数控正弦函数信号发生器设计电路
函数信号发生器的设计
函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
函数信号发生器(三角波,梯形波,正弦波)
电子课程设计题目:函数信号发生器的设计学院:机械工程学院班级:测控技术与仪器071班作者:学号:指导教师:2010年7月7日摘要:该函数发生器采用AT89S51 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(1458N)等。
电路采用AT89S51单片机和一片DAC0832数模转换器组成函数信号发生器,在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。
它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。
由于采用了1458N运算放大器,使其电路更加具有较高的稳定性能,性能比高。
此电路清晰,出现故障容易查找错误,操作简单、方便。
本设计主要应用AT89S51作为控制核心。
硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。
关键词:AT89S51、DAC0832、波形调整【Abstract】: For special requirement the function generator usingAT89S51 microcontroller as the control, external analog / digital conversion circuit (DAC0832), op-amp circuit (1458C) and so on. AT89S51 microcontroller circuit and an integral function DAC0832 digital-signal generator, the microcontroller output port connected to DA converter DAC0832, and then wave through the op amp to adjust the final output connected to the oscilloscope waveform display. It has a low cost, high performance and low frequency range, good stability, easy operation, small size, low power consumption and so on. As a result of 1458G operational amplifier circuit to a more stable performance with high performance is high. The circuit clear, easy to find failure error, simple and convenient.The design of the main application AT89S51 as the control center. Simple hardware circuit, software, functional, and reliable control system, high cost performance characteristics, has some use and reference.Key words:AT89S51, DAC0832, waveform adjust目录1、设计概述1.1、设计任务----------------------------------4 1.2、方案选择与论证----------------------------41.3、系统设计框图------------------------------52、硬件电路设计--------------------------------53、软件系统设计3.1、阶梯波设计思想及流程图--------------------133.3、三角波和正弦波设计思想--------------------144、系统软件仿真4.1、protues仿真原理图------------------------154.2、仿真波形图--------------------------------165、课程设计心得体会---------------------------176、参考文献------------------------------------177、附录附录一:protel原理图----------------------------18 附录二:PCB图 ----------------------------------18 附录三:焊接后的电路板实物图---------------------19 附录四:实际电路板调试后发生阶梯波图-------------19附录五:实验源程序-------------------------------191.1设计任务与要求:1采用AT89S51及DAC0832设计函数信号发生器;2输出信号为正弦波或三角波或阶梯波;3输出信号频率为100Hz,幅度-5V—+5V可调;4必须具有信号输出及外接电源、公共地线接口,程序在线下载接口。
举例说明一种正弦波信号发生器电路
举例说明一种正弦波信号发生器电路正弦波信号发生器是一种电路,可以产生正弦波信号。
正弦波信号是有很多应用的,比如在电子学实验中,我们需要用到正弦波信号来测试电路。
下面,我将简单介绍一种正弦波信号发生器的电路,并对其原理和工作流程进行说明。
首先,这种电路的核心部件是一个三极管,它被用作振荡器。
在这个电路中,三极管的基极、发射极和集电极都与其他电子元器件相连。
正弦波信号不断地从集电极引出,并送到负载电阻。
负载电阻的作用是阻止电路的过度电流流入电源。
同样,电路中还有一个电容器,它与三极管的基极和地相连。
它起到的作用是抑制三极管的噪声。
当三极管被正确地电偏置时,就开始振荡了。
这是因为基极可能连接到三角波波形发生器输出的高阻抗信号,它能抵消三极管的反馈性能。
随着电荷在电容器内流动,振荡波形变化,从而形成了正弦波信号。
这个电荷在三极管的基极和集电极之间来回流动。
这个电路有很多优点,其中最重要的是简单易用。
通过改变电路中的一些元器件,就可以改变输出的正弦波信号的频率。
此外,这个电路还可以通过使用放大器、变压器和滤波器等其他设备来进一步优化。
这个电路可以用于许多应用程序。
在实际使用中,常用于声音处理器件、无线电通信器件、电子设备测试、电子数字合成器、音乐器材等等。
这个电路非常普遍,无论在个人电子学方面还是工业领域都有它的身影。
这个电路的实现需要一定的知识和技能,但如果你已经具备了一定的电子学知识,那么它应该不难理解。
总的来说,这个电路是一种简单而有效的正弦波信号发生器,有很多实际应用。
基于FPGA的数控移相正弦信号发生器设计
图一 数控移相正弦信号发生器系统结构框 图
数 可调性 、 高性价 比方 面都有 了显著的提高 。数控移相 正弦
信号 发生器等 功能更加完善 的波 形发生器不断 问世 , 而且正 朝着产生 更高质量 的波形发展。 当前信号发生器总的趋势是 高频
能化方 向发展 。
转换单元用 F G P A ̄
再将 输出信号送入 DA C器 件, 最后 通过低通滤波器输 出所需模拟波形 波形产生过程 如图二 所 示:
量信空电领子、 器应生测术中抗仪 ,用器控系基子 广号航子域对 测 正于作、统本 泛发天技 、的 弦航为信电 电 通最
、
科研等各个领域 中。 如 今, 数控 正弦信号发 生器 因为其
一
F^ P G ,
,
输 出幅值 稳定 、 输出频率 连续可调 等优点 , 随着大规模 集 且 成电路 的发展, 各种数字 式正弦 波发生器 层出不穷 , 出正 输 弦波频率范围越来越大 , 失真度也越来越小 。近年来信号发 生器 的性 能指标得到 了快速提高 , 在追求高精度 、 可靠性 、 参
wt HD n es l pr h r i utWhc a eea os v s i rcnetdadajs df q ec n hs i V La dt i e ei e c ci h h mp p y r . i cng nrt t i wae t peo cr n dut ' u nyadp ae h ew n wh e e i e
器即二进制计数器的低 8位 Q 0一 Q 7作为地址去寻址双路 R OM。这祥 R M 对应地址的样值送 D 0 3 O AC 8 2进行 D/ A转 换就可 以得到两 路正弦波形。 只要改变计数器 的输人脉冲频
【精品】函数信号发生器课程设计报告
【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。
该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。
本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。
关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。
包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。
此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。
二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。
主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。
(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。
(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。
函数信号发生器的设计电路
北华航天工业学院《电子技术》课程设计报告报告题目:信号发生器设计电路作内容摘要本方案主要用集成运放LM324和UA741等元器件设计组成一个简易函数信号发生器。
该函数信号发生器主要由迟滞比较器、积分器电路、二阶RC有源低通滤波器电路等三部份组成。
迟滞比较器电路形成方波,经积分器电路输出三角波,再经二阶RC有源低通滤波器电路形成正弦波,通过电源实现1~12V可调,经过电位器实现频率调节。
由此构成了一个简易的函数信号发生器。
本实验主要通过使用Multisim、protel软件等完成电路的软件设计。
关键字:集成运放方波三角波正弦波目录一、概述 (1)二、方案设计与论证 (2)1.方案一 (2)2.方案二 (2)三、单元电路设计与分析 (2)1.迟滞比较器 32.积分器 (3)3.低通滤波器 (3)四、总原理图及元器件清单 (4)五、结论 (6)六、心得体会 (6)七、参考文献 (6)一、概述通过集成运放构成迟滞比较器、积分器和低通滤波电路,依次分别输出方波、三角波、正弦波。
通过调节电压源或滑动变阻器,可改变波形的幅值和频率。
二、方案设计与论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
1.方案一采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、二阶低通滤波电路、选择开关、电位器和一些电容、电阻组成。
该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三级可以产生正弦波。
正弦信号发生器实验报告
正弦信号发生器实验报告引言本实验旨在设计并构建一个正弦信号发生器,用于产生具有特定频率和振幅的正弦波信号。
正弦信号在电子工程中具有广泛的应用,如通信系统、音频设备和信号处理等。
本实验将介绍设计思路、所需材料和步骤,以及实验结果和讨论。
设计思路为了设计一个正弦信号发生器,我们需要以下主要组件:1.振荡电路:产生正弦波信号的核心部分。
2.振幅调节电路:用于控制输出信号的振幅。
3.频率调节电路:用于控制输出信号的频率。
我们将使用基本的集成电路和电子元件来实现这些功能。
接下来,我们将逐步说明每个组件的设计和实现。
所需材料在开始实验之前,我们需要准备以下材料和工具:1.集成电路:例如操作放大器(Op-amp)。
2.电容器和电阻器:用于构建振荡电路和调节电路。
3.面包板:用于连接电子元件。
4.电源:为电路提供所需的电能。
5.示波器:用于测量信号的振幅和频率。
实验步骤1.第一步:振荡电路设计和构建–选择一个合适的振荡电路拓扑,如RC振荡电路。
–计算并选择所需的电容器和电阻器数值。
–使用面包板将电容器、电阻器和集成电路连接起来。
2.第二步:振幅调节电路设计和构建–选择一个合适的振幅调节电路拓扑,如非反相放大器。
–根据需要的振幅范围计算并选择所需的电阻器数值。
–使用面包板将电阻器和集成电路连接起来。
3.第三步:频率调节电路设计和构建–选择一个合适的频率调节电路拓扑,如电阻-电容调谐电路。
–根据需要的频率范围计算并选择所需的电容器和电阻器数值。
–使用面包板将电容器、电阻器和集成电路连接起来。
4.第四步:电源和示波器连接–将电源连接到电路以提供所需的电能。
–将示波器连接到电路以测量输出信号的振幅和频率。
5.第五步:实验验证和调试–打开电源,并使用示波器观察输出信号。
–调节振幅和频率调节电路,验证是否可以在所需范围内调节信号的振幅和频率。
实验结果和讨论经过实验验证和调试,我们成功设计和构建了一个正弦信号发生器。
该信号发生器能够在所需的频率范围内产生具有可调节振幅的正弦波信号。
设计能产生方波、三角波、正弦波的函数信号发生器电路
目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim软件环境介绍 (1)2.1设计任务 (1)2.2所用multisim软件环境介绍 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (3)3.1原理分析 (3)3.2函数信号发生器各单元电路的设计 (5)3.2.1方波产生电路图 (5)3.2.2方波—三角波转换电路图 (5)3.2.3正弦波电路图 (6)3.2.4方波-三角波-正弦波函数发生器整体电路图 (6)4 理论分析及计算 (7)4.1方波发生电路 (7)4.2方波—三角波 (7)4.3正弦波 (7)5 仿真结果分析 (8)5.1仿真结果 (8)5.1.1方波、三角波产生电路的仿真波形如图所示 (8)5.1.2方波—三角波转换电路的仿真 (10)5.1.3三角波—正弦波转换电路仿真 (11)5.1.4方波—三角波—正弦波转换电路仿真 (12)5.2结果分析 (13)6 设计总结和体会 (133)7 参考文献 (144)I1 课程设计的目的与作用1.巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。
2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。
通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。
3.通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。
4.了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。
5.培养严肃、认真的工作作风和科学态度2 设计任务及所用multisim软件环境介绍2.1 设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。
正弦波信号发生器的设计及电路图
正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。
很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。
电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。
1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。
在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。
2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。
由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。
制作一个正弦信号发生器的设计
制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。
正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。
它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。
(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。
(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。
(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。
(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。
(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。
(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。
(2)数字电路
采用数字电路设计的正弦信号发生器。
基于ICL8038函数信号发生器的设计(1)
失真度可达 0.5 左右。其精度效果相当满意。为了进一步减小正弦波的失真
度, 可 采 用 图 2 所 示 电 路中 两 个 电位 器 RW3 和 RW4 所 组 成 的 电 路 , 调 整 它
们可使正弦波失真度 减 小 。当然 , 如 果 矩形 波 的 占空 比 不 是 50% , 矩 形 波不
再是方波, 引脚 2 输出也就不再是正弦波了。
正弦波
波形失真情况 三角波
方波
误差小于 0.1 无失真
无失真 无失真
误差小于 0.5 低部和顶部略有失真 无失真 占空比略变小
误差小于 1
低部和顶部略有失真 无失真 占空比略大于 1/3
4.软件流程图 图 3 为软件流程图。T0 设为计数器,T1 设为定时器(初值为 5ms)。5ms 启 动主循环, 主要用于键盘扫描及扫描显示, 图 2 中 K0 作为控制键, K1 作为调 整键, K2 作为增加键; 上电时程序进入频率设置模式, 按一下 K0 键程序进入 数控模式, 按二下 K0 键程序进入扫频模式, 按三下 K0 键程 序 进 入 频 率 设 置 模式, 周而复始。在频率设置模式, 由 K1 键和 K2 键完成频率设置。
经实 验 发 现, 在 电 路 设计 中 接 10 脚和 11 脚 的 电容 值 和 性 能 是 整 个 电
路的关键器件, 电容值的确定也就确定电路能产生的频率范围, 电容性能的
好 坏 直 接影 响 信 号频 率 的 稳定 性 、波 形的 失 真 度 , 由 于 该 芯 片 是 通 过 恒 流 源
对 C 充放电来产生振荡的, 故振荡频率的稳定性就受到外接电容及恒流源
12 电子制作 2008 年第 3 期
图 2 电路原理图
HANDS ON PROJECTS
简易低频正弦信号发生器的设计
简易低频正弦信号发生器的设计摘要在电子和通信产品中往往需要高精度的低频正弦信号,本文提出了一种使用arm微处理器控制dds芯片产生可调频率的低频正弦信号发生器的方案,使得产生信号的频率稳定度和精度等指标都达到了较高的要求。
关键词 ml2035;lm3s;cortex-m3;zlg7290中图分类号tn74文献标识码a文章编号1674-6708(2010)21-0098-020 引言在科学研究、工程教育及生产实践中,常常需要用到低频、高精度的正弦信号,而传统的信号发生器绝大部分都是由模拟电路构成,频率虽然可达百兆赫兹并在高频范围内其频率稳定性与可调性好,但在低频信号输出时,其需要rc值很大,频率的稳定度和精度等指标都不高。
随着电路系统的数字化发展,直接数字频率合成(direct digital synthesizer,dds)作为一种波形产生方法,具有相位连续、频率分辨率高、转换速度快、信号稳定等诸多优点,从而使得dds技术得到了广泛的应用。
本文利用cortex-m3内核的arm芯片lm3s101与ml2035相配合,完成了简易数控频率可调低频正弦信号发生器电路的设计。
1 dds技术简介直接数字合成技术(direet digital synthesis,简称dds)是一种全数字化的频率合成器。
dds基本原理框图如图1所示,主要由相位累加器、波形rom、d/a转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于rom的地址线位数,幅度量化噪声取决于rom的数据位字长和d/a转换器位数。
dds技术作为一种先进的直接数字频率合成技术,用数字控制的方法从一个频率基准源产生多种频率,具有高可靠性、高集成度、高频率分辨率及频率变化快、控制灵活等特点,在通信与仪表领域得到了广泛的应用。
2 系统结构本发生器主要由利用cortex-m3内核的arm微控制器lm3s101驱动使用dds技术的单片低频正弦信号发生器ml2035完成信号的产生,同时使用专业的zlg7290按键和数码管显示芯片完成人机交互。
函数信号发生器课程设计报告
《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。
根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。
经测试,所设计波形发生电路产生的波形与要求大致相符。
关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。
1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。
1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。
1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。
函数信号发生器设计实验报告
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
简单正弦信号发生器设计实验报告
简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。
256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。
首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。
完成实验报告。
(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。
(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。
二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。
ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。
(2)正弦信号数据ROM,含64个8位数据。
(3)原理图顶层设计。
(4)8位D/A。
DAC的输出接示波器。
三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。
File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。
然后以romd.mif的名字保存至新建的文件夹中。
2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。
并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。
ICL8038函数信号发生器
ICL8038函数信号发生器一、电路图2、工作原理此电路是利用专用集成电路ICL8038做为信号源,ICL8038引脚的功能:(1、12脚)正弦波波形调整端;(2脚)正弦波输出;(3脚)三角波输出;(4、5脚)频率和占空比调整;(6脚)V+,正电源;(7脚)频偏;(8脚)频率调整输入端;(9脚)方波输出端,该引脚为一个集电极开路的输出端。
工作时应接一个上拉电阻到正电源端。
若需要兼容TTL的方波,则上拉电阻需要接+5V电源;(10脚)定时电容端;(11脚)V-,负电源端或接地,使用正负双电源时,11脚接负电源,输出波形相对于0V对称,使用单一正电源,11脚接地,输出波形是单极性,平均电压是V+/2;(13、14脚)空脚。
ICL8038函数信号发生器设计的频率范围是10KHz-450KHz,分5个频段,用跳线J2来切换,RP1是频率调节,RP2是方波占空比调节,RP3是方波线性调节,RP4是正弦波失真度调节,RP5是输出幅度调节,电路可以采用12-24V单电源供电,由J1输入。
J4是波形输出端,其中1脚输出带直流电压分量,2脚输出纯波形,输出波形的类别可以用跳线J3来切换。
三、调试说明:按照元件清单表清点元件,电路中集成电路,二极管,三极管,电解电容均为有极性元件,注意不能装反方向,所有元件应紧贴电路板安装。
各个可调电阻调节时相互有影响,选择好适当的频段反复仔细调节,频率低于50Hz和高于200KHz时波形调节难度较大。
四、安装图如下【频率档位】近似值10Hz - 450Hz90Hz - 1.5KHz940Hz – 15KHz6KHz – 120KHz20KHz – 450KHz。
函数信号发生器设计(三角波、方波、正弦波发生器)
基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:程立新2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。
5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。
按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可变256分频
基准电路
锁相环电路
256分频
正弦函数表
输出
D/AII
幅度开关
D/A I
2、频率控制电路
频率控制电路含时基电路,频率开关和PLL压控振荡器,如图3所示。若输出正弦信号频率 要求为10Hz~1.25KHz,则模256计数器输入时钟信号的频率范围为2.56KHz ~320KHz, 即:第一部分电路产生的方波频率范围的下限应小于2.56KHz,上限应为320KHz。就是 PLL锁相环要输出上述频率。
•
(2)脉冲波信号源
•
① 信号频率:10Hz~1.25kHz步进调整,步长为5Hz
•
② 脉冲占空比:2%~98%步进可调,步长为2%
•
•
• (3)三角波及锯齿波
•
① 信号频率:10Hz~1.25kHz步进调整,步长为5Hz
• 2.发挥部分
•
(1)正弦波和脉冲波频率步长改为1Hz。
•
(2)正弦波和脉冲波幅度可步进调整,调整范围为100mV~3V,步长为100mV。
2.1时基电路的设计
• 首先选择4060振荡及分频芯片加上3.2768MHz晶体经过8位分频产生12.8KHz方波信号,再10分 频产生1.28KHz给PLL(锁相环)作为基准时钟。利用PLL倍频功能产生2.56KHz至320KHz频率方 波。(N=2-255)
时基电路
CD4060是14位二进制计数器,3.2768M/2^8=12.8K 4518是BCD码计数器,12.8K/10=1.28K
i=int(m); if (m-1>=0.5) print(“﹪5x”,i+1); else print (“﹪5x”,i); } }
(3)输出数据作为EEPROM里面输入的正弦函数表:
(3)三角波函数表的算法设计:
用C语言进行如下编程: #include<stdio.h> void main() { int i; int rom_triangle[256]; int hex[256][2]; for(i=0;i<128;i++) { rom_triangle[i]=2*i; hex[i+128][1]= rom_triangle[i]/16;
3、电气指标 ① 输出信号波形:正弦波、锯齿波、三角波和方波 。
② 输出信号频率范围:10Hz~1.25KHz ÷
③ 输出信号最大电压:5V(峰峰值)。 ④ 输出频率最小步长:5Hz。 ⑤ 幅度选择档位:64档。
4、设计条件 电源条件:±5V。
5、元件清单
1
DAC0832
2
8位D/A
2
MC4046
由数字合成的信号源较传统的振荡器有很多优点。首先,它的输出频率可以方便的进行控制,通过 改变读取信号的速度,也可以通过改变样点的读取,实现调频,扫频和数字控制。再者,这种信号 源可以由计算机控制,组合成多种波形的函数信号发生器,另外较传统的模拟型便于集成化,可靠 性可以更高,频率变化范围更宽。
三、课题技术指标
1. 评分项目:预习报告、装配水平、调测水平、完成指标、报告。 2. 成绩分档:优秀、良好、中等、及格、不及格、不及格必须重修,没有补考。
二、 课题介绍
2.1 设计课题名称 数控正弦函数发生器
2.2 课题简介 数字信号源是目前发展较快的领域, 用途很广。利用存储器EPROM里的正弦函数发生器。这种
hex[i][0]= rom_sawtooth[i]-16*hex[i][1]; } for(i=0;i<256;i++) {
{ case 0:printf(“0”);break; case 1:printf(“1”);break; case 2:printf(“2”);break; case 3:printf(“3”);break; case 4:printf(“4”);break; case 5:printf(“5”);break; case 6:printf(“6”);break; case 7:printf(“7”);break; case 8:printf(“8”);break; case 9:printf(“9”);break; case 10:printf(“A”);break; case 11:printf(“B”);break; case 12:printf(“C”);break; case 13:printf(“D”);break; case 14:printf(“E”);break; case 15:printf(“F”);break; } printf(“ ”);
1
锁相电路
3
28C46B
1
EEPROM存储器
4
CD4040
1
12位二进制计数器
5
CD4060
1
14位二进制分频/振荡器
6
TL084
1
运算放大器
7
CD4029
2
4 位二进制
8
CD4518
1
双BCD同步加计数器
9
8路开关
2
双制直插式微型开关
10
RT电阻
7容
2
10pF涤纶电容
12 3.2768M晶振
教学目的:
1.提高模拟电路、数字电路理论和实验的综合能力。
2.掌握综合型电子电路的设计、装配和调测方法。
3.掌握电子元器件资料和电路资料的检索方法。
4.提高设计报告的撰写能力。
5.全面培养学生科技工作素质。
教学进程:
1. 设计要求和提示(在实验室教师授课,半天)查阅资料、设计电路(同学独立完成,1天半)。 2. 讲述装配方法和调测要求(2学时)。 3. 调测(第一周星期三至第二周星期三)。 4. 验收(第一周星期三至第二周星期四)。 5. 撰写报告(第二周星期五)、讲评、收尾。
写报告
星期三 29日
星期 四 30日
星期 五 31日
星期 一 3日
星期 二 4日
星期 三5日
星期 四 6日
星期 五 7日
①实验时间为8:00~11:30,下午13:~16:55; ②教师每天点名; ③27日下午和28日全天为查资料时间,可不在实验室,其他正课时间必须在实验室,未经请假不到实验 室者,按旷课论处,旷课超过3天,将取消课程设计资格.; ④课程设计期间学生请假离宁,需由辅导员批准,任课教师无权批准;⑤课程设计结束后3天内由各班 学习委员将课程设计报告收齐,交指导教师。
教学方法:
1. 教法: ① 在实验室集中,分3次讲解。 * 电路设计提示。 * 装配要求、调测方法。 * 实验报告撰写要求。 ② 辅导实验、最后逐一验收。
2. 学习方法: *认真自学《电子电路课程设计》相关章节。 * 独立完成设计。 *独立装配、调测、撰写设计报告 。
课程纪律:
1. 缺少实验达三分之一以上无成绩,必须重修。 2. 设计报告必须手写,不得用打印机打印。 3. 预习报告和设计报告抄袭他人者,报告成绩按0分论处。 4. 迟到、早退3次成绩降档。 成绩评定:
3.1 技术指标 1、整体功能要求 数控函数发生器的功能是用数字电路产生正弦波、方波、三角波和锯齿波信号,输出信号的频率和
电压的幅度均由数字式开关控制,并用一个自复开关进行选择4个发光二极管,指示波形种类。 事先对一个波形进行取样,把各个样点的取样值存入存储器构成函数表(可以存入一个周期的完整
信号,也可以存入半个周期或1/4个周期)。通过数字频率控制电路对函数表的读取,再把读取的取样 值取出还原成原始的波形信号,这就构成了信号发生器的基本设计原理。
case 0:printf(“0”);break; case 1:printf(“1”);break; case 2:printf(“2”);break; case 3:printf(“3”);break; case 4:printf(“4”);break; case 5:printf(“5”);break; case 6:printf(“6”);break; case 7:printf(“7”);break; case 8:printf(“8”);break; case 9:printf(“9”);break; case 10:printf(“A”);break; case 11:printf(“B”);break; case 12:printf(“C”);break; case 13:printf(“D”);break; case 14:printf(“E”);break; case 15:printf(“F”);break; } switch(hex[i][0])
1
13
CL电容
2
100pF涤纶电容
其他阻、容元件自选。
四、系统设计
1、工作原理
基准频率:时基电路以3.2768MHz的晶振分频产生12.8Khz频率,由12.8Khz十分频产生 1.28Khz频率,再经过256个地址计数器的分频得到5Hz频率。是否有其他方法,请同学们自 己在设计时可以考虑下。
地址计数器产生256个地址依次从存储器中取出正弦信号的样值。该样值经D/A(Ⅱ)变换, 输出一正弦波。幅度开关控制衰减电路使幅度变化。放大电路可满足输出信号的幅度及输出阻 抗的要求。
2、系统结构要求
数控信号发生器的结构如图1所示,其中波形发生器采用数字电路产生正弦波、方波、三角波和 锯齿波信号,频率选择开关用于选择输出信号的频率,幅度选择开关用于选择输出信号电压幅度,频 率选择开关和幅度选择开关均应采用数字电路。
通过频率控制开关改变频率控制电路的输出频率,由此改变计数器(地址发生器)的循环计数速度, 进而改变从存储器取出的速度,经D/A变换后输出正弦波信号,再由幅度控制开关控制输出信号的电 压幅度。
•
(3)正弦波和脉冲波频率可自动步进,步长为1Hz。