七年级数学 计算专题6--不等式组(含答案)
初一不等式试题及答案
初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
(完整版)初一不等式难题-经典题训练(附答案)
初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)
初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)七下数学与中考试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考.一、 根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。
则a 的范围是 .解:借助于数轴,如图1,可知: 1≤a<5并且 a+3≥5. 所以,2≤a<5 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .分析:由题意,可得原不等式组的解为8<x<2—4a ,又因为不等式组有四个整数解,所以8<x<2—4a 中包含了四个整数解9,10,11,12于是,有12<2—4a ≤13. 解之,得 114-≤a<52- .例4、已知不等式组⎩⎨⎧<+>-b x ax 122的整数解只有5、6。
求a 和b 的范围.解:解不等式组得⎪⎩⎪⎨⎧-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。
21-b 只能在6与7之间. ∴4≤2+a<5 6<21-b ≤7∴2≤a<3, 13<b ≤15.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )图1图2A .m>一lB .m>lC .m<一1D .m<1分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y =223m+<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=2163x +. 又a ≤4<b , 所以,312x -≤4<2163x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解例7、如果不等式组260x x m-≥⎧⎨≤⎩ 无解,则m 的取值范围是 .分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3.例8、不等式组⎩⎨⎧>≤<m x x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2解:借助图4,可以发现:要使原不等式组有解,表示m 的点不能在2的右边,也不能在2上,所以,m<2.故选(A ).例9、(2007年泰安市)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .解:由x-3(x-2)<2可得x>2,由24a x x +>可得x<12a. 因为不等式组有解,所以12a>2. 所以,4a >.31 2图4图3例3、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。
初一不等式难题-经典题训练(附答案)
初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
初一不等式习题及答案
1初一数学不等式习题一、填空:(每小题2分,共32分)1.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 2. 若a 、b 、c 是三角形三边的长,则代数式a2+ b 2—c 2—2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ()A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-112 4.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3x B. 722x - -23x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12x-6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ()A.m ≤-1B.m<-1C.m ≥1D.m>1.7.若方程组3133x y k x y +=+⎧⎨+=⎩的解、满足01x y <+<,则k 的取值范围是 ( )A .40k-<< B. 10k -<< C.08k << D. 4k >-8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定二、填空:(每小题2.5分,共40分)9.若不等式2123x a x b -<⎧⎨->⎩ 的解集为 11x -<<,那么(3)(3)a b -+的值等于 .10. 不等式5121216415x x x-+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________.13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分)15.解列不等式,并把解集在数轴上表示出来。
20道不等式组带解答过程
20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。
下面列出了20道不等式组题目,并附带解答过程。
1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。
3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。
5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。
七年级数学不等式与不等式组-有答案有解析
分卷I分卷I 注释1、如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b-1)(a+1)>0 D.(b-1)(a-1)>0C解:a、b两点在数轴上的位置可知:-1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1<0故C正确,D错误.故选C.2、据扬子晚报报道,2012年5月7日南京市最高气温是33℃,最低气温是22℃,则当天南京市气温t (℃)的变化范围可用不等式表示为()A.t≥22 B.t≤22 C.22<t<33 D.22≤t≤33D用不等号可以将两个解析式连接起来所成的式子.解:∵2012年5月7日南京市最高气温是33℃,最低气温是22℃,∴22≤t≤33.故选:D.3、实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<B先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断��解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.4、四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()A.P>R>S>QB. Q>S>P>RC. S>P>Q>RD. S>P>R>QD由三个图分别可以得到,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q.故选D.5、下列不等式组的解集,在数轴上表示为如图所示的是()A.B.C.D.D分别解出各个不等式组,进行检验就可以.解:由A得,∴不等式组无解;由B得,∴不等式组的解集为x<﹣2;由C得,∴不等式组无解;由D得,∴不等式组的解集为﹣1<x≤2.故选D.6、若a<c<0<b,则abc与0的大小关系是()A. abc<0 B. abc=0 C.abc>0 D.无法确定C根据有理数乘法法则:两数相乘,同号得正可得ac>0.再根据不等式是性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,解答此题.解:∵a<c<0<b,∴ac>0(同号两数相乘得正),∴abc>0 (不等式两边乘以同一个正数,不等号的方向不变).故选C.7、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃B根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.解:设温度为x℃,根据题意可知解得3≤x≤5.故选B.8、下列数中是不等式x>50的解的有()76,73,79,80,74.9,75.1,90,60A.5个B.6C.7个D.8个A先求出不等式的解集,在取值范围内对76,73,79,80,74.9,75.1,90,60进行判断.解:不等式x>50的解集是x>75;所以76,79,80,75.1,90是不等式的解.故选A.9、某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.50+0.3x≤1200至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1200.解:根据题意,得50+0.3x≤1200.10、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.10n﹣5(20﹣n)>90根据答对题的得分:10n;答错题的得分:﹣5(20﹣n),得出不等关系:得分要超过90分.解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.11、如图是测量一物体体积的过程:步骤一:将300ml的水装进一个容量为480ml的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没满;步骤三:将同样的玻璃球再加两颗放入水中,结果水满溢出.根据以上过程推测一颗玻璃球的体积范围____.36<x<60关键描述语:(1)将三个相同的玻璃球放入水中,结果水没满,即三个玻璃球的体积小于未装水的杯子的体积;(2)将同样的玻璃球再加两颗放入水中,结果水满溢出,即五个玻璃球的体积大于未装水的杯子的体积.解:设一个玻璃球的体积为x,依题意得:解得:36<x<60即一颗玻璃球的体积范围为:36<x<60.12、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金____元.3520若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,但有一辆不能坐满.只租甲种客车正好坐满,这种方式一定最贵.因而两种客车用共租8辆.两种客车的载客量大于360,根据这个��等关系,就可以求出两种客车各自的数量,进而求出租金.解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360解得:x≤4整数解为1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.13、某初级中学八年级(1)班若干名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,他们经过核算,买团体票比买单人票便宜,则他们至少有_____人.21本题可设至少有x人.则买团体票需要的钱数是:25×0.8×10,买单人票需要的钱数是:10x,根据买团体票比买单人票便宜,就可以列出不等式,解出x的取值.解:设至少有x人.则25×0.8×10<10xx>20因此他们至少有21人.14、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.解:(1)根据题意得:a=22.5÷15=1.5;b=(50﹣20×1.5)÷(30﹣20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x﹣20)≤90,解得:35≤x≤50,即该用户六月份的用水量x的取值范围为35≤x≤50(1)根据某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元,分别求出a和b 即可;(2)根据“该用户六月份的水费支出不少于60元,但不超过90元”列一元一次不等式组求解即可.15、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解:(1)∵720÷6=120,∴光明厂平均毎天要生产120套单人课桌椅.(2)设x人生产桌子,则(84﹣x)人生产椅子,解得:60≤x≤60故x=60,∴84﹣x=24,∴60人生产桌子,则24人生产椅子.(1)用720套单人课桌椅÷6天完成这项生产任务=毎天要生产单人课桌椅的套数,(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.16、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.(1)设小明答对了x道题,则有20﹣x道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x的方程,解方程即可求解;(2)小亮答对了y道题,则有20﹣y道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于y的不等式组,从而求得y的范围,再根据y是非负整数即可求解.17、某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x>10,解②得:x>25,∴不等式组的解集是:x>25.答:某游客一年进入该公园至少超过25次时,购买A类年票合算.由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外两种种购票方式所花的费用大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.18、上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如表所示.客房普通间(元/天)三人间 240二人间 200世博会期间,一个由50名女工组成的旅游团人住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满.设该旅游团人住三人普通间有x间.(1)该旅游团人住的二人普通间有____间(用含x的代数式表示);(2)该旅游团要求一天的住宿费必须少于4500元,且入住的三人普通间不多于二人普通间.若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?解:(1)由题意可得,住在二人间的人数为:(50﹣3x),又∵二人间也正好住满,故可得二人间有:;解得8<x≤l0,∵x为整数,∴x=9或x=10,当x=9时,=(不为整数,舍去);当x=10时,=10.答:客房部只有一种安排方案:三人普通间10间,二人普通间10间.(1)求出住在二人间的人数,然后即可得出二人间的个数;(2)根据要求一天的住宿费必须少于4500元,及入住的三人普通间不多于二人普通间,分别列出不等式,联立求解即可.19、已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:.(2)解:解不等式组①,得x>2,解不等式组②,得x≥﹣1,∴不等式组的解集为x>2,.(1)直接写出即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.20、某校科技小组为参加央视《百科探秘》栏目的我爱机器人论坛,设计制作了由四个机器人进行舞蹈表演的节目.如图是四个机器人A、B、C、D在6×8在网格(每个小正方形的边长为1米)中表演前的位置,每个机器人由1名小组成员操控,按如图所示的程序同时同样运动,每一步都踩在格点上,步距不小于1米,小于2米.(1)求机器人A完成一次程序走过的路程长;(2)若要使输入点A,输出的点是D点所在的位置,请修改程序;(3)由于机器人能量有限,每个机器人走过的路程长不超过100米,在已知程序下,若每跨一步用时0.5秒,机器人完成舞蹈节目最多要进行几次程序(可用计算器计算)?用时大约几分钟以内?解:(1)由程序可知,机器人A完成一次程序走过的路程为+1+1=2+;(2)程序可修改为(如右图)(3)设机器人完成舞蹈节目要进行x次程序,依题意得,(2+)x≤100,即3.4<100,解得x<29,∴机器人完成舞蹈节目最多要进行29次程序,∵每跨一步用时0.5秒,∴机器人完成舞蹈节目应在0.5×3×29×≈0.73分钟.(1)根据机器人的步距和输入的程序分别求得每一步所走的距离,然后相加即可得到A完成一次程序走过的路程是多少;(2)根据其步距和A与D之间的距离设计程序即可,但本题答案不唯一;(3)设机器人完成舞蹈节目要进行x次程序,然后根据其所走路程最长不能大于100米列出有关的不等式,从中找到最大的整数值即可.。
七年级下-专题 不等式与不等式组的含参问题(解析版)
七年级下册数学《第九章不等式与不等式组》专题不等式与不等式组的含参问题【例题1】若不等式(a﹣3)x>2的解集是x<2�−3,则a的取值范围是()A.a≠3B.a>3C.a<3D.a≤3【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.2�−3,【解答】解:∵(a﹣3)x>2的解集为x<∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故选:C.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.【变式1-1】关于x的不等式(a﹣1)x>b的解集是x>��−1,则a的取值范围是()A.a<0B.a>0C.a<1D.a>1【分析】直接利用不等式的性质,得出a﹣1>0,进而得出答案.【解答】解:∵不等式(a﹣1)x>b的解集是x>��−1,∴a﹣1>0,解得:a>1.故选:D.【点评】此题主要考查了不等式的解集,正确得出a﹣1的符号是解题关键.【变式1-2】(2022•南京模拟)如果关于x的不等式(m﹣2)x>3解集为�<3�−2,则m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2【分析】利用不等式的基本性质3:不等式的两边都乘以或除以同一个负数,不等号的方向改变.可得m﹣2<0,然后进行计算即可解答.【解答】解:∵关于x的不等式(m﹣2)x>3解集为�<3�−2,∴m﹣2<0,解得:m<2,故选:C.【点评】本题考查了不等式的基本性质,一元一次不等式的解法,掌握“不等式的基本性质”是解本题的关键.【变式1-3】(2022春•南山区期末)关于x的不等式(m+2)x>(m+2)的解集为x<1,那么m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2【分析】根据不等式(m+2)x>(m+2)的解集为x<1,知m+2<0,解之即可.【解答】解:∵关于x的不等式(m+2)x>(m+2)的解集为x<1,∴m+2<0,解得m<﹣2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【变式1-4】(2022春•锦江区校级期中)若关于x的不等式(m﹣1)x<2的解集是x>2�−1,则m的取值范围是()A.m>1B.m<1C.m≠1D.m≤1【分析】根据不等式的性质得m﹣1<0,然后解关于m的不等式即可.【解答】解:∵关于x的不等式(m﹣1)x<2的解集里x>2�−1,∴m﹣1<0,∴m<1.故选:B.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【变式1-5】(2022•南京模拟)若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>3【分析】根据已知解集,利用不等式的基本性质判断即可.【解答】解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.【变式1-6】(2023春•新城区校级月考)当m时,不等式(m+3)x≥2的解集是�≤2�+3.【分析】根据不等式的性质3(不等式的两边都乘以或除以同一个负数,不等号的方向要改变)得出m+3<0,求出即可.【解答】解:∵不等式(m+3)x≥2的解集是x≤2�+3,∴m+3<0,∴m <﹣3,故答案为:<﹣3.【点评】本题考查的是解一元一次不等式,熟知不等式的两边都乘以或除以同一个负数,不等号的方向要改变是解题的关键.【例题2】(2022秋•常德期末)关于x 的不等式组�>�−1�>�+2的解集是x >﹣1,则m=.【分析】根据同大取大,可得出关于m 的方程,求出m 的值即可.【解答】解:由�>�−1�>�+2的解集是x >﹣1,得∵m +2>m ﹣1,∴m +2=﹣1,解得m =﹣3,故答案为:﹣3.【点评】本题考查的是解一元一次不等式组,利用同大取大是解题关键.【变式2-1】(2023春•北碚区校级月考)关于x 的一元一次不等式13(��−1)>2−�的解集为x <﹣4,则m 的值是.【分析】先用含有m 的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m 的方程,解之可得m 的值.【解答】解:13(��−1)>2−�13��−13>2−�,13��>73−�,mx >7﹣3m ,∵不等式13(��−1)>2−�的解集为x <﹣4,∴�<0,�<7−3��,∴7−3��=−4,∴7﹣3m =﹣4m ,∴m =﹣7,故答案为:﹣7.【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-2】(2022春•顺德区校级期中)关于x 的一元一次不等式�−2�3≤−2的解集为x ≥4,则m 的值为()A .14B .7C .﹣2D .2【分析】先用含有m 的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m 的方程,解之可得m 的值.【解答】解:解不等式�−2�3≤−2得:x ≥�+62,∵不等式的解集为x ≥4,∴�+62=4,解得m =2,故选:D .【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-3】如图,是关于x 的不等式2x ﹣a ≤﹣1的解集,则a 的值为()A .a =﹣2B .a =﹣1C .a ≤﹣2D .a ≤﹣1【分析】解不等式得出x ≤�−12,结合数轴知x ≤﹣1,据此可得关于a 的方程,解之可得答案.【解答】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x ≤﹣1,解不等式2x ﹣a ≤﹣1得,x ≤�−12,即�−12=−1,解得a =﹣1.故选:B .【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-4】(2022春•西峡县期中)若关于x 的不等式2�+9>6�+1�−�<1的解集为x <2,则a 取值范围是.【分析】求出每个不等式的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组2�+9>6�+1①�−�<1②,得�<2�<�+1.∵不等式组2�+9>6�+1①�−�<1②的解集为x<2,∴a+1≥2,解得a≥1.故答案为:a≥1.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k的不等式,难度适中.【变式2-5】(2023•永定区一模)不等式组3�−9>0�>�的解集为x>3,则m的取值范围为.【分析】先求出不等式组的解集,再根据已知条件判断m范围即可.【解答】解:3�−9>0①�>�②,解不等式①得:x>3,又因为不等式组的解集为:x>3,x>m,∴m≤3.故答案为:m≤3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m的范围是解此题的关键.【变式2-6】(2022春•武汉期末)若不等式�+16−2�−54≥1的解都能使不等式4x<2x+a+1成立,则实数a的取值范围是()A.a≥1.5B.a>1.5C.a<7D.1.5<a<7【分析】解不等式�+16−2�−54≥1得x≤54,解不等式4x<2x+a+1得x<�+12,根据题意得到关于a 的不等式,再解关于a 的不等式即可得出答案.【解答】解:解不等式�+16−2�−54≥1得x ≤54,解不等式4x <2x +a +1得x <�+12,∵不等式�+16−2�−54≥1的解都能使不等式4x <2x +a +1成立,∴�+12>54,∴a >1.5,故选:B .【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.【变式2-7】(2022春•南关区校级期中)关于x 的不等式组3�−6>0�−�>−2的解集是2<x<5,则a 的值为.【分析】分别求出每一个不等式的解集,根据不等式组的解集可得关于a 的方程,解之即可.【解答】解:由3x ﹣6>0得:x >2,由a ﹣x >﹣2得:x <a +2,∵不等式组的解集为2<x <5,∴a +2=5,解得a =3,故答案为:3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式2-8】(2022秋•西湖区期中)已知关于x 的不等式组�−1≥�2�−�<3的解集为3≤x <5,则a +b =.【分析】先求出不等式组的解集,根据已知不等式组的解集是3≤x <5得出a +1=3,3+�2=5,求出a 、b ,再求出a +b 即可.【解答】解:�−1≥�①2�−�<3②,解不等式①,得x ≥a +1,解不等式②,得x <3+�2,所以不等式组的解集是a +1≤x <3+�2,∵关于x 的不等式组�−1≥�2�−�<3的解集为3≤x <5,∴a +1=3,3+�2=5,∴a =2,b =7,∴a +b =2+7=9,故答案为:9.【点评】本题考查了解一元一次不等式组,能根据不等式组的解集得出a +1=3和3+�2=5是解此题的关键.【变式2-9】若不等式组:�−�>2�−2�>0的解集是﹣1<x <1,则(a +b )2022=()A .﹣1B .0C .1D .2023【分析】分别求出每一个不等式的解集,根据不等式组的解集得出a 、b 的值,再代入计算即可.【解答】解:由x ﹣a >2,得x >a +2,由b ﹣2x >0,得x <�2,∵不等式组的解集为﹣1<x <1,∴a +2=﹣1,�2=1,解得a =﹣3,b =2,∴(a +b )2022=(﹣3+2)2022=(﹣1)2022=1,故选:C .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【例题3】(2022秋•零陵区期末)若关于x 的不等式组2�−6+�<04�−�>0有解,则m 的取值范围是()A .m ≤4B .m <4C .m ≥4D .m >4【分析】先根据不等式的性质求出不等式的解集,再根据不等式组有解得出3−12m <�4,再求出不等式的解集即可.【解答】解:2�−6+�<0①4�−�>0②,解不等式①,得x <3−12m ,解不等式②,得x >�4,∵关于x 的不等式组2�−6+�<04�−�>0有解,∴3−12m >�4,解得:m <4,故选:B .【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m 的不等式是解此题的关键.【变式3-1】(2022春•漳州期末)若不等式组�−4<0�≥�有解,则m 的值可以是()A .3B .4C .5D .6【分析】先求出不等式①的解集,再根据不等式组有解得出m <4,再逐个判断即可.【解答】解:�−4<0①�≥�②,解不等式①,得x <4,∵不等式组�−4<0�≥�有解,∴m <4,A .∵3<4,∴m 能为3,故本选项符合题意;B .∵4=4,∴m不能为4,故本选项不符合题意;C.∵5>4,∴m不能为5,故本选项不符合题意;D.∵6>4,∴m不能为6,故本选项不符合题意;故选:A.【点评】本题考查了解一元一次不等式组,能根据不等式组有解得出m的取值范围是解此题的关键.【变式3-2】(2023春•中原区校级期中)若关于x的不等式组�<4�−�+8<0有解,则m的取值范围为.【分析】先根据不等式的性质求出不等式的解集,再根据不等式组有解得出4m≥8,再求出不等式的解集即可.【解答】解:解不等式﹣x+8<0,得x>8,∵关于x的不等式组�<4�−�+8<0有解,∴4m>8,解得:m>2,故答案为:m>2.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.【变式3-3】(2023春•莘县期中)已知关于x的不等式组�−�≥05−2�>1无解,则实数a的取值范围是.【分析】首先解每个等式,然后根据不等式组无解即可确定关于a的不等式,从而求解.【解答】解:�−�≥0⋯①5−2�>1⋯②,解①得x≥a,解②得x<2.根据题意得:a≥2.故答案是:a≥2.【点评】本题考查了一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【变式3-4】(2022春•兖州区期末)若不等式组�<�+1�>2�−1无解,则m的取值范围是()A.m<2B.m≤2C.m≥2D.无法确定【分析】根据不等式组无解得出不等式2m﹣1≥m+1,再求出不等式的解集即可.【解答】解:∵不等式组�<�+1�>2�−1无解,∴2m﹣1≥m+1,解得:m≥2,故选:C.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.【变式3-5】(2022春•都江堰市校级期中)若关于x的一元一次不等式组2�−�>02�−1+3�2<1无解,则a的取值范围.【分析】先求出每个不等式的解集,再根据不等式组无解得出关于a的不等式,再求出不等式的解集即可.【解答】解:2�−�>0①2�−1+3�2<1②,解不等式①,得x>�2,解不等式②,得x<3,∵关于x的一元一次不等式组2�−�>02�−1+3�2<1无解,∴�2≥3,解得:a≥6,故答案为:a≥6.【点评】本题考查了解一元一次不等式组,能得出关于a的不等式�2≥3是解此题的关键.【变式3-6】(2022春•齐河县期末)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组�−2(�−1)≤32�+�3≥�有解,则符合条件的整数k的值的和为()A.4B.5C.2D.3【分析】求出每个不等式的解集,根据不等式组有解得出k≥﹣1,解方程得出x=﹣k+3,由方程的解为非负数知﹣k+3≥0,据此得k≤3,从而知﹣1≤k≤3,继而可得答案.【解答】解:解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式2�+�3≥x,得:x≤k,∵不等式组有解,∴k ≥﹣1,解方程k ﹣2x =3(k ﹣2),得:x =﹣k +3,∵方程的解为非负数,∴﹣k +3≥0,解得k ≤3,则﹣1≤k ≤3,∴符合条件的整数k 的值的和为﹣1+0+1+2+3=5,故选:B .【点评】本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集和一元一次方程的解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式3-7】(2022春•大渡口区校级期中)关于x 的方程3(k ﹣2﹣x )=3﹣5x 的解为非负数,且关于x 的不等式组�−2(�−1)≥32�+�3≤�无解,则符合条件的整数k 的值的和为()A .5B .2C .4D .6【分析】先解出方程的解和不等式组的解集,再根据题意即可确定k 的取值范围,从而可以得到符合条件的整数,然后相加即可.【解答】解:由方程3(k ﹣2﹣x )=3﹣5x ,得x =9−3�2,∵关于x 的方程3(k ﹣2﹣x )=3﹣5x 的解为非负数,∴9−3�2≥0,得k ≤3,�−2(�−1)≥3①2�+�3≤�②,由不等式①,得:x ≤﹣1,由不等式②,得:x ≥k ,∵关于x 的不等式组�−2(�−1)≥32�+�3≤�无解,∴k >﹣1,由上可得,k 的取值范围是﹣1<k ≤3,∴k 的整数值为0,1,2,3,∴符合条件的整数k 的值的和为:0+1+2+3=6,故选:D .【点评】本题考查解一元一次方程、解一元一次不等式组,解答本题的关键是求出k 的取值范围.【变式3-8】(2022秋•北碚区校级期末)若整数a 使关于x 的方程4�+12=4−�−2�2的解为非负数,且使关于y 的不等式组2�−13<−1+�32�−�4≥0的解集为y <﹣2,则符合条件的所有整数a 的和为()A .20B .21C .27D .28【分析】先求出方程的解,根据方程的解为非负数得出7−�2≥0,求出a ≤7,求出不等式组中每个不等式的解集,根据不等式组的解集为y ≤﹣2得出﹣2≤2a ,求出a ≥﹣1,得出﹣1≤a ≤7,求出整数a ,再求出和即可.【解答】解:解方程4�+12=4−�−2�2得:x =7−�2,∵整数a 使关于x 的方程4�+12=4−�−2�2的解为非负数,∴7−�2≥0,解得:a ≤7,2�−13<−1+�3①2�−�4≥0②,解不等式①,得y <﹣2,解不等式②,得y ≤2a ,∵不等式组2�−13<−1+�32�−�4≥0的解集为y <−2,∴﹣2≤2a ,∴a ≥﹣1,即﹣1≤a ≤7,∵a 为整数,∴a 为﹣1,0,1,2,3,4,5,6,7,和为﹣1+0+1+2+3+4+5+6+7=27,故选:C .【点评】本题考查了解一元一次不等式组,解二元一次方程组等知识点,能求出a 的取值范围是解此题的关键.【例题4】(2022秋•余姚市校级期末)已知关于x 的不等式3x ﹣a ≥1只有两个负整数解,则a 的取值范围是()A .﹣10<a <﹣7B .﹣10<a ≤﹣7C .﹣10≤a ≤﹣7D .﹣10≤a <﹣7【分析】先解不等式得出�≥�+13,根据不等式只有2个负整数解知其负整数解为﹣1和﹣2,据此得出−3<�+13≤−2,解之可得答案.【解答】解:∵3x ﹣a ≥1,∴�≥�+13,∵不等式只有2个负整数解,∴不等式的负整数解为﹣1和﹣2,则−3<�+13≤−2,解得:﹣10<a ≤﹣7.故选:B .【点评】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.【变式4-2】(2023•大庆一模)若关于x 的不等式3x ﹣2m <x ﹣m 只有3个正整数解,则m 的取值范围是.【分析】首先解关于x 的不等式,然后根据x 只有3个正整数解,来确定关于m 的不等式组的取值范围,再进行求解即可.【解答】解:由3x ﹣2m <x ﹣m 得:�<�2,关于x不等式3x﹣2m<x﹣m只有3个正整数解,∴3≤�2<4,∴6≤m<8,故答案为:6≤m<8.【点评】本题考查了解不等式及不等式的整数解,熟练掌握解不等式的步骤是解题的关键.【变式4-3】(2022秋•海曙区期末)若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣1【分析】首先解关于x的不等式,求得不等式的解集,然后根据不等式只有3个正整数解,即可得到一个关于m的不等式组求得m的范围.【解答】解:解不等式2﹣m﹣x>0得:x<2﹣m,根据题意得:3<2﹣m≤4,解得:﹣2≤m<﹣1.故选:C.【点评】本题考查了一元一次不等式的整数解,此题比较简单,根据x的取值范围正确确定2﹣m的范围是解题的关键.在解不等式时要根据不等式的基本性质.【变式4-4】(2022•贵阳模拟)若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【分析】解关于x的不等式求得x≤�3,根据不等式的正整数解的情况列出关于m的不等式组,解之可得.【解答】解:移项,得:3x≤m,系数化为1,得:x≤�3,∵不等式的正整数解为1,2,3,∴3≤�3<4,解得:9≤m<12,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【变式4-5】(2023春•涡阳县期中)关于x5)<3�−8的解集中仅有﹣1和0两个整数解,且10a=2m+5,则m的取值范围是()A.﹣2.5<m≤2.5B.﹣2.5≤m≤2.5C.0<m≤2.5D.2<m≤2.5【分析】先根据不等式组的解集中仅有﹣1和0两个整数解,求出a的取值范围,再根据10a=2m+5,得m的取值范围即可.【解答】解:解不等式组得�<��>−2,∵不等式组解集中仅有﹣1和0两个整数解,∴0<a≤1,∵10a=2m+5,∴m=5a﹣2.5,∵﹣2.5<5a﹣2.5≤2.5,∴m的范围是﹣2.5<m≤2.5.故选:A .【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.【变式4-6】(2022秋•巴南区校级期中)若关于x≥2�4(�+1)有解,且最多有3个整数解,且关于y 的方程3y ﹣2=2�−3(8−�)2的解为非负整数,则符合条件的所有整数m 的和为()A .23B .26C .29D .39【分析】先解一元一次不等式组,根据题意可得2≤3�10<5,再解一元一次方程,根据题意可得2�−203≥0且2�−20310≤m <503且2�−203为整数,然后进行计算即可解答.≥2�①4(�+1)②,解不等式①得:x ≤3�10,解不等式②得:x ≥32,∵不等式组有解且至多有3个整数解,∴2≤3�10<5,∴203≤m <503,3y ﹣2=2�−3(8−�)2,解得:y =2�−203,∵方程的解为非负整数,∴2�−203≥0且2�−203为整数,∴m ≥10且2�−203为整数,综上所述:10≤m <503且2�−203为整数,∴m =10,13,16,∴满足条件的所有整数m 的和,10+13+16=39,故选:D .【点评】本题考查了一元一次方程的解,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.【变式4-7】(2022春•兴文县期中)已知关于x 的不等式组2�+4>03�−�<6.(1)当k 为何值时,该不等式组的解集为﹣2<x <2?(2)若该不等式组只有4个正整数解,求k 的取值范围.【分析】(1)解不等式组得到其解集,结合已知的解集明确6+�3=2,即可求出k 的值;(2)根据(1)的结论和不等式组只有四个正整数解,可得关于k 的不等式组,再解不等式组即可.【解答】解:(1)不等式组2�+4>03�−�<6,解不等式2x +4>0得:x >﹣2,解不等式3x ﹣k <6得:�<6+�3,∴该不等式组的解集为−2<�<6+�3.∵﹣2<x <2,∴6+�3=2,∴k =0,即k =0时,该不等式组的解集为﹣2<x <2.(2)由(1)知,不等式组2�+4>03�−�<6的解集为−2<�<6+�3,∵该不等式组只有4个正整数解,∴x =1,2,3,4,∴4<6+�3≤5,∴6<k ≤9.【点评】本题考查解一元一次不等式组,属于常考题型,第2问有一定难度,根据原不等式组解集的情况得出关于k 的不等式组是解题的关键.【变式4-8】(2022春•淮北月考)已知关于x 的不等式组�>−1�≤1−�(1)当k =﹣2时,求不等式组的解集;(2)若不等式组的解集是﹣1<x ≤4,求k 的值;(3)若不等式组有三个整数解,则k 的取值范围是.【分析】(1)将k =﹣2代入不等式组,然后利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定不等式组的解集;(2)利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定k 的取值范围;(3)根据不等式组中x >﹣1确定不等式组的整数解,然后利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定k 的取值范围.【解答】解:(1)当k =﹣2时,1﹣k =1﹣(﹣2)=3,∴原不等式组解得:x>−1x≤3,∴不等式组的解集为:﹣1<x≤3;(2)当不等式组的解集是﹣1<x≤4时,1﹣k=4,解得k=﹣3;(3)由x>﹣1,当不等式组有三个整数解时,则不等式组的整数解为0、1、2,又∵x≤2且x≤1﹣k,∴2≤1﹣k<3,1≤﹣k<2,解得﹣2<k≤﹣1.故答案为:﹣2<k≤﹣1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式4-9】(2022•南京模拟)已知关于x的不等式组5�+1>3(�−1)12�≤8−32�+2�恰有三个整数解.(1)求a的取值范围.(2)化简|a+3|﹣2|a+2|.【分析】(1)先求出每个不等式的解集,然后求出不等式组的解集,再根据不等式组恰好有三个整数解进行求解即可;(2)根据(1)所求可得a+3≥0,a+2<0,由此化简绝对值即可.【解答】解:(1)5�+1>3(�−1)①12�≤8−32�+2�②,解不等式①得:x >﹣2,解不等式②得:x ≤4+a ,∴不等式组的解集为﹣2<x ≤4+a ,∵不等式组前有三个整数解,∴1≤4+a <2,∴﹣3≤a <﹣2;(2)∵﹣3≤a <﹣2,∴a +3≥0,a +2<0,∴|a +3|﹣2|a +2|=a +3+2(a +2)=a +3+2a +4=3a +7.【点评】本题主要考查了根据不等式组的解集情况求参数,化简绝对值,正确求出不等式组的解集是解题的关键.【例题5】(2022秋•西湖区校级期中)关于x 的方程组�−�=�−2�+2�=2�+1的解满足2x +y>2,则m 的取值范围是.【分析】两方程相加得到2x +y =3m ﹣1,结合2x +y >2列出关于m 的不等式,解之可得【解答】解:�−�=�−2①�+2�=2�+1②,①+②得:2x +y =3m ﹣1,∵2x+y>2,∴3m﹣1>2,∴m>1,故答案为:m>1.【点评】本题主要考查解二元一次方程组,考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键.【变5-1】(2022春•长泰县期中)已知方程组2�+�=3+��+2�=1−�的解满足x﹣y<0,则()A.m>﹣1B.m>1C.m<﹣1D.m<1【分析】方程组两方程相减表示出x﹣y,代入已知不等式求出m的范围即可.【解答】解:2�+�=3+�①�+2�=1−�②,①﹣②得:x﹣y=2m+2,代入x﹣y<0得:2m+2<0,解得:m<﹣1.故选:C.【点评】此题考查了解一元一次不等式,以及二元一次方程组的解,熟练掌握不等式的解法是解本题的关键.【变5-2】(2022春•建邺区校级期末)若方程组2�+�=3+��+2�=−1−�的解满足x<y,则a 的取值范围是()A.a<﹣2B.a<2C.a>﹣2D.a>2【分析】将方程组中两方程相减,表示出x﹣y,代入x﹣y<0中,即可求出a的范围.【解答】解:2�+�=3+�①�+2�=−1−�②,①﹣②得:x ﹣y =4+2a ,∵x <y ,∴x ﹣y <0,∴4+2a <0,∴a <﹣2.故选:A .【点评】此题考查了解二元一次方程组,以及解一元一次不等式,表示出x ﹣y 是解本题的关键.【变5-3】(2022春•偃师市校级期中)已知不等式4−5�2−1<6的负整数解是方程2x ﹣3=ax 的解.求关于x 的一元一次不等式组7(�−�)−3�>−1115�+2<�的解集及其所有整数解的和.【分析】先求出不等式4−5�2−1<6的负整数解,再解方程求出a 的值,代入不等式组,求出不等式组的解集即可得答案.【解答】解:∵4−5�2−1<6,4﹣5x ﹣2<12,﹣5x <10,x >﹣2,∴不等式的负整数解是﹣1,把x =﹣1代入2x ﹣3=ax 得:﹣2﹣3=﹣a ,解得:a =5,把a=5代入不等式组得7(�−5)−3�>−11 15�+2<5,解不等式组得:6<x<15.∴所有整数解的和7+8+9+10+11+12+13+14=84.【点评】本题考查了解一元一次不等式及整数解,解一元一次方程,解不等式组的应用,主要考查学生的计算能力.【变5-4】(2022春•雁江区校级期中)已知a是不等式组5�−1>3(�+1)12�−1<7−32�的整数解,x,y满足方程组��−2�=8�+2�=0,求(x﹣y)(x2+xy+y2)的值.【分析】先解不等式组确定a的整数值,再将a值代入关于x、y的二元一次方程组中求解,最后求得(x+y)(x2﹣xy+y2)的值.【解答】解:解不等式①得:a>2,解不等式②得:a<4,∴不等式组的解集是:2<a<4,∴不等式组的整数解是3,∴方程组为3�−2�=8�+2�=0,解得�=2�=−1,∴(x+y)(x2﹣xy+y2)=(﹣1+2)(4+2+1)=7.【点评】本题考查了解一元一次不等式组,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取大,同小取小,小大大小中间找,大大小小解不了;也考查了解二元一次方程组以及求代数式的值.【变5-5】(2022春•南关区校级期中)若关于x、y的二元一次方程组5�+2�=5�7�+4�=4�的解满足不等式组2�+�<5�−�>−9,求出整数a的所有值.【分析】解方程组5�+2�=5�7�+4�=4�得出�=2��=−52�,代入不等式组2�+�<5�−�>−9得到关于a的不等式组,解之可得.【解答】解:5�+2�=5�①7�+4�=4�②,①×2﹣②,得:3x=6a,解得:x=2a,将x=2a代入①,得:10a+2y=5a,解得:y=−52a,∴方程组的解为�=2��=−5 2�.将�=2��=−52�代入不等式组组2�+�<5�−�>−9,得:4�−52�<5 2�+52�>−9,解得:﹣2<a<10 3,∴整数a的所有值为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了解二元一次方程组.�+4�=2+�的解满足﹣1<x+y≤3.【变5-6】(2023春•河南期中)已知方程组2�−�=1+2�(1)求a的取值范围;(2)当a为何整数时,不等式2ax﹣x>2a﹣1的解集为x<1?【分析】(1)两个方程相加可得出x+y=a+1,根据﹣1<x+y≤3列出关于a的不等式,解之可得答案;(2)根据不等式2ax﹣x>2a﹣1的解集为x<1、a为整数和(1)中a的取值范围,可以求得a的值.【解答】解:(1)两个方程相加可得3x+3y=3a+3,则x+y=a+1,根据题意,得:﹣1<a+1≤3,解得﹣2<a≤2,即a的取值范围是﹣2<a≤2;(2)由不等式2ax﹣x>2a﹣1,得(2a﹣1)x>2a﹣1,∵不等式2ax﹣x>2a﹣1的解集为x<1,∴2a﹣1<0,得a<0.5,又∵﹣2<a≤2且a为整数,∴a=﹣1,0,即a的值是﹣1或0.【点评】本题考查解二元一次方程组、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确题意,利用不等式的性质解答.【变5-7】(2022春•威远县校级期中)已知方程组�+�=−7−��−�=1+3�的解满足x 为非正数,y 为负数.(1)求m 的取值范围;(2)当m 为何整数时,不等式2mx +x <4m +2的解集为x >2.【分析】(1)解方程组得�=�−3�=−2�−4,根据x 为非正数,y 为负数得�−3≤0①−2�−4<0②,解之可得答案;(2)由不等式2mx +x <2m +1,即(2m +1)x <2m +1的解集为x >1知2m +1<0,解之得出m <−12,再从﹣2<m ≤3中找到符合此条件的整数m 的值即可.【解答】解:(1)解方程组得�=�−3�=−2�−4,∵x 为非正数,y 为负数,∴�−3≤0①−2�−4<0②,解不等式①,得:m ≤3,解不等式②,得:m >﹣2,则不等式组的解集为﹣2<m ≤3;(2)∵不等式2mx +x <4m +2,即(2m +1)x <4m +2的解集为x >2,∴2m +1<0,解得m <−12,在﹣2<m ≤3中符合m <−12的整数为﹣1.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变5-8】(2022春•定远县校级期末)已知不等式组3(2�−1)<2�+8①2+3(�+1)8>3−�−14②.(1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式ax+6≤x﹣2a,化简|a+1|﹣|a﹣1|.【分析】(1)先解出每个不等式的解集,即可得到不等式组的解集,然后再写出它的整数解即可;(2)将(1)中的结果代入不等式ax+6≤x﹣2a,然后求出a的取值范围,再判断a+1和a ﹣1的正负情况,然后将所求式子去掉绝对值,再化简即可.【解答】解:(1)3(2�−1)<2�+8①2+3(�+1)8>3−�−14②,由①得:�<11 4,由②得:�>7 5,∴不等式组的解集为75<�<114,∴不等式组的整数解为x=2;(2)将x=2代入不等式ax+6≤x﹣2a,得:2a+6≤2﹣2a,解得a≤﹣1,∴a+1≤0,a﹣1≤﹣2,∴|a+1|﹣|a﹣1|=﹣(a+1)﹣(1﹣a)=﹣a﹣1﹣1+a=﹣2.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.【变5-9】(2022春•乐安县期中)若关于x�−13�≤4−�恰有2个整数解,且关于x ,y 的方程组��+�=43�−�=0也有整数解,求出所有符合条件的整数m 的值.【分析】表示出不等式组的解集,由不等式组恰有2个整数解,确定出m 的范围,再由方程组有整数解,确定出符合题意整数m 的值即可.【解答】解:不等式组整理得:�>−2�≤�+45,∵不等式组恰有2个整数解,∴﹣2<x ≤�+45,即整数解为﹣1,0,∴0≤�+45<1,解得:﹣4≤m <1,即整数m =﹣4,﹣3,﹣2,﹣1,0,方程组��+�=4①3�−�=0②,①+②得:(m +3)x =4,解得:x =4�+3,把x =4�+3代入②得:y =12�+3,∵方程组的解为整数,∴m =﹣4,﹣2,﹣1.【点评】此题考查了解一元一次不等式组的整数解,以及二元一次方程组的解,熟练掌握各自的性质是解本题的关键.。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
初中数学不等式组初中数学计算题专题训练含答案.doc
初中数学不等式组初中数学计算题专题训练含答案.doc初中数学不等式组初中数学计算题专题训练含答案.doc姓名:__________班级:__________考号:__________一、计算题(共20题)1、解不等式组:2、解不等式:,并求出它的正整数解。
3、解不等式组:,并把解集在数轴上表示出来.4、解下列不等式(组)并把解集表示在数轴上。
5、解不等式组??6、解不等式组,并将解集在数轴上表示出来.7、解不等式组:8、解不等式组:9、求不等式组的整数解.10、解不等式组:11、解不等式组并写出不等式组的整数解.12、求不等式组的正整数解。
13、解不等式组:并写出其所有自然数解14、解不等式组:.15、解不等式组:.16、解不等式组:.17、解不等式组:.18、解不等式组,并在数轴上表示出它的解集.19、解不等式组:20、解不等式组:============参考答案============一、计算题1、解:由(1)得:由(2)得:∴原不等式组的解集:??2、解:去分母,得3、?解:由①得:,由②得:∴。
?4、-1<X≤25、?6、7、解不等式组:解:由(1)得?------------2分由(2)得??<4-------------2分∴3≤x<4-------------------2分8、解:由①得x≥1.由②得x<4.所以原不等式组的解集为1≤x<4.9、解:?解不等式①得:≤1,解不等式②得:>-3,∴-3<≤1,所以该不等式组的整数解为-2,-1,0,1.10、解:由不等式①解得,?由不等式②解得.因此不等式组的解集为.??11、解:由①得……2分由②得……4分原不等式组的解集为:?……5分它的整数解为:-1,0??12、?解:由①得x<3…………2'由②得x≥-1…………2'∴解集为-1≤x<3其正整数解为1、2…………5'13、解不等式(1)得:;………………………………1分解不等式(2)得:?x<2……………………………2分所以不等式组的解集为?……………………………3分其自然数解为x=0,1……………………………4分14、15、由①得:x>-2………………………………………………………………1分由②得:x≤1………………………………………………………………3分∴不等式组的解集为-2<x≤1……………………………………………………4分16、解:由①得:由②得:∴不等式组的解集为.17、18、考点:解一元一次不等式组;在数轴上表示不等式的解集。
初中数学不等式专题练习及答案
不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。
七年级数学不等式练习题及标准答案
七年级数学不等式练习题及标准答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.选择题(共20小题)1.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0B.a+b<0C.<1D.a﹣b<02.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17B.t>25C.t=21D.17≤t≤253.若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.4.如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<05.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个7.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.8.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>29.不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣10.不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<111.不等式2x﹣7<5﹣2x正整数解有()A1个B2个C3个D4个....12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>814.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a15.根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c16.不等式组的解集在数轴上表示正确的是()A .B.C.D.17.不等式组的解集在数轴上表示正确的是()A .B.C.D.18.不等式组的整数解共有()A .3个B.4个C.5个D.6个19.不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个20.若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个二.填空题(共2小题)21.关于x的不等式组的解集是x>﹣1,则m=_________.22.若不等式组的解集是﹣1<x<1,则(a+b)2009=_________.三.解答题(共8小题)23.解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.解不等式组,并写出不等式组的整数解.25.解不等式组,并求其整数解.28.解不等式组:,并判断是否满足该不等式组.30.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 752014年06月01日49的初中数学组卷参考答案与试题解析一.选择题(共20小题)1.(2009?枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的定义;实数与数轴.分析:先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A、∵a<b<0,∴ab>0,故选项正确;B、∵a<b<0,∴a+b<0,故选项正确;C、∵a<b<0,∴>1,故选项错误;D、∵a<b<0,∴a﹣b<0,故选项正确.故选C.点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.2.(2005?丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17 B.t>25 C.t=21 D.17≤t≤25考点:不等式的定义.分析:读懂题意,找到最高气温和最低气温即可.解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D.点评:解答此题要知道,t包括17℃和25℃,符号是≤,≥.3.(2009?临沂)若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2008?恩施州)如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(2006?镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.专题:压轴题.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个考点:不等式的解集.分析:分别解不等式就可以得到不等式的解集,就可以判断各个选项是否成立.解答:解:①不等式2x﹣1<0的解集是x<包括0,正确;②不等式3x﹣1>0的解集是x>不包括,正确;③不等式﹣2x+1<0的解集是x>,不正确;④不等式组的解集是x>2,故不正确;故选B.点评:解答此题的关键是分别解出各不等式或不等式组的解集,再与已知相比较即可得到答案正确与否,解不等式是解决本题的关键.7.(2009?河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(2007?武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2008?无锡)不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.解答:解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.点评:本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.10.(2007?双柏县)不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<1考点:解一元一次不等式.专题:计算题.分析:由一元一次不等式的解法知:解此不等式只需移项,系数化1两步即可得解集.解答:解:不等式2x>3﹣x移项得,2x+x>3,即3x>3,系数化1得;x>1.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.(2007?枣庄)不等式2x﹣7<5﹣2x正整数解有()A .1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,然后再找出不等式的特殊解.解答:解:移项得:﹣4x≥13﹣12,合并同类项得:﹣4x≥1,系数化为1得:x≤﹣,所以不等式12﹣4x≥13没有正整数解.故选A.点评:正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>8考点:由实际问题抽象出一元一次不等式.分析:理解:不大于8,即是小于或等于8.解答:解:根据题意,得2x﹣3≤8.故选A.点评:应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.14.(2008?赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a考点:一元一次不等式的应用.专题:压轴题.分析:根据图示三种物体的质量列出不等关系式是关键.解答:解:依据第二个图得到a+c=b+c?a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.(2009?鄂州)根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c考点:一元一次不等式的应用.分析:找出不等关系是解决本题的关键.解答:解:由第一图可知:3a=2b,b>a;由第二图可知:3b=2c,c>b,故a<b<c.∴A、B、D选项都正确,C选项错误.故选C.点评:解决问题的关键是读懂图意,进而列出正确的不等式.16.(2012?呼伦贝尔)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.17.(2010?东阳市)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:不等式可化为:.∴在数轴上可表示为.故选A.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(2009?崇左)不等式组的整数解共有()A .3个B.4个C.5个D.6个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到整数解.解答:解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(2005?泰州)不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组的解集,在取值范围内可以找到正整数解.解答:解:解①得x>0解②得x≤3∴不等式组的解集为0<x≤3∴所求不等式组的整数解为1,2,3.共3个.故选C.点评:本题考查不等式的解法及整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.20.(2005?菏泽)若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.解答:解:由题意可得,由(1)x>﹣,由(2)得x<,所以不等式组的解集为﹣<x<,则x可以取的整数有0,1共2个.故选B.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.填空题(共2小题)21.(2009?孝感)关于x的不等式组的解集是x>﹣1,则m=﹣3.考点:解一元一次不等式组.分析:易得m+2>m﹣1.那么不等式组的解集为x>m+2,根据所给的解集即可判断m的取值.解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3.点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.22.(2009?凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=﹣1.考点:解一元一次不等式组;代数式求值.专题:计算题;压轴题.分析:解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.解答:解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.三.解答题(共8小题)23.(2007?滨州)解不等式组把解集表示在数轴上,并求出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.解答:解:由①得由②得x<3∴原不等式组的解集为≤x<3数轴表示:不等式组的整数解是﹣1,0,1,2.点评:本题考查不等式组的解法,需要注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.24.(2005?南京)解不等式组,并写出不等式组的整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解不等式①得x≥1解不等式②得x<3∴原不等式组的解集是1≤x<3∴原不等式组的整数解是1,2.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.(2002?潍坊)解不等式组,并求其整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:不等式组可化成,解不等式①得x>解不等式②得x≤4,∴不等式组的解集<x≤4,整数解为4,3.点评:此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.26.(2010?楚雄州)某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:先设甲种货车为x辆,则乙种货车为(10﹣x)列出一元一次不等式组.再根据答案设计出方案.解答:解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2000+5×1300=16500(元)在方案二中果农应付运输费:6×2000+4×1300=17 200(元)在方案三中果农应付运输费:7×2000+3×1300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.27.(2008?自贡)解不等式组.考点:解一元一次不等式组.专题:计算题.分析:分别求出两个不等式的解集,求其公共解.解答:解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.(2008?苏州)解不等式组:,并判断是否满足该不等式组.考点:解一元一次不等式组;估算无理数的大小.分析:首先分别解出两不等式的解集,再求其公共解即可得到不等式组的解集,然后利用无理数的估算即可解集问题.解答:解:不等式组可化成,由①得:x>﹣3.由②得:x≤1.∴原不等式组的解集是:﹣3<x≤1.∴满足该不等式组.点评:此题主要考查求不等式组的解集即无理数的估算,解题时应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.29.(2009?天津)解不等式组考点:解一元一次不等式组.分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取较大”来求不等式组的解集.解答:解:∵,由①得,x>2,由②得,x>﹣.∴原不等式组的解集为x>2.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取较大,同小取小,大小小大中间找,大大小小找不到(无解).30.(2009?太原)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 75考点:一元一次不等式组的应用.专题:方案型;图表型.分析:设计划生产甲产品x件,生产乙产品(20﹣x)件,直接根据“1150<w<1200”列出不等式组求解即可.解答:解:设计划生产甲产品x件,则生产乙产品(20﹣x)件.根据题意,得,解得.∵x为整数,∴x=11,此时,20﹣x=9(件).答:公司应安排生产甲产品11件,乙产品9件.点评:本题属于基础题,解决本题的关键是找到相等及不等关系列出方程或不等式.注意本题的不等关系为:1150<w<1200.。
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
七年级数学不等式练习题及参考答案【人教版】
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
初一数学方程组与不等式组试题答案及解析
初一数学方程组与不等式组试题答案及解析1.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是 ( )A.55cm B. 65cm C.75 m D.85【答案】C【解析】解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h-y+x=80,由第二个图形可知桌子的高度为:h-x+y=70,两个方程相加得:(h-y+x)+(h-x+y)=150,解得:h=75cm.故选C.2.若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个).【答案】x+y=1,答案不唯一【解析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,这个方程可能是:x+y=1,答案不唯一.3.解方程组或不等式(组)(每题6分共30分)(2)(3)(1)(4)(5)【答案】(1)(2)(3)(4)(5)不等式组无解【解析】(1)①2+②得5x=15解得x=3代入①得3+y=3解得y=0所以方程组的解为(2)②去分母整理得-4x+6y=-13与①相加得3y=-6解得y=-2代入①得x=所以方程组的解为(3)①-②得x-z=-1与③相加得2x=2解得x=1代入①得y=0代入③得z=2所以方程组的解为(4)去括号整理得-6x<-28解得x>(5)解①得x<,解②得x>所以不等式组无解4.(1)化简(2)先化简,再求值:,其中,【答案】(1)(2)12【解析】(1)化简2分4分5分(2)先化简,再求值:,其中,1分2分3分4分="12 " 5分解方程5.比较下列各数的大小,并用“<”号将它们连接起来._______________________________________【答案】【解析】试题考查知识点:比较大小思路分析:可以在数轴上描点,这些数对应的点,自左向右,越来越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.-2、-1、0、1
3. ,把它的解集在数轴上表示见解析.
4.﹣3≤x<5.
5.(1)x≤-1;(2) 1<x<2
6.
7.(1) ;(2)
8.
9.
10. ,在数轴上表示见解析.
11.2<x<5.
12. ,数轴见解析
13. ,数轴表示见解析
14. .
15.不等式组的解集为x≤−5;最大负整数解为-5
19.阅读下面的材料:
对于实数 ,我们定义符号 的意义为:当 时, ;当 时, ,如: .
根据上面的材料回答下列问题:
(1) ______;(2)当 时,求x的取值范围.
20.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式 的几何意义是数轴上 所对应的点与2所对应的点之间的距离;因为 ,所以 的几何意义就是数轴上 所对应的点与 所对应的点之间的距离.
11.解不等式组:
12.解不等式 ,并在数轴上表示其解集.
13.解不等式组 ,并将解集在数轴上表示出来.
14.解不等式组:
15.解不等式组 ,并写出它的最大负整数解.
16.解下列不等式或不等式组,并把解集在数轴上表示出来:
ห้องสมุดไป่ตู้(1) 3(x+2)-7<4(x-1)(2)
17.解不等式组:
18.解不等式组 ,并写出它的所有整数解.
16.(1)x>3;(2)无解
17.
18.该不等式组的解集是 ,它的所有整数解为0,1,2.
19.(1)﹣1;(2)x≥
20.①6;② 或 ;③ 或
计算专题6——不等式组
1.解不等式组:
2.求不等式组 的整数解.
3.解不等式组: ,并把它的解集在数轴上表示出来.
4.解不等式组: .
5.解下列不等式(组):
(1)2x-5≤2( );(2)
6.解不等式组 .
7.解不等式(组)
(1) ;(2)
8.解不等式组:
9.解不等式组: .
10.解不等式组: ,并将其解集表示在数轴上.
⑴.发现问题:代数式 的最小值是多少?
⑵.探究问题:如图,点 分别表示的是 , .
∵ 的几何意义是线段 与 的长度之和
∴当点 在线段 上时, ;当点点 在点 的左侧或点 的右侧时
∴ 的最小值是3.
⑶.解决问题:
①. 的最小值是;②.利用上述思想方法解不等式:
③.当 为何值时,代数式 的最小值是2.
参考答案