线段(平行性不变),与坐标轴不平行的线段则通过与 坐标轴平行的线段来确定它的两个端点,然后连接成线 段.
[学习目标] 1.了解斜二测画法的概念(重点). 2. 会用斜二测画法画出一些简单平面图形和立体图形的直 观图(重点、难点). 3.了解空间图形的不同表示形式及 不同形式间的联系.
[知识提炼·梳理] 1.用斜二测画法画水平放置的平面图形的直观图 的步骤
温馨提示 斜二测画法中,“斜”是指直角坐标系 xOy变成斜坐标系x′O′y′,使∠x′O′y′=45°(或135°).
2.空间几何体直观图的画法 (1)与平面图形的直观图画法相比多了一个z轴,直观 图中与对应的是z′轴. (2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和 x′O′z′表示竖直平面. (3)已知图形中平行于z轴(或在z轴上)的线段,在其直 观图中平行性和长度都不变. (4)成图后,去掉辅助线,将被遮挡的部分改为虚线.
[变式训练] 画如图所示水平放置的直角梯
形OBCD的直观图.
解:(1)在已知的直角梯形OBCD中,以底边OB所在
8.2 立体图形的直观图 课件(1)-人教A版高中数学必修第二册(共31张PPT)
正六边形ABCDEF水平放置的直观图 A B C D E F 。
y
F ME
A
O Dx
B NC
规则:
横同竖半
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,
把它们画成对应的 x' 轴和 y'轴,两轴相交于O,且使 x' o' y ' 45 0 或135 0 ,它们
确定的平面表示水平面;
3.三视图与直观图联系,平行投影与中心投影不同 表现形式
人教A版必修第二册
Z
y
D
A
C
Bx
3 画侧棱.在z轴正半轴上取线段AA,使AA=1.5cm, 过B,C,D各点
分别作z轴的平行线,并在这些平行线上分别截取1.5cm长的 线段BB,CC,DD.
Z
D
A
D
y C
B C
A
B
x
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
它的直观图。
解:画法:
1画轴.画x轴,y轴,z轴,三轴交于点O,
使xOy=45,xOz 90.
Z
y
O
x
2 画 底 面 .在 x轴 正 半 轴 上 取 线 段 AB,使 AB=3cm;在 y
轴上取线段AD,使AD=1cm.过点B作y轴的平行线, 过点D作x轴的平行线,设它们的交点为C,则平行 四边形ABCD就是长方体的底面ABCD的直观图。
常用的一些空间图形的平面画法
练习 用斜二测画法画水平放置的平面图形的直观图时,下列结论是否正确。
(1) 相等的线段在直观图中仍然相等。 (2) 平行的线段在直观图中仍然平行。 (3)一个角的直观图仍然是一个角。 (4) 相等的角在直观图中仍然相等。
y
F ME
A
O Dx
B NC
规则:
横同竖半
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,
把它们画成对应的 x' 轴和 y'轴,两轴相交于O,且使 x' o' y ' 45 0 或135 0 ,它们
确定的平面表示水平面;
3.三视图与直观图联系,平行投影与中心投影不同 表现形式
人教A版必修第二册
Z
y
D
A
C
Bx
3 画侧棱.在z轴正半轴上取线段AA,使AA=1.5cm, 过B,C,D各点
分别作z轴的平行线,并在这些平行线上分别截取1.5cm长的 线段BB,CC,DD.
Z
D
A
D
y C
B C
A
B
x
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
它的直观图。
解:画法:
1画轴.画x轴,y轴,z轴,三轴交于点O,
使xOy=45,xOz 90.
Z
y
O
x
2 画 底 面 .在 x轴 正 半 轴 上 取 线 段 AB,使 AB=3cm;在 y
轴上取线段AD,使AD=1cm.过点B作y轴的平行线, 过点D作x轴的平行线,设它们的交点为C,则平行 四边形ABCD就是长方体的底面ABCD的直观图。
常用的一些空间图形的平面画法
练习 用斜二测画法画水平放置的平面图形的直观图时,下列结论是否正确。
(1) 相等的线段在直观图中仍然相等。 (2) 平行的线段在直观图中仍然平行。 (3)一个角的直观图仍然是一个角。 (4) 相等的角在直观图中仍然相等。
(人教A版)《立体图形的直观图》PPT课件-ppt
(2)平行不变:已知图形中平行于 x 轴或 y 轴的线段,在直观图中分 别画成平行于__x_′_轴__或__y_′_轴__的线段.
(3) 长 度 规 则 : 已 知 图 形 中 平 行 于 x 轴 的 线 段 , 在 直 观 图 中 ___保__持_原__长_度__不_变____________,平行于 y 轴的线段,长度为原来的 __一__半__.
又原直角梯形面积为
S′=12·2h(CB+OA)=h(C′B′+O′A′)=4S2=2 2S. 所以梯形 OABC 的面积为 2 2S.故选 C.
法二:由
S
= 直观图
2 4S
, 原图
可得 S 梯形 OABC=4S2=2 2S,故选 C.
4.若把一个高为 10 cm 的圆柱的底面画在 x′O′y′平面上,则圆 柱的高应画成( ) A.平行于 z′轴且大小为 10 cm B.平行于 z′轴且大小为 5 cm C.与 z′轴成 45°且大小为 10 cm D.与 z′轴成 45°且大小为 5 cm 解析:选 A.平行于 z 轴(或在 z 轴上)的线段,在直观图中的方 向和长度都与原来保持一致.
(1)直观图的还原技巧
由直观图还原为平面图的关键是找与 x′轴、y′轴平行的直线或
线段,且平行于 x′轴的线段还原时长度不变,平行于 y′轴的线
段还原时放大为直观图中相应线段长的 2 倍,由此确定图形的
各个顶点,顺次连接即可.
(2)直观图与原图面积之间的关系
若一个平面多边形的面积为 S,其直观图的面积为 S′,则有 S′
EF,CD 綊 EF,且使得 AB 的中点为 G,CD 的中点为 H,连 接 AD,BC,这样就得到了正四棱台的下底面 ABCD 的直观图.
立体图形的直观图【新教材】人教A版高中数学必修第二册课件
[分析] (1)如何建立直角坐标系. 对斜二测画法理解不透,导致判断错误.
线为y轴,两轴相交于O(如图1所示),画相应的x′轴和y′轴、z′轴,三 (1)画底面,这时使用平面图形的斜二测画法即可.
(3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (3)有些线段的度量关系也发生变化.
3[分.析掌]握轴直利观用交图斜与二于原测图画、法O直的′观规图则与,将三直视观使图图的复∠关原系. x. ′O′y′=45°,∠x′O′z′=90°(如图2所示).
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
[归纳提升] 简单几何体直观图的画法规则: (1)画轴:通常以高所在直线为z轴建系. (2)画底面:根据平面图形的直观图画法确定底面. (3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (4)连线成图.
返回导航
第八章 立体几何初步
学法指导
1.结合初中所学的平行投影 方法,把握图形投影的规则. 2.结合常见平面图形感受其 直观图并体会斜二测的含义.
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
必备知识·探新知
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
知识点1 用斜二测画法画水平放置的平面图形的直观图的步骤
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
关键能力·攻重难
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
题型探究 题型一 水平放置的平面图形直观图的画法
典例 1 画正五边形的直观图. [分析] (1)如何建立直角坐标系. (2)确定不在坐标轴上的点. (3)建立坐标系xOy后,B、E两点不在坐标轴上或平行于坐标轴的直 线上,故需作BG⊥x轴于G,EH⊥x轴于H.
线为y轴,两轴相交于O(如图1所示),画相应的x′轴和y′轴、z′轴,三 (1)画底面,这时使用平面图形的斜二测画法即可.
(3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (3)有些线段的度量关系也发生变化.
3[分.析掌]握轴直利观用交图斜与二于原测图画、法O直的′观规图则与,将三直视观使图图的复∠关原系. x. ′O′y′=45°,∠x′O′z′=90°(如图2所示).
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
[归纳提升] 简单几何体直观图的画法规则: (1)画轴:通常以高所在直线为z轴建系. (2)画底面:根据平面图形的直观图画法确定底面. (3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (4)连线成图.
返回导航
第八章 立体几何初步
学法指导
1.结合初中所学的平行投影 方法,把握图形投影的规则. 2.结合常见平面图形感受其 直观图并体会斜二测的含义.
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
必备知识·探新知
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
知识点1 用斜二测画法画水平放置的平面图形的直观图的步骤
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
关键能力·攻重难
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
题型探究 题型一 水平放置的平面图形直观图的画法
典例 1 画正五边形的直观图. [分析] (1)如何建立直角坐标系. (2)确定不在坐标轴上的点. (3)建立坐标系xOy后,B、E两点不在坐标轴上或平行于坐标轴的直 线上,故需作BG⊥x轴于G,EH⊥x轴于H.
数学人教A版(2019)必修第二册8.2立体图形的直观图(共25张ppt)
,两点.这个椭圆就是圆柱的下底面.。
③ 画上底面:在上截取点′,使′ = 3 ,过点
’作平行于轴的轴′′.类似下底面的作法作出圆
柱的上底面。
′
′
O
z
′
′ ′
′
④ 成图:连接′,′,整理得到圆柱的直观图。
O
新知探索
对于圆锥的直观图,一般先画圆锥的底面,再借助于圆锥的轴确定圆锥
们的交点为,则□ABCD就是长方体的底面的直观图;
Z
D
③ 画侧棱:在轴正半轴上取线段’,使′ = 1.5,过,,各点分
别作轴的平行线,在这些平行线上分别截取1.5长的线段′,′,
′;
④ 成图:顺次连接′,′,′,′,并加以整理 (去掉辅助线,将被遮挡的
新知探究
思考1:如下图,矩形窗户在阳光照射下留在地面上的影子是什么形状?眺
望远处成块的农田,矩形的农田在我们眼里又是什么形状?
新知探究
思考2:为什么是这些形状?能用平行投影知识加以解释吗?
A
投射线
B
S(投影方向)
C
O
C1
B1
投影
投影面
在一束平行光线照射下形成的投影,叫做平行投影. 平行投影的
投影线是平行的.
练习巩固
例2:已知长方体的长、宽、高分别是3cm,2cm,1.5cm,用斜二测画法画出它
的直观图
① 画轴:如图,画轴、轴、轴,三轴相交于点0(),使∠0 = 45°,
∠ =90°;
② 画底面:在轴正半轴上取线段,使 = 3;在轴正半轴上取线段
,使 = 1。过点作轴的平行线,过点作轴的平行线,设它
辨析1:判断正误.
③ 画上底面:在上截取点′,使′ = 3 ,过点
’作平行于轴的轴′′.类似下底面的作法作出圆
柱的上底面。
′
′
O
z
′
′ ′
′
④ 成图:连接′,′,整理得到圆柱的直观图。
O
新知探索
对于圆锥的直观图,一般先画圆锥的底面,再借助于圆锥的轴确定圆锥
们的交点为,则□ABCD就是长方体的底面的直观图;
Z
D
③ 画侧棱:在轴正半轴上取线段’,使′ = 1.5,过,,各点分
别作轴的平行线,在这些平行线上分别截取1.5长的线段′,′,
′;
④ 成图:顺次连接′,′,′,′,并加以整理 (去掉辅助线,将被遮挡的
新知探究
思考1:如下图,矩形窗户在阳光照射下留在地面上的影子是什么形状?眺
望远处成块的农田,矩形的农田在我们眼里又是什么形状?
新知探究
思考2:为什么是这些形状?能用平行投影知识加以解释吗?
A
投射线
B
S(投影方向)
C
O
C1
B1
投影
投影面
在一束平行光线照射下形成的投影,叫做平行投影. 平行投影的
投影线是平行的.
练习巩固
例2:已知长方体的长、宽、高分别是3cm,2cm,1.5cm,用斜二测画法画出它
的直观图
① 画轴:如图,画轴、轴、轴,三轴相交于点0(),使∠0 = 45°,
∠ =90°;
② 画底面:在轴正半轴上取线段,使 = 3;在轴正半轴上取线段
,使 = 1。过点作轴的平行线,过点作轴的平行线,设它
辨析1:判断正误.
8.2 立体图形的直观图课件ppt
=4×2 2=8 2.故选 D.
3.水平放置的△ABC的直观图如图所示,则△ABC的面积为
.
答案 2 解析 把水平放置的△ABC的直观图还原为原图形,如图所示,则△ABC的面
1
积为S= ×22×2=2.
4.画出水平放置的四边形OBCD(如图所示)的直观 图.
解:(1)过点C作CE⊥x轴,垂足为点E,如图1所示, 画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图2 所示.
3 4
cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,
设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.
(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取
1 cm长的线段AA',BB',CC',DD'.
(4)成图.顺次连接A',B',C',D',并加以整理(去掉辅助线,将被遮挡的部分改为
微练习
用斜二测画法画长、宽、高分别为2
cm、
3 2
cm、1
cm的长方体ABCD-
A'B'C'D'的直观图.
画法(1)画轴.如图,画x轴、y轴、z轴,三轴相交于点O,使 ∠xOy=45°,∠xOz=90°.
(2)画底面.以点O为中点,在x轴上取线段MN,使MN=2 cm;在y轴上取线段
PQ,使PQ=
说法错误的是
()
A.原来相交的仍相交
B.原来垂直的仍垂直
C.原来平行的仍平行
D.原来共点的仍共点
【答案】B
【解析】由斜二测画法规则知,B选项错误.故选B.
2.(2019 年河南期末)已知一个四边形的直观图是如图所示的正方形,
新教材人教a版必修第二册82立体图形的直观图课件1
的是
()
A.①② C.②④
B.②③ D.③④
解析:当∠x′O′y′=135°时,其直观图是③; 当∠x′O′y′=45°时,其直观图是④.
答案:D
2.若把一个高为10 cm的圆柱的底面画在x′O′y′平面上,则圆柱的高应画成 ( ) A.平行于z′轴且大小为10 cm B.平行于z′轴且大小为5 cm C.与z′轴成45°且大小为10 cm D.与z′轴成45°且大小为5 cm 解析:平行于z轴(或在z轴上)的线段,在直观图中的方向和长度都与原来保持一 致.故选A.
倍,由此确定图形的各个顶点,顺次连接即可.
2.直观图与原图形面积之间的关系
若一个平面多边形的面积为S,其直观图的面积为S′,则有S′=
2 4
S或S=2
2 S′.
利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.
[跟踪训练] 如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm, C′D′=2 cm,则原图形是________(填四边形的形状).
表达出主要部分的位置关系和度量关系的图形叫做直观图.
直观图与立体图形一定相同吗? 提示:不一定相同.空间几何体的直观图是在平行投影下画出的平面图形.
知识点二 斜二测画法 用斜二测画法画水平放置的平面图形的直观图的步骤
对斜二测画法的再理解 (1)“斜”:把直角坐标系xOy变为斜坐标系x′O′y′,使∠x′O′y′=45°(或 135°),即y′轴是斜的,反映投影线是斜的; (2)“二测”:平行于x轴、z轴的线段长度不变,平行于y轴的线段长度变为原来 的一半,即有“两种测度”.
THANK YOU
度都不变. 4.成图:去掉辅助线,将被遮挡的部分改为虚线.
2022届新教材高考数学一轮复习第7章7.1基本立体图形直观图表面积和体积课件新人教A版
体叫做棱锥
记作棱锥 S-ABCD 记作棱台 ABCD-A'B'C'D'
名称 棱柱
底面:两个互相平行
的面;
侧面:底面以外的其
相关 余各面;
概念 侧棱:相邻侧面的公
共边;
顶点:侧面与底面的
公共顶点
棱锥
棱台
底面:多边形面; 上底面:平行于原棱锥底
侧面:有公共顶
面的截面;
点的各个三角
下底面:原棱锥的底面;
④过任意两条母线
的截面是矩形
圆锥
①圆锥有无数条母线,
它们有公共点即圆锥
的顶点,且长度相等.
②平行于底面的截面
都是圆.
③过轴的截面是全等
的等腰三角形.
④过任意两条母线的
截面是等腰三角形
圆台
①圆台有无数条母
线,且长度相等,延
长后相交于一点.
②平行于底面的截
面是圆.
③过轴的截面是全
等的等腰梯形.
④过任意两条母线
2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建
S 圆锥侧=πrl
S 圆台侧=π(r1+r2)l
6.柱、锥、台、球的表面积与体积公式
几何体
表面积
柱体(棱柱和圆柱)
S 表面积=S 侧+2S 底
锥体(棱锥和圆锥)
台体(棱台和圆台)
球
体积
V= Sh
1
Sh
3
S 表面积=S 侧+S 底
V=
S 表面积=S 侧+S 上+S 下
1
V= (S
3
S= 4πR
2
V=
吗?
不一定,因为“其余各面都是平行四边形”并不等价于“相邻两个四边形的
记作棱锥 S-ABCD 记作棱台 ABCD-A'B'C'D'
名称 棱柱
底面:两个互相平行
的面;
侧面:底面以外的其
相关 余各面;
概念 侧棱:相邻侧面的公
共边;
顶点:侧面与底面的
公共顶点
棱锥
棱台
底面:多边形面; 上底面:平行于原棱锥底
侧面:有公共顶
面的截面;
点的各个三角
下底面:原棱锥的底面;
④过任意两条母线
的截面是矩形
圆锥
①圆锥有无数条母线,
它们有公共点即圆锥
的顶点,且长度相等.
②平行于底面的截面
都是圆.
③过轴的截面是全等
的等腰三角形.
④过任意两条母线的
截面是等腰三角形
圆台
①圆台有无数条母
线,且长度相等,延
长后相交于一点.
②平行于底面的截
面是圆.
③过轴的截面是全
等的等腰梯形.
④过任意两条母线
2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建
S 圆锥侧=πrl
S 圆台侧=π(r1+r2)l
6.柱、锥、台、球的表面积与体积公式
几何体
表面积
柱体(棱柱和圆柱)
S 表面积=S 侧+2S 底
锥体(棱锥和圆锥)
台体(棱台和圆台)
球
体积
V= Sh
1
Sh
3
S 表面积=S 侧+S 底
V=
S 表面积=S 侧+S 上+S 下
1
V= (S
3
S= 4πR
2
V=
吗?
不一定,因为“其余各面都是平行四边形”并不等价于“相邻两个四边形的
数学人教A版(2019)必修二8.2立体图形的直观图(共30张ppt)
(2)画底面,在x轴上取线段AB,使AB= 3 cm.在y轴上取线段AD,
使AD= 1 cm,分别过点D和B作x轴和y轴的平行线交于 C点,四
边形ABCD就是长方形的底面ABCD.
z
y
C
D
O
A
Bx
活动2:空间几何体的直观图
(3)画侧棱.在 z 轴正半轴上取线段 AA ,使 AA 1.5cm ,过 B , C , D
用以衬托球的
立体性.
活动2:空间几何体的直观图
【例 3】已知圆柱的底面半径为 1cm ,侧面母线长为 3cm ,画出它的直观图.
解:(1)画轴.如图,画 x 轴、 z 轴,使 xOz 90 .
(2)画下底面.以 O 为中点,在 x 轴上取线段 AB ,
使 OA OB 1cm .利用椭圆模板画椭圆,使其
活动1:平面图形的直观图
y
. . . .
① 在直角坐标系中
.
. . . . o.
画出正方形;
x
活动1:平面图形的直观图
②建立∠x′o′y′=45°的坐标系
③平行于x、y轴的线段在斜二测坐标系中仍平行于x′、y′轴,
但横向长度不变,纵向长度减半.
y
. . .
.
.
Байду номын сангаас
.
.
y’
.
. o.
x
.
.
.
.
.
o’
x’
y
F
A
M
O
B
y
E
N C
D
A
x
B
F M E
O
N C
D
x
活动1:平面图形的直观图
使AD= 1 cm,分别过点D和B作x轴和y轴的平行线交于 C点,四
边形ABCD就是长方形的底面ABCD.
z
y
C
D
O
A
Bx
活动2:空间几何体的直观图
(3)画侧棱.在 z 轴正半轴上取线段 AA ,使 AA 1.5cm ,过 B , C , D
用以衬托球的
立体性.
活动2:空间几何体的直观图
【例 3】已知圆柱的底面半径为 1cm ,侧面母线长为 3cm ,画出它的直观图.
解:(1)画轴.如图,画 x 轴、 z 轴,使 xOz 90 .
(2)画下底面.以 O 为中点,在 x 轴上取线段 AB ,
使 OA OB 1cm .利用椭圆模板画椭圆,使其
活动1:平面图形的直观图
y
. . . .
① 在直角坐标系中
.
. . . . o.
画出正方形;
x
活动1:平面图形的直观图
②建立∠x′o′y′=45°的坐标系
③平行于x、y轴的线段在斜二测坐标系中仍平行于x′、y′轴,
但横向长度不变,纵向长度减半.
y
. . .
.
.
Байду номын сангаас
.
.
y’
.
. o.
x
.
.
.
.
.
o’
x’
y
F
A
M
O
B
y
E
N C
D
A
x
B
F M E
O
N C
D
x
活动1:平面图形的直观图
8.2 立体图形的直观图(课件)-高一数学(人教A版2019必修第二册)
y'
A' 1 B'
1
1
O'
C'
y
AB
O
C
2.一个水平放置的平面图形按斜二测画法得到 的直观图是一个底角为45°,腰和上底均为1 的等腰梯形,则这个平面图形的面积为______, x' 周长为______.
(法1)算直观图面积,由倍数关系得原图面积
S直
(1 2
2)
2 2
22 4
S原 2 2S直 2 2
已知图形中平行于x轴的线段,在直观图中保持原长度不变, 平行于y轴的线段,在直观图中长度变为原来的一半;
y
D
C
O
Bx
已知图形
y'
D'
C'
O'
B' x'
直观图
巩固:画水平放置的平面图形的直观图
y
F ME
y
y
A 面积:
D
AO
Dx
B NC y'
BO
Cx
y'
AO B
Cx
y'
O'
x'
O'
x'
O'
x'
面积:
水平放置的平面图形的直观图与原图的关系
1.画水平放置的平面图形的直观图
在已知图形中取相互垂直的x轴和y轴,两轴相交于点O. 画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O', 且使∠x'O'y'=45°(或135°),它们确定的平面表示水平面;
已知图形中平行于x轴或者y轴的线段,在直观图中分别画成 平行于x'轴或y'轴的线段(平行关系不变);
立体图形的直观图(优秀经典公开课课件)
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.钝角三角形
解析 因为 A′B′∥x′轴,A′C′∥y′轴,所以 AB⊥AC.又 AC=
2A′C′=2AB,所以△ABC 是直角三角形,不是等腰三角形. 答案 B
4.如图所示的直观图△A′O′B′,其原平面图形的面积为____________. 答案 6
(3)原图中的曲线可以通过取一些关键点,利用上述方法作出直观图中的相应 点后,用平滑曲线连接而画出.
[触类旁通] 1.用斜二测画法画出如图所示边长为 4 cm 的水平放置的正三角形的直观图.
解析 (1)如图①所示,以 BC 边所在的直线为 x 轴,以 BC 边上的高线 AO 所在的直线为 y 轴.
(2)画对应的 x′轴、y′轴,使∠x′O′y′=45°. 在 x′轴上截取 O′B′=O′C′=OB=OC=2 cm,在 y′轴上取 O′A′ =12OA,连接 A′B′,A′C′,则三角形 A′B′C′即为正三角形 ABC 的直观 图,如图②所示.
题型二 空间几何体的直观图的画法 [例 2] 画出底面是正方形,侧棱均相等的四棱锥的直观图.
A.14 C.28
B.10 2 D.14 2
[解析] ∵A′D′∥y′轴, A′B′∥C′D′,A′B′≠C′D′, ∴原图形是一个直角梯形. 又 A′D′=4, ∴原直角梯形的上、下底及高分别是 2,5,8, 故其面积为 S=12×(2+5)×8=28. [答案] C
[母题变式] 若将例题变为“梯形 A1B1C1D1 是平面图形的直观图,若 A1D1∥O′y′,A1B1 ∥C1D1,A1B1=23C1D1=2,A1D1=O′D1=1”,试求原四边形 ABCD 的面积.
(3)画侧棱.过 A,B,C,D 各点分别作 z 轴的平行线,并在这些平行线上分 别截取 2 cm 长的线段 AA′,BB′,CC′,DD′.
人教A版高中数学《立体图形的直观图》完美版PPT1
Y’
y
x
O’
X’
2.用斜二测画法画o 水平放置的正五边形的直观图(尺寸自定)
人教A版高中数学《立体图形的直观图 》精美 版1
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
E
y
D
C
o
x
A
前面我们认识了柱 体、锥体、台体、球以 及简单组合体的结构特 征。为了将这些空间几 何体画在纸上,用平面 图形表示出来,使我们 能够根据平面图形想象 空间几何体的形状和结 构,这就需要学习直观 图的有关知识。
一、直观图
直观图是观察者站在某一点观察一个空间几何体获得的图形。是把不 完全在同一平面内的点的集合,用同一平面内的点表示,因此,直观图往 往与立体图形的真实形状不完全相同。
B
M
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
y’
E’
·D’ C’
O’
· A’ M’ B’
x’
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
除多边形外,还经常会遇到画圆的直观图的问题, 在立体几何中,画水平放置的圆我们常用正等测画法, 一般用椭圆作为圆的直观图。
思考:
如何根据斜二测画法画出的直观图还原出原图?
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
y
x
O’
X’
2.用斜二测画法画o 水平放置的正五边形的直观图(尺寸自定)
人教A版高中数学《立体图形的直观图 》精美 版1
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
E
y
D
C
o
x
A
前面我们认识了柱 体、锥体、台体、球以 及简单组合体的结构特 征。为了将这些空间几 何体画在纸上,用平面 图形表示出来,使我们 能够根据平面图形想象 空间几何体的形状和结 构,这就需要学习直观 图的有关知识。
一、直观图
直观图是观察者站在某一点观察一个空间几何体获得的图形。是把不 完全在同一平面内的点的集合,用同一平面内的点表示,因此,直观图往 往与立体图形的真实形状不完全相同。
B
M
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
y’
E’
·D’ C’
O’
· A’ M’ B’
x’
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
除多边形外,还经常会遇到画圆的直观图的问题, 在立体几何中,画水平放置的圆我们常用正等测画法, 一般用椭圆作为圆的直观图。
思考:
如何根据斜二测画法画出的直观图还原出原图?
高 人中 教数 A版学高人中教数A版学( 《2立01体9)图必形修的二直第观二 图 册》8精.2美立版体1图 形的直 观图( 第一课 时)(共 20张PP T)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、建系:
在已知图形中取互相垂直的的x轴和y轴,得到直角 坐标系xoy,直观图中画成斜坐标系x’o’y’,两轴的 夹角为45 °(或135°),它确定的平面表示水平平面 2、平行不变:
已知图形中平行于x轴或y轴的线段,在直观图中分 别画成平行于x’轴或y‘的线段。 3、长度规则:
已知图形中平于X轴的的线段,在直观图中保持长度 不变;平行于Y轴的线段,长度变为原来的一半。
中心投影
平行投影
利用平行投影,人们获得了画直观
图的斜二测画法
数学人教A版《立体图形的直观图》优 秀PPT1
新课引入 数学人教A版《立体图形的直观图》优秀PPT1
• 什么叫直观图 ?
• 把空间图形画在平面内,使得既富有
立体感,又能表达出图形各主要部分
的位置关系和度量关系的图形.
D
C
A
B
D A
C B
数学人教A版《立体图形的直观图》优 秀PPT1
O
Dx
y
F M E
A
O
D x
B N C
B NC
数学人教A版《立体图形的直观图》优 秀PPT1
典型例题 数学人教A版《立体图形的直观图》优秀PPT1
3 连 接 A B , C D , E F , F A , 并 擦 去 辅 助 线 x 轴 和 y 轴 ,
便 获 得 正 六 边 形 A B C D E F 水 平 放 置 的 直 观 图 A B C D E F
数学人教A版《立体图形的直观图》优 秀PPT1
思 考
画一个正方形的直观图。
思考:怎样画才 更形象准确?
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
斜二测画法
y
.
.
.o .
. x
解: ①在直角
坐标系中画出正 方形;
.....
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
学习新知 数学人教A版《立体图形的直观图》优秀PPT1
2、画水平放置的圆的直观图.
y
C EG
A
O
Bx
D FH
y′
C ' E'
A'
O′
D' F'
B' x′
课下练习P109 2题:根据斜二测画法, 画出水平放置的矩形、平行四边形、正三 角形的直观图
数学人教A版《立体图形的直观图》优 秀PPT1
直观图是观察者站在某一点观察一个空间几何体获得的 图形.画立体图形的直观图,实际上是把不完全在同一平面内 的点的集合,用同一平面内的点表示.因此,直观图往往与立 体图形的真实形状不完全相同。在立体几何中,立体图形的 直观图通常是在平行投影下得到的平面图形.
要画立体图形的直观图,首先要学会画水平放置的平面图 形.
8.2空间几何体的直观图
新课引入
照相、绘画之所以有空间视觉效果,主要取决
于线条、明暗和色彩,其中对线条画法的基本
原理是一个几何问题,我们需要学习这方面的
知识.
人的视觉、
照片、美术
作品都具有
中心投影的
特点.中心
摄影作品
投影的投影 线相交于一
点.
新课引入
如何在平面上表示立体的图形呢?
新课引入
前面我们认识了柱体、锥体、台体、球以及简单组合体 的结构特征.为了将这些空间几何体画在纸上,用平面图形表 示出来,使我们能够根据平面图形想象空间几何体的形状和 结构,这就需要学习直观图的有关知识.
在初中,我们已经学习过投影。一个物体的投影,不仅与 这个物体的形状有关,而且还与投影的方式和物体与投影 面的位置关系有关.如果一个矩形垂直于投影面,投影线不 垂直于投影面,则矩形的平行投影是一个平行四边形
新课引入 数学人教A版《立体图形的直观图》优秀PPT1
我们把光由一点向外散射形成的投影叫做中心投影, 把在一束平行光线照射下形成的投影叫做平行投影, 那么用灯泡照射物体和用手电筒照射物体形成的投影 分别是哪种投影?
轴 上 取 线 段 PQ,使 PQ=1.5cm;分 别 过 点 M和 N作 y轴 的 平 行
线 ,过 点 P和 Q作 x轴 的 平 行 线 ,设 它 们 的 交 点 分 别 为 A,B,
C,D,四 边 形 ABCD就 是 长 方 形 的 底 面 ABCD Z
y
F ME
A
O
Dx
数学人教A版《立体图形的直观图》优 秀PPT1
B
NC
y
F M E
A
O
D x
B N C
数学人教A版《立体图形的直观图》优 秀PPT1
小结:“横同,竖半 ,平行性不变”
数学人教A版《立体图形的直观图》优 秀PPT1
学习新知 数学人教A版《立体图形的直观图》优秀PPT1
斜二测画法的步骤:
Z
y
O
x
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
例2.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 A B C D A B C D 的直观图
2画 底 面 .以 O为 中 心 ,在 x轴 上 取 线 段 MN,使 MN=4 cm;在
F ME
y
A
O
Dx
O
x
数学人教A版《立体图形的直观图》优 秀PPT1
B
NC
典型例题 数学人教A版《立体图形的直观图》优秀PPT1
2以O为中心,在X上取AD=AD,在y轴上取
MN=1MN.以点N为中心,画BC平行于x轴, 2
并且等于BC;再以M为中心,画EF平行于x轴,
并且等 y 于EF.
F ME
A
1、探求平面图形的直观图的画法
例1.用斜二测画法画水平放置的六边形的直观图
1在 六 边 形 ABCD EF中 , 取 AD所 在 的 直 线 为 X轴 ,
对 称 轴 MN所 在 直 线 为 Y轴 ,两 轴 交 于 点 O。 画 相 应
的 X轴 和 y Y轴 , 两 轴 相 交 于 点 O,使 xOy=45
数学人教A版《立体图形的直观图》优 秀PPT1
②建立∠x’o’y’=45°的坐标系 ③平行于x、y轴的线段在斜二测坐标系中仍平行于x’、 y’轴,但横向长度不变,纵向长度减半
y y’
.
.
..
o
.. x
.
..
O’
. X’
.....
数学人教A版《立体图形的直PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
例2.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 A B C D A B C D 的直观图
1 画 轴 . 画 x 轴 , y 轴 , z 轴 , 三 轴 交 于 点 O , 使 x O y = 4 5 ,
x O z 9 0 .
在已知图形中取互相垂直的的x轴和y轴,得到直角 坐标系xoy,直观图中画成斜坐标系x’o’y’,两轴的 夹角为45 °(或135°),它确定的平面表示水平平面 2、平行不变:
已知图形中平行于x轴或y轴的线段,在直观图中分 别画成平行于x’轴或y‘的线段。 3、长度规则:
已知图形中平于X轴的的线段,在直观图中保持长度 不变;平行于Y轴的线段,长度变为原来的一半。
中心投影
平行投影
利用平行投影,人们获得了画直观
图的斜二测画法
数学人教A版《立体图形的直观图》优 秀PPT1
新课引入 数学人教A版《立体图形的直观图》优秀PPT1
• 什么叫直观图 ?
• 把空间图形画在平面内,使得既富有
立体感,又能表达出图形各主要部分
的位置关系和度量关系的图形.
D
C
A
B
D A
C B
数学人教A版《立体图形的直观图》优 秀PPT1
O
Dx
y
F M E
A
O
D x
B N C
B NC
数学人教A版《立体图形的直观图》优 秀PPT1
典型例题 数学人教A版《立体图形的直观图》优秀PPT1
3 连 接 A B , C D , E F , F A , 并 擦 去 辅 助 线 x 轴 和 y 轴 ,
便 获 得 正 六 边 形 A B C D E F 水 平 放 置 的 直 观 图 A B C D E F
数学人教A版《立体图形的直观图》优 秀PPT1
思 考
画一个正方形的直观图。
思考:怎样画才 更形象准确?
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
斜二测画法
y
.
.
.o .
. x
解: ①在直角
坐标系中画出正 方形;
.....
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
学习新知 数学人教A版《立体图形的直观图》优秀PPT1
2、画水平放置的圆的直观图.
y
C EG
A
O
Bx
D FH
y′
C ' E'
A'
O′
D' F'
B' x′
课下练习P109 2题:根据斜二测画法, 画出水平放置的矩形、平行四边形、正三 角形的直观图
数学人教A版《立体图形的直观图》优 秀PPT1
直观图是观察者站在某一点观察一个空间几何体获得的 图形.画立体图形的直观图,实际上是把不完全在同一平面内 的点的集合,用同一平面内的点表示.因此,直观图往往与立 体图形的真实形状不完全相同。在立体几何中,立体图形的 直观图通常是在平行投影下得到的平面图形.
要画立体图形的直观图,首先要学会画水平放置的平面图 形.
8.2空间几何体的直观图
新课引入
照相、绘画之所以有空间视觉效果,主要取决
于线条、明暗和色彩,其中对线条画法的基本
原理是一个几何问题,我们需要学习这方面的
知识.
人的视觉、
照片、美术
作品都具有
中心投影的
特点.中心
摄影作品
投影的投影 线相交于一
点.
新课引入
如何在平面上表示立体的图形呢?
新课引入
前面我们认识了柱体、锥体、台体、球以及简单组合体 的结构特征.为了将这些空间几何体画在纸上,用平面图形表 示出来,使我们能够根据平面图形想象空间几何体的形状和 结构,这就需要学习直观图的有关知识.
在初中,我们已经学习过投影。一个物体的投影,不仅与 这个物体的形状有关,而且还与投影的方式和物体与投影 面的位置关系有关.如果一个矩形垂直于投影面,投影线不 垂直于投影面,则矩形的平行投影是一个平行四边形
新课引入 数学人教A版《立体图形的直观图》优秀PPT1
我们把光由一点向外散射形成的投影叫做中心投影, 把在一束平行光线照射下形成的投影叫做平行投影, 那么用灯泡照射物体和用手电筒照射物体形成的投影 分别是哪种投影?
轴 上 取 线 段 PQ,使 PQ=1.5cm;分 别 过 点 M和 N作 y轴 的 平 行
线 ,过 点 P和 Q作 x轴 的 平 行 线 ,设 它 们 的 交 点 分 别 为 A,B,
C,D,四 边 形 ABCD就 是 长 方 形 的 底 面 ABCD Z
y
F ME
A
O
Dx
数学人教A版《立体图形的直观图》优 秀PPT1
B
NC
y
F M E
A
O
D x
B N C
数学人教A版《立体图形的直观图》优 秀PPT1
小结:“横同,竖半 ,平行性不变”
数学人教A版《立体图形的直观图》优 秀PPT1
学习新知 数学人教A版《立体图形的直观图》优秀PPT1
斜二测画法的步骤:
Z
y
O
x
数学人教A版《立体图形的直观图》优 秀PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
例2.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 A B C D A B C D 的直观图
2画 底 面 .以 O为 中 心 ,在 x轴 上 取 线 段 MN,使 MN=4 cm;在
F ME
y
A
O
Dx
O
x
数学人教A版《立体图形的直观图》优 秀PPT1
B
NC
典型例题 数学人教A版《立体图形的直观图》优秀PPT1
2以O为中心,在X上取AD=AD,在y轴上取
MN=1MN.以点N为中心,画BC平行于x轴, 2
并且等于BC;再以M为中心,画EF平行于x轴,
并且等 y 于EF.
F ME
A
1、探求平面图形的直观图的画法
例1.用斜二测画法画水平放置的六边形的直观图
1在 六 边 形 ABCD EF中 , 取 AD所 在 的 直 线 为 X轴 ,
对 称 轴 MN所 在 直 线 为 Y轴 ,两 轴 交 于 点 O。 画 相 应
的 X轴 和 y Y轴 , 两 轴 相 交 于 点 O,使 xOy=45
数学人教A版《立体图形的直观图》优 秀PPT1
②建立∠x’o’y’=45°的坐标系 ③平行于x、y轴的线段在斜二测坐标系中仍平行于x’、 y’轴,但横向长度不变,纵向长度减半
y y’
.
.
..
o
.. x
.
..
O’
. X’
.....
数学人教A版《立体图形的直PPT1
数学人教A版《立体图形的直观图》优 秀PPT1
例2.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 A B C D A B C D 的直观图
1 画 轴 . 画 x 轴 , y 轴 , z 轴 , 三 轴 交 于 点 O , 使 x O y = 4 5 ,
x O z 9 0 .