《数列的概念》单元测试题 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫

⎬⎩⎭

的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[

)3,+∞

C .()2,+∞

D .[)2,+∞

3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件

D .既不充分也不必要条件

4.数列{}n a 满足()1

1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )

A .1006

B .1176

C .1228

D .2368

5.已知数列{}n a 的前n 项和为(

)*

22n

n S n =+∈N ,则3

a

=( )

A .10

B .8

C .6

D .4

6.数列23451,,,,,3579

的一个通项公式n a 是( ) A .

21n

n + B .

23

n

n + C .

23

n

n - D .

21

n

n - 7.在数列{}n a 中,已知11a =,25a =,()

*

21n n n a a a n N ++=-∈,则5a 等于( )

A .4-

B .5-

C .4

D .5

8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072

B .2073

C .2074

D .2075

9.3……,则 ) A .第8项

B .第9项

C .第10项

D .第11项

10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现

有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )

(注:()()

2222

1211236

n n n n ++++++=

) A .1624

B .1198

C .1024

D .1560

11.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

12.设数列{},{}n n a b 满足*172

700,,105

n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >

B .43

C .33>a b

D .4

4

13.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .

1312

π

B .

54

π C .

1712

π

D .

76

π 14.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和

383969a a a ++⋅⋅⋅+=( )

A .180

B .160

C .150

D .140

15.数列{}n a 满足12a =,111

1

n n n a a a ++-=+,则2019a =( ) A .3-

B .12-

C .

13

D .2

16.已知数列{}n b 满足1

2122n n b n λ-⎛⎫=-- ⎪⎝⎭

,若数列{}n b 是单调递减数列,则实数λ

取值范围是( )

A

10

1,3

B .110,23⎛⎫- ⎪⎝⎭

C .(-1,1)

D .1,12⎛⎫

-

⎪⎝⎭

17.在数列{}n a 中,2

1

n n a n +=+,则{}n a ( ) A .是常数列

B .不是单调数列

C .是递增数列

D .是递减数列

18.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( )