信号发生器设计---实验报告

合集下载

电路实验报告 函数信号发生器

电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。

在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。

信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。

信号发生器用途广泛, 有多种测试和校准功能。

本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。

三种波形的幅值及方波的占空比均在一定范围内可调。

报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。

二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。

3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。

(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。

2.三种输出波形的输出阻抗小于100Ω。

3.用PROTEL软件绘制完整的印制电路板图(PCB)。

(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。

2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。

四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。

信号发生器实验报告(波形发生器实验报告)

信号发生器实验报告(波形发生器实验报告)

信号发生器一、实验目的1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。

2、掌握用运算放大器构成波形发生器的设计方法。

3、掌握波形发生器电路调试和制作方法 。

二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。

三、具体要求〔1〕可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。

〔2〕利用一个按钮,可以切换输出波形信号。

〔3〕频率为1-2KHz 连续可调,波形幅度不作要求。

〔4〕可以自行设计并采用除集成运放外的其他设计方案〔5〕正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。

四、设计思路根本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比拟器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。

五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路的振荡频率为:RCf π210=将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。

因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。

如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。

J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。

R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。

R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。

下列图2为起振波形。

RP2 R4 R13 组成负反应支路,作为稳幅环节。

R13与D1、D2并联,实现振荡幅度的自动稳定。

正弦波信号发生器实验报告

正弦波信号发生器实验报告

正弦波信号发生器实验报告
实验名称:正弦波信号发生器实验
实验目的:了解正弦波的基本属性,掌握正弦波信号的发生方法,对正弦波信号进行基本的测量和分析。

实验器材:函数发生器、示波器、万用表。

实验原理:正弦波(Sine Wave)是最常见的一种周期波形,其特点是正弦曲线的波形,具有完全的周期性和对称性。

在电路和信号处理系统中,正弦波信号非常常见,在很多实际应用中具有重要的作用。

函数发生器是一种能够产生各种各样波形的仪器,包括正弦波、方波、三角波等等。

而在产生正弦波信号的过程中,函数发生器利用一个内部的振荡器电路来产生振荡信号,再将其经过信号调制映射到正弦波的形式。

实验步骤:
1.将函数发生器的输出端口连接到示波器的输入端口,并将函数发生器的频率设定在1kHz左右。

2.打开示波器,选择一个适合的纵向和横向刻度,并将其垂直和水平方向校准至
合适位置,以显示正弦波的波形。

3.选择函数发生器的正弦波输出模式,调整幅度与频率,以获得所需的正弦波信号,可使用万用表对其进行精确测量。

实验结果:经过实验,我们成功产生了一路1kHz左右的正弦波信号,并使用示波器和万用表进行了基本的测量和分析,包括正弦波的频率、幅度、相位等基本特性。

实验结论:通过本次实验,我们深入了解了正弦波的特性及用途,掌握了正弦波信号发生器的基本使用方法,熟悉了正弦波信号的测量和分析方法,并在实践中获得了相应的实验数据。

这些知识和经验对我们今后的学习和工作将有非常重要的作用。

信号发生器实验报告

信号发生器实验报告

信号发⽣器实验报告信号发⽣器F组组长:***组员:***、*** 2013年8⽉12⽇星期⼀1系统⽅案 (4)1.1系统⽅案论证与选择 (4)1.2⽅案描述 (4)2理论分析与计算 (5)3电路与程序设计 (6)3.1电路的设计 (6)3.1.1 ICL8038模块电路 (6)3.1.2 放⼤电路 (6)3.2程序的设计 (7)4测试⽅案与测试结果 (9)4.1测试仪器与结果 (9)4.2调试出现的问题及解决⽅案 (9)5 ⼩结 (10)本系统设计的是信号发⽣器,是以 ICL8038和 STC89C51为核⼼设计的数控及扫频函数信号发⽣器。

ICL8038作为函数信号源结合外围电路产⽣占空⽐和频率可调的正弦波、⽅波、三⾓波;该函数信号发⽣器的频率可调范围1~100kHz,波形稳定,⽆明显失真。

单⽚机控制LCD12864液晶显⽰频率、频段和波形名称。

关键字:信号发⽣器ICL8038、 STC89C51、波形、LCD12864信号发⽣器实验报告1系统⽅案1.1系统⽅案论证与选择⽅案⼀:由单⽚机内部产⽣波形,经DAC0832输出,然后再经过uA741放⼤信号后,最后经过CD4046和CD4518组成的锁相环放⼤频率输出波形,可是输出的波形频率太低,达不到设计要求。

⽅案⼆:采⽤单⽚机对信号发⽣器MAX038芯⽚进⾏程序控制的函数发⽣器,该发⽣器有正弦波、三⾓波和⽅波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。

MAX038为核⼼构成硬件电路能⾃动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯⽚价格太⾼,过于昂贵。

⽅案三:利⽤芯⽚ICL8038产⽣正弦波、⽅波和三⾓波三种波形,根据电阻和电容的不同可以调节波形的频率和占空⽐,产⽣的波形频率⾜够⼤,能达到设计要求,⽽且ICL8038价格⽐较便宜,设计起来成本较低。

综上所述,所以选择第三个⽅案来设计信号发⽣器。

1.2⽅案描述本次设计⽅案是由ICL8038芯⽚和外围电路产⽣三种波形,由公式:,改变电阻和电容的⼤⼩可以改变波形的频率,有开关控制频段和波形并给单⽚机⼀个信号,由单⽚机识别并在LCD液晶屏上显⽰,电路的系统法案框图为下图1所⽰:图1 总系统框图2理论分析与计算如图2,占空⽐和频率调节电路:图2 占空⽐和频率调节电路所有波形的对称性都可以通过调节外部定时电阻来调节。

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告

多波形信号发生器实验报告1. 背景多波形信号发生器是一种用于产生不同形状、频率和幅度的信号的设备。

它在各种领域中都有广泛的应用,包括电子工程、通信和音频领域。

在实验室中,多波形信号发生器通常用于测试和验证电路的性能。

本实验旨在设计一个多波形信号发生器,并对其进行性能测试和分析。

通过实际搭建和测试,我们将评估所设计的信号发生器的波形质量、频率稳定性、幅度准确性等关键指标,同时寻找可能的改进方向。

2. 设计与分析2.1 设计思路我们的设计思路是基于数字信号处理技术,使用微处理器控制和生成不同波形的信号。

具体来说,我们采用以下步骤来设计多波形信号发生器:1.选择合适的数字信号处理芯片,并与微处理器进行连接。

2.在微处理器上编程,实现不同波形信号的生成算法,如正弦波、方波、三角波等。

3.通过微处理器控制模拟输出电路,将数字信号转换为模拟信号。

4.设计合适的幅度控制电路,使得可以精确控制信号的幅度。

5.设计合适的频率控制电路,使得可以通过微处理器对信号的频率进行调节。

2.2 组件选择和连接首先,我们选择了一款高性能的数字信号处理芯片,并将其与微处理器进行连接。

通过对芯片的编程,我们可以实现生成不同波形的功能。

然后,我们将芯片的数字输出连接到模拟电路的输入端,通过合适的滤波电路进行信号滤波。

同时,将微处理器的控制端与模拟电路的控制电路相连接,以实现对幅度和频率的控制。

2.3 算法设计在微处理器上编写程序,实现不同波形信号的生成算法。

以正弦波为例,我们可以使用如下的算法:#define PI 3.1415926float sin_wave(float amplitude, float frequency, float time){return amplitude * sin(2 * PI * frequency * time);}对于方波和三角波等其他波形,我们可以采用类似的算法进行设计。

2.4 电路设计由于波形质量是信号发生器的重要性能指标之一,我们需要设计合适的模拟电路来提供稳定的、低噪声的模拟输出信号。

正弦信号发生器实验报告

正弦信号发生器实验报告

正弦信号发生器实验报告
《正弦信号发生器实验报告》
实验目的:
本实验旨在通过搭建正弦信号发生器,探究正弦波的特性以及其在电子电路中的应用。

实验材料:
1. 电压源
2. 电阻
3. 电容
4. 二极管
5. 信号发生器
6. 示波器
实验步骤:
1. 按照电路图搭建正弦信号发生器电路。

2. 调节电压源的输出电压,使其为所需的正弦波幅值。

3. 使用示波器观察输出波形,并调节电路参数,如电阻、电容的数值,以获得理想的正弦波形。

4. 测量并记录输出波形的频率、幅值等参数。

实验结果:
经过调节电路参数,成功搭建了正弦信号发生器。

通过示波器观察到了理想的正弦波形,并测量了其频率、幅值等参数。

实验结果表明,通过合理设计电路参数,可以得到稳定、准确的正弦波信号。

实验分析:
正弦信号是电子电路中常见的信号波形,具有周期性、稳定性好的特点,因此
在通信、音频处理等领域有着广泛的应用。

通过本实验,我们深入了解了正弦
波的产生原理,掌握了调节电路参数以获得理想波形的方法。

实验结论:
通过搭建正弦信号发生器,我们成功地产生了稳定的正弦波信号,并对其进行
了观察和测量。

这为我们进一步理解正弦波的特性以及其在电子电路中的应用
奠定了基础。

总结:
本实验通过实际操作,加深了对正弦信号发生器的理解,提高了实验操作能力,为今后的电子电路实验打下了良好的基础。

同时,也为我们将来在工程领域的
实际应用提供了宝贵的经验。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告信号发生器实验报告引言信号发生器是电子实验室中常见的一种仪器,用于产生各种类型的电信号。

本次实验旨在探究信号发生器的原理和应用,以及对其进行一系列的测试和测量。

一、信号发生器的原理信号发生器是一种能够产生不同频率、幅度和波形的电信号的设备。

其主要由振荡电路、放大电路和输出电路组成。

振荡电路负责产生稳定的基准信号,放大电路将基准信号放大到合适的幅度,输出电路将信号输出到外部设备。

二、信号发生器的应用1. 电子器件测试:信号发生器可以用于测试电子器件的频率响应、幅度响应等特性。

通过改变信号发生器的频率和幅度,可以模拟不同工作条件下的电子器件性能。

2. 通信系统调试:在通信系统的调试过程中,信号发生器可以用于模拟各种信号,如语音信号、数据信号等。

通过调整信号发生器的参数,可以测试通信系统的传输质量和容量。

3. 音频设备测试:信号发生器可以用于测试音频设备的频率响应、失真等特性。

通过产生不同频率和幅度的信号,可以对音频设备进行全面的测试和评估。

三、实验过程1. 测试频率响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的频率,并记录待测设备的输出结果。

通过绘制频率响应曲线,可以了解待测设备在不同频率下的响应情况。

2. 测试幅度响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的输出幅度,并记录待测设备的输出结果。

通过绘制幅度响应曲线,可以了解待测设备对不同幅度信号的响应情况。

3. 测试波形输出:将信号发生器连接到示波器,通过改变信号发生器的波形设置,观察示波器上的波形变化。

通过比较不同波形的特征,可以了解信号发生器的波形生成能力。

四、实验结果与分析1. 频率响应:根据实验数据绘制的频率响应曲线显示,待测设备在低频段具有较好的响应能力,而在高频段则逐渐衰减。

这可能是由于待测设备的电路结构和元件特性导致的。

2. 幅度响应:根据实验数据绘制的幅度响应曲线显示,待测设备对于低幅度信号的响应较差,而对于高幅度信号的响应较好。

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告一、实验目的本实验旨在通过搭建反馈移位型序列信号发生器的电路,实现对特定频率的信号进行发生和输出。

同时,借助实验过程中的观测和分析,深入研究反馈移位型序列信号发生器的工作原理和特性。

二、实验原理反馈移位型序列信号发生器的核心原理是利用反馈电路实现信号的周期性变化。

具体来说,电路中包括一定数量的延时器和异或门,每经过一个延时器,信号就会向后移动一个时刻。

同时,异或门则负责将当前信号和之前的信号进行异或运算,实现信号的周期性变化。

通过不断调整延时器的数量和时间,可以实现对特定频率的信号进行发生和输出。

三、实验步骤1.搭建反馈移位型序列信号发生器电路。

2.将正弦波信号输入到反馈移位型序列信号发生器电路中。

3.通过示波器观测反馈移位型序列信号发生器输出的信号,并记录其频率和幅度。

4.根据观测结果,调整延时器数量和时间,实现对特定频率的信号进行发生和输出。

5.重复步骤3和4,直至输出信号符合实验要求。

四、实验结果与分析通过反馈移位型序列信号发生器的电路搭建和实验操作,我们成功实现了对特定频率的信号进行发生和输出。

其中,延时器数量和时间的调整是关键步骤之一。

在实验过程中,我们发现增加延时器数量可以使输出信号的频率更低,而增加延时器时间则会让输出信号的频率更高。

我们还观测到了反馈移位型序列信号发生器的输出信号具有周期性,并且幅度随着时间的增加而逐渐降低。

这是由于信号在电路中传播时,经过多次异或运算后逐渐衰减所导致的。

五、实验总结通过本次实验,我们深入了解了反馈移位型序列信号发生器的工作原理和特性,并成功实现了对特定频率的信号进行发生和输出。

在实验过程中,我们需要注意调整延时器数量和时间,以实现对输出信号频率的控制。

此外,我们还应该注意观测输出信号的周期性和幅度变化,以深入了解电路的工作特性。

本次实验为我们深入了解反馈移位型序列信号发生器的原理和特性提供了重要的实践机会,也为我们今后的学习和研究奠定了基础。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告一、信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。

采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。

通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。

该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。

信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。

该电路已经用于实际电路的实验操作。

原理框架图:二、电源硬件电路图的设计(1)单片机的选择根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。

ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路的体积更小。

它以较小的体积、良好的性能价格备受亲密。

在家电产品、工业控制、计算机产品、医疗器械、汽车工业等应用方面成为用户降低成本的首选器件。

因此,我们可选用AT89C2051单片机。

该芯片的功能与MCS-系列单片机完全兼容,并且还具有程序加密等功能,物美价廉,经济实用。

AT89C2051是ATMEL公司生产的带2K字节课编程闪速存储器的8位COMS单计算机,工作电压范围为2.7~6V,全静态工作频率为0~24MHZ。

函数信号发生器实验报告

函数信号发生器实验报告

函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。

本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。

一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。

二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。

常见的信号形式包括正弦波、方波、三角波等。

三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。

2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。

3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。

4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。

四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。

通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。

在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。

观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。

五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。

我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。

在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。

此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。

通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。

正弦信号发生器实验报告

正弦信号发生器实验报告

正弦信号发生器实验报告引言本实验旨在设计并构建一个正弦信号发生器,用于产生具有特定频率和振幅的正弦波信号。

正弦信号在电子工程中具有广泛的应用,如通信系统、音频设备和信号处理等。

本实验将介绍设计思路、所需材料和步骤,以及实验结果和讨论。

设计思路为了设计一个正弦信号发生器,我们需要以下主要组件:1.振荡电路:产生正弦波信号的核心部分。

2.振幅调节电路:用于控制输出信号的振幅。

3.频率调节电路:用于控制输出信号的频率。

我们将使用基本的集成电路和电子元件来实现这些功能。

接下来,我们将逐步说明每个组件的设计和实现。

所需材料在开始实验之前,我们需要准备以下材料和工具:1.集成电路:例如操作放大器(Op-amp)。

2.电容器和电阻器:用于构建振荡电路和调节电路。

3.面包板:用于连接电子元件。

4.电源:为电路提供所需的电能。

5.示波器:用于测量信号的振幅和频率。

实验步骤1.第一步:振荡电路设计和构建–选择一个合适的振荡电路拓扑,如RC振荡电路。

–计算并选择所需的电容器和电阻器数值。

–使用面包板将电容器、电阻器和集成电路连接起来。

2.第二步:振幅调节电路设计和构建–选择一个合适的振幅调节电路拓扑,如非反相放大器。

–根据需要的振幅范围计算并选择所需的电阻器数值。

–使用面包板将电阻器和集成电路连接起来。

3.第三步:频率调节电路设计和构建–选择一个合适的频率调节电路拓扑,如电阻-电容调谐电路。

–根据需要的频率范围计算并选择所需的电容器和电阻器数值。

–使用面包板将电容器、电阻器和集成电路连接起来。

4.第四步:电源和示波器连接–将电源连接到电路以提供所需的电能。

–将示波器连接到电路以测量输出信号的振幅和频率。

5.第五步:实验验证和调试–打开电源,并使用示波器观察输出信号。

–调节振幅和频率调节电路,验证是否可以在所需范围内调节信号的振幅和频率。

实验结果和讨论经过实验验证和调试,我们成功设计和构建了一个正弦信号发生器。

该信号发生器能够在所需的频率范围内产生具有可调节振幅的正弦波信号。

函数信号发生器实验报告

函数信号发生器实验报告

函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。

2、可输出三角波、方波、正弦波。

、可输出三角波、方波、正弦波。

3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。

可调。

4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。

可调。

5、输出阻抗约600Ω。

二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。

对波形非线性无特殊要求。

对波形非线性无特殊要求。

采用图采用图1所示的电路。

所示的电路。

同时同时产生三角波和方波。

产生三角波和方波。

图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。

为方波输出的峰值电压。

OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。

取8.2K 8.2KΩΩ。

R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。

三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。

Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。

R 6=RW/9=10/9=1.11(K Ω)取1K Ω。

信号发生器实验报告

信号发生器实验报告

线性电子电路实验信号发生器专业:班级:姓名:学号:实验原理:一、方案比较网上方案:参考电路:方案比较:与网上方案相比,提供的参考电路有如下几个优点:①比较简单方便,比较两张电路图,可以明显看出参考电路比较简洁,所用的原件比较少,不容易出错,便于检查,而且比较便宜。

②网上方案所用的是ua747和ua741是通用的运放器,精度不高,性能不是很好。

而参考电路用的是TL084精度高,输入电阻很大,并且运行速度很快。

③网上方案用到了选择开关来选择接入的电路,使实验变得不方便。

而参考电路属于全自动,并不需要更多操作。

④网上方案在三角波——正弦波转换电路利用了场效应管3DJ13A而参考电路只用了TL084和电阻、电容,是一种技术上的进步。

二、电路图:参数设计:R1=10K R2=22K R3=1K R4=2K R5=1K R6=1K R7=10K R8=2K R9=10K R P1=10K R P2=10K C1=10nF C2=10nF 稳压管三、电路仿真结果方波:三角波及正弦波:四、硬件实物图五、调试结果:频率大约在500Hz~5KHz六、实验总结本次实验,参考了老师给的参考资料和网上资料,使用了Multisim仿真软件进行仿真,仿真出来的结果非常符合要求,非常理想。

但是在实物焊接后,因元器件和人工的原因,出现了误差,比较容易出现失真,误差比较大。

七、体会和建议1、要熟练掌握仿真软件的使用和对电路图的理解,这样才能比较容易的理解这个实验,不容易出现失误。

2、仿真结果没有出现理想的波形图,要检查电路,对电路的节点也要检测。

要有耐心。

3、电路排线要尽可能的少,这样对于后续的电路检测有很大的帮助。

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告一、实验目的本实验的主要目的是设计一款多波形信号发生器,能够输出多种波形信号,并能够通过控制电路对波形进行调节和改变,以满足不同需求。

二、实验原理1. 多波形信号发生器的基本原理多波形信号发生器是一种用于产生不同类型信号的电子设备。

其基本原理是通过控制电路中的各种元器件,如晶体管、电容、电感等,来产生不同类型的信号波形。

常见的波形包括正弦波、方波、三角波等。

2. 信号源在多波形信号发生器中,信号源是最基础也是最重要的部分。

通常使用晶体管或集成电路作为信号源。

其输出频率和振幅可以通过控制元器件来调节。

3. 滤波电路为了保证输出的信号干净稳定,需要在信号源后面加入滤波电路。

滤波电路主要由电容和电感组成,可以滤除杂散噪声以及高频噪声。

4. 放大电路放大电路用于放大经过滤波后的低频部分。

常见放大电路有放大器、运算放大器等。

5. 输出电路输出电路用于将放大后的信号输出到外部设备,如示波器、扬声器等。

常见的输出电路包括隔离式输出和非隔离式输出。

三、实验步骤1. 搭建基本电路将信号源、滤波电路、放大电路和输出电路依次连接起来,形成一个基本的多波形信号发生器电路。

2. 调节元器件通过调节各个元器件的参数,如晶体管的偏置电压、滤波电容和电感的数值等,可以产生不同类型的波形信号。

3. 测试并调整将多波形信号发生器连接到示波器或扬声器上,在不同频率下测试并调整各个元器件,以获得最佳效果。

四、实验结果分析通过实验我们成功地设计出了一款多波形信号发生器,并能够产生多种类型的波形信号。

通过调节各个元器件,我们可以改变输出信号的频率、振幅和相位等参数。

同时,在测试中我们也发现了一些问题,并进行了相应的调整和优化。

五、实验总结与心得体会通过本次实验,我们深入了解了多波形信号发生器的基本原理和构成,掌握了如何设计和调节多波形信号发生器的方法。

同时,我们也意识到了电路设计中的细节问题对最终效果的影响,以及如何通过测试和调整来优化电路性能。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告
本实验使用的是13种基本的信号发生器,各种信号的发生方式、它的特点、参数和其特定应用场合都进行了详细的介绍。

实验分为三部分:实验前准备、实验操作和实验总结与讨论。

实验前准备时,开展了仪器以及各种试验电路的检查,确保相关仪器以及试验电路的准确性,为接下来实验提供了必要的条件和确保。

接下来进行实验操作时,首先熟悉了相关操作步骤和各个参数的功能,然后尝试了各种基本的信号发生模式,熟悉了各种信号的构成及其特点,以及它们的具体应用,并根据实验条件,对其进行了变换和测量,以明确信号变换和测量时各参数变化的影响,探讨出最符合要求的参数组合。

最后,在实验总结中首先汇总了上述实验的总结,可以得出以下结论:将所需的参数调整至最优的组合会使得所发生的信号能够满足实际需求、尽可能减少相关误差,以获得有效的测量结果。

此外,应对各种不同应用场景的参数的组合也要适当变化,以达到最佳效果。

最后,本实验可以说收获颇丰,熟悉了13种基本信号发生器的参数选择及其特点,从而掌握了一般信号发生器的操作流程,进而将所学到的知识运用到实际工程中,从而取得更好的效果。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告摘要:本实验旨在通过使用信号发生器,对不同频率和幅度的信号进行产生和测量,探索信号发生器的基本原理和应用。

通过实验可以进一步理解信号发生器的工作原理以及频率和幅度的关系,并掌握信号发生器的操作方法。

1.引言2.原理3.实验步骤3.1准备工作:将信号发生器连接到电源,打开电源开关,并等待设备启动。

3.2选择频率:根据需要选择一个特定的频率,调整频率控制旋钮,并观察频率显示器上的数值变化。

3.3设置幅度:根据需要选择一个特定的幅度,调整幅度控制旋钮,并观察幅度显示器上的数值变化。

3.4选择波形:根据需要选择合适的波形,如正弦波、方波、三角波等,调整波形控制旋钮,并观察波形。

3.5连接测量仪器:将信号输出端口连接到示波器或其他测量仪器上。

根据需要选择不同的接口和线缆。

3.6测量信号参数:根据需要使用示波器或其他测量仪器,测量并记录信号的频率、幅度等参数。

4.实验结果通过实验,我们成功地产生了不同频率和幅度的信号,并使用示波器对其进行了测量。

根据测量数据,我们制作了频率-幅度图和波形图,对信号的特性进行了分析和比较。

5.讨论与分析在实验中,我们观察到信号发生器能够准确地产生所需的信号,并且改变频率和幅度时,输出信号的特性也相应改变。

通过对信号的测量,我们验证了信号发生器的性能和准确性。

6.实验总结通过本次实验,我们学习和掌握了信号发生器的基本原理和应用。

实验中我们成功地产生了不同频率和幅度的信号,并对其进行了测量和分析。

通过这些实验,我们进一步加深了对信号发生器的理解和应用能力。

信号发生器实验报告

信号发生器实验报告

信号发生器摘要函数发生器是一种在科研和生产中经常用到的基本波形产生器,集成函数波形发生器一般都采用ICL8038或5G8038。

本文介绍由单片机AT89S52和D/A转换器DAC0832及LM35组成的函数波形发生器,该电路能够产生正弦波、方波和三角波信号,频率能在100Hz~100kHz范围内可调。

关键词:函数波形发生器;单片机AT89S52; D/A转换器DAC0832;LM358;电位器;稳压管;二极管;第一部分:系统需求分析一、概论信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

本设计要求实现一个信号发生器,能够产生正弦波,三角波和方波信号。

二、技术指标(1)输出信号频率在100Hz~100kHz范围内可调;(2)输出信号频率稳定度优于10-3;(3)在1k 负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调;三、要求(1)信号发生器能产生正弦波、方波和三角波三种周期性波形(2)输出信号波形无明显失真;(3)自制稳压电源。

第二部分:方案设计与论证一、方案论证与比较函数信号产生方案对于函数信号产生电路,一般有多种实现方案,如模拟电路实现方案、数字电路实现方案(如DDS 方式)、模数结合的实现方案等。

数字电路的实现方案:一般可事先在存储器里存储好函数信号波形,再用D/A 转换器进行逐点恢复。

这种方案的波形精度主要取决于函数信号波形的存储点数、D/A 转换器的转换速度、以及整个电路的时序处理等。

函数信号发生器设计实验报告

函数信号发生器设计实验报告

函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。

设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。

方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。

即调节RW可改变振荡频率。

根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。

256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。

首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。

完成实验报告。

(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。

(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。

二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。

ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。

(2)正弦信号数据ROM,含64个8位数据。

(3)原理图顶层设计。

(4)8位D/A。

DAC的输出接示波器。

三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。

File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。

然后以romd.mif的名字保存至新建的文件夹中。

2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。

并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告引言移位型序列信号发生器是一种能够产生特定序列的电路或设备,其在通信、计算机科学、数字信号处理等领域中有着广泛的应用。

在本实验中,我们设计了一种基于移位寄存器的移位型序列信号发生器,并对其进行了性能测试和分析。

本报告将对该实验的设计、实现和测试结果进行详细说明。

实验设计1.移位寄存器基本原理移位寄存器是一种常用的数字电路元件,其可以实现对二进制数据的移位、存储和输出。

它由若干个触发器组成,每个触发器接收相邻位的信号,并向右或向左移位。

例如,在一个4位移位寄存器中,初始存储的数据为1010,当向右移位时,数据变为0101。

2.移位型序列发生器的基本原理移位型序列发生器是一种利用移位寄存器和异或门构成的电路,用于产生特定的数字序列。

该电路的工作原理如下:将初始数据存储到移位寄存器中,然后依次对寄存器中的每个元素进行移位操作,并将移位后的数据与某个固定的数进行异或运算,得到输出序列的每一位。

例如,一个长度为4的序列发生器,初始数据为1010,异或运算的固定数为0011,则输出序列为1101、1110、0111、1011、0101、1010、1001、0100。

3.实验设计本实验中,我们设计了一个4位移位型序列发生器。

其基本原理如下图所示:图1. 移位型序列发生器电路图该电路由4个D触发器、2个与门和1个异或门组成。

其中,D触发器用于存储移位后的数据,两个与门用于控制移位寄存器的移位方向,异或门用于计算输出序列的每一位。

初始数据为1010,异或运算的固定数为0011。

具体实现过程如下:(1)首先将初始数据1010存储到4个D触发器中。

(2)然后依次进行4次移位操作,每次移位后将移位后的数据输入到异或门中进行计算,并将计算结果存储到一个新的移位寄存器中。

(3)当新的移位寄存器中存储的数据与初始数据相同时,停止计算,输出序列结束。

实验实现根据上述设计原理,我们完成了移位型序列发生器的实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号发生器设计
一、设计任务
设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。

二、设计要求
基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U
=6V,正弦波U p-p>1V。

p-p
扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r
<5%。

(计算参数)

三、设计方案
信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。

图1 信号发生器组成框图
主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。

方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。

图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。

其工作原理如图3所示。

图2 方波和三角波产生电路
图3 比较器传输特性和波形
利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。

(差模传输特性)其基本工作原理如图5所示。

为了使输出波形更接近正弦波,设计时需注
应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V
m
管的截止电压值。

图4 三角波→正弦波变换电路
图5 三角波→正弦波变换关系
在图4中,RP
1调节三角波的幅度,RP
2
调整电路的对称性,并联电阻R
E2
用来减小差
分放大器的线性区。

C
1、C
2
、C
3
为隔直电容,C
4
为滤波电容,以滤除谐波分量,改善输出
波形。

取Ic2上面的电流(看输出)
波形发生器的性能指标:
①输出波形种类:基本波形为正弦波、方波和三角波。

②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。

(n>3)
③输出电压:一般指输出波形的峰-峰值U p-p。

④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。

四、电路仿真与分析
实验仿真电路图如图。

相关文档
最新文档