【人教版】七年级下册数学《期末测试题》及答案解析
人教版七年级下学期期末考试数学试卷及答案解析(共六套)
人教版七年级下学期期末考试数学试卷(一)一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D.|﹣2|与2 2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线 B.邻补角的角平分线C.同位角的角平分线 D.同旁内角的角平分线3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.45.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.① B.② C.③ D.④6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B. C.﹣2 D.﹣2二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= cm.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 度.14.(3分)已知(x﹣y+3)2+=0,则x+y= .15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为.三、解答题16.(8分)解下列方程组::(1)(2).17.(9分)解不等式组,并写出它的所有非负整数解.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人;(2)图①中,a= ,C等级所占的圆心角的度数为度;(3)请直接在答题卡中补全条形统计图.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?参考答案与试题解析一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线B.邻补角的角平分线C.同位角的角平分线D.同旁内角的角平分线【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、对顶角的角平分线AC、AD共线,故错误;B、∵,,∠PAM+∠MAB=180°,∴∠CAM+∠MAE=90°,∴邻补角的角平分线相互垂直,故错误;C、同位角的角平分线AC、BF互相平行,∵AM∥BN,∴∠PAM=∠PBN;∵AC、BF是∠PAM和∠PBN的角平分线,∴∠1=∠PAM=∠PBN=∠2;∴AC∥BF.故正确.D、同旁内角的角平分线AE、BF互相垂直,∵AM∥BN,∴∠MAB+∠PBN=180°;∵AE、BF是∠MAB和∠PBN的角平分线,∴∠3+∠2=∠MAB+∠PBN=90°;∴AE⊥BF.故错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.4【分析】把x与y的值代入方程组计算求出m与n的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,解得:,则m﹣n=7﹣3=4,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.①B.②C.③D.④【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:①调查某批汽车的抗撞击能力,采用抽样调查,故①错误;②调查某城市的空气质量,由于工作量大,不便于检测,采用抽样调查,故②错误;③调查某风景区全年的游客流量,由于人数多,工作量大,采用抽样调查,故③错误;④调查某班学生的身高情况,应当采用全面调查,故④正确.故选:D.【点评】本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,难度适中.6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°【分析】先过点A作AB∥a,由a∥b,即可得AB∥a∥b,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.【解答】解:如图,过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=100°,∠2=140°,∴∠4=80°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=60°.故选:C.【点评】此题考查了平行线的性质.解题的关键是掌握两直线平行,同旁内角互补定理的应用,注意辅助线的作法.7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先解方程组得到x和y的值,然后依据各象限内点的坐标特点求解即可.【解答】解:解方程组,得,所以点(,)在第一象限.故选A.【点评】本题考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了各象限内点的坐标特点.正确求出方程组的解是解题的关键.8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y 轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据横坐标,右移加,左移减得到点M(m+2+1,2m+4),再根据y轴上的点横坐标为0可得m+3=0,算出m的值,可得点M的坐标.【解答】解:∵将点P(m+2,2m+4)向右平移1个单位长度得到点M,∴M(m+2+1,2m+4),即(m+3,2m+4),∵点M在y轴上,∴m+3=0,解得:m=﹣3,∴点M的坐标为(0,﹣2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y轴上的点横坐标为0的特征.9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x 张+20y张=100元,根据等量关系列出方程求整数解即可.【解答】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:,,,,,,因此兑换方案有6种,故选:A.【点评】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B.C.﹣2D.﹣2【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由≥x﹣3,得x≤11,由2x+2<3(x+a),得x>2﹣3a,由上可得2﹣3a<x≤11,∵不等式组恰好只有四个整数解,即11,10,9,8;∴7≤2﹣3a<8,解得﹣2<a≤﹣.故选C.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= 11 cm.【分析】根据平移的性质可得BC′=BC+a,然后代入即可求得.【解答】解:∵△ABC沿水平向右平移了acm后,得到△A'B'C',BC=6cm,B C'=17cm,∴a=CC′=17﹣6=11cm,故答案为11.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是±6 .【分析】根据同类项的概念即可求出m与n的值,从而可求出答案.【解答】解:由题意可知:m﹣2=42=2m+n∴m=6,n=﹣10∴m﹣3n=6+30=36,∴36的平方根为:±6故答案为:±6【点评】本题考查平方根的概念,解题的关键是正确理解平方根与同类项的概念,本题属于基础题型.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 130 度.【分析】由AB∥CD,根据两直线平行,同位角相等,即可求得∠BOM的度数,又由OM是∠BOF的平分线,即可求得∠BOF的度数,然后根据两直线平行,内错角相等,即可求得∠1的度数.【解答】解:∵AB∥CD,∠2=65°,∴∠BOM=∠2=65°,∵OM是∠BOF的平分线,∴∠BOF=2∠BOM=130°,∵AB∥CD,∴∠1=∠BOF=130°.故答案为:130.【点评】此题考查了平行线的性质与角平分线的定义.解题的关键是注意掌握两直线平行,同位角相等与两直线平行,内错角相等定理的应用.14.(3分)已知(x﹣y+3)2+=0,则x+y= 1 .【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为2cm或6cm .【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.故答案为6cm或2cm.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题16.(8分)解下列方程组::(1)(2).【分析】(1)把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.(2)用5去乘方程①的两边,使某一个未知数y的系数互为相反数.把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.【解答】解:(1)由①+②,可得3x=9,解得x=3,把x=3代入①,可得3+y=4,解得y=1,∴方程组的解为;(2)由①×5+②,可得13x=26,解得x=2,把x=2代入①,可得4+y=3,解得y=﹣1,∴方程组的解为.【点评】本题主要考查了解二元一次方程组,用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解.17.(9分)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.【分析】(1)根据x轴上点的纵坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标与横坐标的关系列方程求出m的值,再求解即可;(3)根据平行于y轴的直线上的点的横坐标相同列方程求出m的值,再求解即可.【解答】解:(1)∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴2m+4=2×1+4=6,m﹣1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m﹣1)的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得m=﹣8,∴2m+4=2×(﹣8)+4=﹣12,m﹣1=﹣8﹣1=﹣9,∴点P的坐标为(﹣12,﹣9);(3)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征以及平行于坐标轴的直线上的点的坐标特征是解题的关键.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m 与n的值,即可确定出原方程组的解.【解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.【分析】先根据平行线的性质,得出∠A=∠CBE,再根据∠1=∠2,得到DC∥AE,进而得出∠CBE=∠C,等量代换即可得出结论.【解答】证明:∵AD∥BC,∴∠A=∠CBE,又∵∠1=∠2,∴DC∥AE,∴∠CBE=∠C,∴∠A=∠C.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,同位角相等,内错角相等.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200 人;(2)图①中,a= 35 ,C等级所占的圆心角的度数为126 度;(3)请直接在答题卡中补全条形统计图.【分析】(1)用A的人数与所占的百分比列式计算即可得解;(2)先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;(3)根据计算补全统计图即可.【解答】解:(1)20÷10%=200人;(2)C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:(1)200;(2)35,126.(3)补全统计图如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.【分析】(1)根据x与y互为相反数,得到y=﹣x,代入方程组计算即可求出k 的值;(2)将k看做已知数表示出x与y,根据题意列出不等式组,求出不等式组的解集即可确定出k的范围.【解答】解:,解得:,(1)根据题意得:x+y=0,即+=0,解得:k=﹣4;(2)根据题意得:,解得:k>8.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【分析】(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的算术平方根是()A.4 B.±4 C.8 D.±82.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量3.(3分)若a<b,那么下列结论中正确的是()A.a﹣3>b﹣3 B.3a>3b C.>D.﹣3a>﹣3b4.(3分)平面直角坐标系中,点A在第四象限,点A到x轴的距离为2,到y 轴的距离为3,则点A的坐标为()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)5.(3分)如图,AD∥BC,AC⊥AB,∠C=62°,则∠DAB的度数为()A.28°B.30°C.38°D.48°6.(3分)关于x,y的方程组的解为,则=()A.﹣3 B.3 C.81 D.﹣817.(3分)不等式﹣2x+3≥5的解集在数轴上表示为()A. B.C.D.8.(3分)如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元9.(3分)在平面直角坐标系中,将点A先向左平移3个单位,再向下平移2个单位,得到点B(﹣2,1),则点A的坐标为()A.(﹣5,3)B.(﹣5,﹣1)C.(1,3)D.(1,﹣3)(3分)把一张面值10元的人民币兑换成1元或2元的零钱,兑换方案有()10.A.9种B.8种C.7种D.6种二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)不等式2x+7>4x+1的正整数解是.12.(3分)如图,将一张长方形纸条折叠,则∠1= 度.13.(3分)光明学校在七年级的一次数学测试中,随机抽取40名学生的成绩进行分析,其中有10名学生成绩达到90分以上,以此估计该校七年级900名学生中,这次测试成绩达到90分以上的约有个.14.(3分)点A(m﹣1,5﹣2m)在第一象限,则整数m的值为.15.(3分)如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D (1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2017秒时,点P的坐标为.三、解答题(本大题共8小题,共75分)16.(8分)计算:|﹣3|+﹣.17.(8分)已知和是关于x,y的二元一次方程:ax+by=1的两个解,求﹣的值.18.(9分)解不等式组:,并把不等式组的解集在数轴上表示出来.19.(9分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.20.(10分)某市教育局为了解七年级学生参加综合实践活动的情况,随机抽取了阳光学校七年级学生一个学期参加综合实践活动的天数.并用得到的数据绘制了下面两幅不完整的统计图.请您根据图中提供的信息,按要求回答下列问题:(1)扇形统计图中a 的值是 ;阳光学校七年级共有 人; (2)在这次抽样调查中,活动时间为5天的学生有 人,并补全条形统计图;(4)如果该市七年级的学生共有23000人,根据以上数据,试估计全市七年级学生“活动时间不少于4天”的学生有多少人?21.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民阶梯式计费价格表的部分信息:自来水销售价格 污水处理价格 每户每月用水量 单价:元/立方米 单价:元/立方米 17立方米及以下a0.8 超过17立方米但不超过30立方米的部分b 0.8超过30立方米的部分60.8该市居民王老师家2017年3月份用水30立方米,交水费66元;4月份用水25立方米,交水费91元.(1)求a、b的值.(2)若王老师家5月份交水费150元,则他家5月份用水多少吨?(说明:每户产生的污水量等于自来水量,所交水费包含自来水费和污水处理费)22.(10分)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌300元,每张椅子80元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1张椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买100张课桌和x(x≥100)张椅子.(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家所需金额;购买乙厂家所需金额.(2)该学校到哪家工厂购买更合算?23.(11分)如图,已知CD⊥AB于D,E是射线AC上一动点,EF⊥AB于F,EF 交直线BC于G,若∠AEF=∠CGE.(1)求证:CD平分∠ACB,下面给出了部分证明过程和理由,请你补充完善:证明:∵CD⊥AB,EF⊥AB(已知)∴∠ADC=∠AFE=90°()∴CD∥()∴∠ACD= (两直线平行,同位角相等)∠BCD= ()∵∠AEF=∠CGE(已知)∴∠ACD=∠BCD即CD平分∠ACB()(2)将EF向右平移,使点E在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形;若不成立,请画出图形,写出正确结论.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分) 16的算术平方根是()A.4 B.±4 C.8 D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
2024年人教版初一数学下册期末考试卷(附答案)
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
(共六套)人教版7年级数学下册期末测试题及答案解析含答案
B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩(考试时间:120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y轴的距离是___________.15.已知二元一次方程2x-3y=6,用关于x的代数式表示y,则y=______.16.已知:如图,AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是___________.17.若y同时满足y+1>0与y-2<0,则y的取值范围是.三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤)18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
人教版七年级数学下册期末测试题及答案解析共六套
人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
人教版七年级下学期期末考试数学试卷及答案解析(共七套)
人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
【人教版】七年级下册数学《期末考试卷》含答案解析
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
人教版七年级下学期期末考试数学试卷与答案解析(共五套)
人教版七年级下学期期末考试数学试卷(一)一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣12.(3分)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长3.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个B.2个 C.3个 D.4个4.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等5.(3分)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b6.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目7.(3分)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间 D.在6到7之间8.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)9.(3分)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局 B.3局C.4局D.5局10.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)算术平方根等于它本身的数是.12.(3分)计算:= .13.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成.14.(3分)不等式﹣x+3>0的最大整数解是.15.(3分)点(p,q)到y轴距离是.16.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= °.17.(3分)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= °.18.(3分)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为.19.(3分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.20.(3分)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分). 21.(12分)解方程组(1)(2).22.(8分)解不等式组并把解集在数轴上表示出来.23.(8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF 与∠ABC的大小关系,并说明理由.24.(10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A' ; B' ;C' ;(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.25.(10分)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.26.(12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?参考答案与试题解析一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣1【分析】原式利用平方根,立方根的定义判断即可得到结果.【解答】解:A、4的算术平方根为2,正确;B、=9,9的平方根为±3,正确;C、8的立方根为2,错误;D、立方根等于﹣1的实数是﹣1,正确,故选C【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.(3分)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长【分析】根据点到直线的距离的定义解答本题.【解答】解:A、垂线是直线,没有长度,不能表示距离,故A错误;B、垂线段是一个图形,距离是指垂线段的长度,故B错误;C、垂线是直线,没有长度,不能表示距离,故C错误;D、符合点到直线的距离的定义,故D正确.故选:D.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.3.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:因为﹣2是整数,0.3是有限小数,所以﹣2、0.3都是有理数;因为,0.是循环小数,所以是有理数;因为,π=3.14159265…,1.414…,3.14159265…都是无限不循环小数,所以,﹣π都是无理数,所以无理数的个数是2个:,﹣π.故选:B.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.5.(3分)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b【分析】根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即﹣3a<3b,故D错误;故选D.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目【分析】分别根据普查和抽样调查适宜的条件对各选项进行逐一分析解答即可.【解答】解:A、了解某班同学立定跳远的情况难度较小、工作量不大,故适合用全面调查;B、了解一批炮弹的杀伤半径具有一定的破坏性,适合用抽样调查;C、了解某种品牌奶粉中含三聚氰胺的百分比具有一定的破坏性,适合用抽样调查;D、了解全国青少年喜欢的电视节目普查的难度较大,适合用抽样调查.故选A.【点评】本题比较简单,考查的是普查与抽样调查的联系与区别.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.7.(3分)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.8.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.(3分)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局B.3局C.4局D.5局【分析】设李胜输掉的比赛最多是x局,那么赢了(7﹣x)局,而赢一局得3分,负一局扣1分,由此可以用x表示李胜的积分为[3(7﹣x)﹣x],又积分超过10分的就可以晋级,由此可以列出不等式解决问题.【解答】解:设李胜输掉的比赛最多是x局,依题意得3(7﹣x)﹣x>10,∴x<,而x为正整数,∴x≤2.答:李胜输掉的比赛最多是2场.故选A.【点评】此题是一个和实际生活结合比较紧密的题目,比较贴近学生生活.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等量关系,列出不等式组,再求解.10.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)算术平方根等于它本身的数是0和1 .【分析】由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1.由此即可求解.【解答】解:算术平方根等于它本身的数是0和1.【点评】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,﹣1的特殊性质.12.(3分)计算:= .【分析】直接进行同类二次根式的合并,即可得出答案.【解答】解:原式=.故答案为:.【点评】本题考查了实数的运算,掌握合并同类二次根式的法则是解答本题的关键.13.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成(8,5).【分析】根据有序数对的第一个数表示年级,第二个数表示班级解答.【解答】解:∵(7,1)表示七年级一班,∴八年级五班可表示成(8,5).故答案为:(8,5).【点评】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.14.(3分)不等式﹣x+3>0的最大整数解是 2 .【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣x+3>0的解集是x<3,所以不等式的最大整数解是2.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.(3分)点(p,q)到y轴距离是|p| .【分析】点到y轴的距离等于横坐标的绝对值.【解答】解:点(p,q)到y轴距离=|p|故答案为|P|.【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.16.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= 120 °.【分析】本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.【解答】解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.17.(3分)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= 40 °.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.(3分)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为20~30 .【分析】让80÷3,80÷4得到每天服用80mg时3次或4次每次的剂量;让120÷3,120÷4即可得到每天服用120mg时3次或4次每次的剂量,找到最少的剂量和最多的剂量即可.【解答】解:80÷3=26mg;80÷4=20mg;120÷3=40mg;120÷4=30mg;∴一次服用这种药品剂量的范围为20≤x≤30,即为20~30.【点评】本题需注意应找到每天服用80mg时3次或4次每次的剂量;每天服用120mg时3次或4次每次的剂量,然后找到最大值与最小值.19.(3分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价 6 元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.20.(3分)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为41或42 .【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【解答】解:根据题意得:,解得:40<n<42.5,∵n为整数,∴n的值为41或42.故答案为:41或42.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分). 21.(12分)解方程组(1)(2).【分析】根据二元一次方程组的解法即可求出答案【解答】解:(1)①+②得:x=﹣1把x=﹣1代入①得:y=2∴原方程组的解为(2)原方程组化为:②×2+①得:x=2将x=2代入②得y=3所以该方程组的解为:【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.22.(8分)解不等式组并把解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得x<3,由②得x<﹣2,在数轴上表示如下:所以,该不等式组的解集为:x<﹣2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.【分析】由于DE⊥AC,BF⊥AC得到∠AFB=∠AED=90°,由BF∥DE,根据平行线的性质得∠2+∠3=180°,则∠1=∠3,可判断GF∥BC,所以∠AGF=∠ABC.【解答】解:∠AGF=∠ABC.理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.24.(10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A' (﹣3,1); B' (﹣2,﹣2);C' (﹣1,﹣1);(2)说明△A'B'C'由△ABC经过怎样的平移得到?先向左平移4个单位,再向下平移2个单位.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为(a﹣4,b﹣2);(4)求△ABC的面积.【分析】(1)直接利用已知图形得出各点坐标即可;(2)利用对应点位置得出平移规律;(3)利用(2)中平移规律进而得出答案;(4)利用△ABC所在矩形面积减去周围三角形进而得出答案.【解答】解:(1)如图所示:A'(﹣3,1),B′(﹣2,﹣2),C′(﹣1,﹣1);故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)△ABC先向左平移4个单位,再向下平移2个单位得到△A'B'C';故答案为:先向左平移4个单位,再向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a﹣4,b﹣2).故答案为:(a﹣4,b﹣2);(4)△ABC的面积为:S=6﹣×2×2﹣×1×3﹣×1×1=2.△ABC【点评】此题主要考查了平移变换的性质以及三角形面积求法,正确得出平移规律是解题关键.25.(10分)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是丙(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.【分析】(1)丙采用抽样调查方式最合理;(2)约40分钟的有5人,在扇形统计图中占,则可求出调查的总人数,故“约10分钟”人数可求解;(3)用总数×不大于20分钟的人数所占百分比即可.【解答】解:(1)丙的调查方式所获取的数据最具有代表性,即丙最合理,故答案为:丙;(2)调查的总人数为5÷=60(人),则“约10分钟”的人数为60﹣(10+9+5)=36(人),补全条形图如下:(3)1200×=1100,∴估计其中每天(除课间操外)课外锻炼时间不大于20分钟的有1100人,建议:该小中学生参加体育锻炼时间普遍较少,应多参加体育锻炼.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?【分析】(1)首先设采购了x顶3人小帐篷,y顶10人大帐篷,列出二元一次方程组.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,列出不等式组解答即可.【解答】解:(1)设采购了x顶3人小帐篷,y顶10人大帐篷.由题材意得.解得.答:采购了100顶3人小帐篷,200顶10人大帐篷.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,则.解得15≤a≤17.5∵a为整数,∴a=15、16、17则乙型卡车:20﹣a=5、4、3答:有3种方案:①甲型卡车15辆,乙型卡车5辆.②甲型卡车16辆,乙型卡车4辆.③甲型卡车17辆,乙型卡车3辆.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)4的平方根是()A.±2 B.2 C.﹣2 D.±2.(3分)点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在﹣1,π,,﹣中,无理数的个数是()A.1个B.2个C.3个D.4个4.(3分)下列四对数值中是方程2x﹣y=1的解的是()A. B. C. D.5.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75° C.115° D.125°6.(3分)下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查7.(3分)如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4) C.(﹣4,0)D.(0,﹣4)8.(3分)如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°9.(3分)不等式组的正整数解的个数是()A.1 B.2 C.3 D.410.(3分)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.411.(3分)一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A. B.a+1 C.a2+1 D.12.(3分)将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°13.(3分)把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间14.(3分)统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组15.(3分)在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P 点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)16.(3分)某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.18.(3分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .19.(3分)已知是二元一次方程组的解,则m+3n的立方根为.三、解答题(本大题共7小题,共63分)20.(6分)计算:(+)21.(8分)解下列方程(或不等式)组,并把不等式组的解集表示在数轴上.(1)(2).22.(8分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?23.(10分)对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.24.(10分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A (0,1)、B(5,1)、C(7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和。
新人教版七年级数学下册期末考试卷及答案【完整版】
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
人教版七年级下学期期末考试数学试卷及答案解析(共五套)
人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。
最新人教版七年级数学下册期末测试题及答案详解(共五套)
人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A.6m>-6 B .-5m<-5 C .m+1>0 D .1-m<2 2.下列各式中,正确的是( )A.16=±4 B .±16=4 C.327-=-3 D .2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A.⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C.⎩⎨⎧-<>b x a x D.⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A ) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠AB C=500,∠ACB=800,BP 平分∠AB C,CP 平分∠ACB ,则∠BPC 的大小是( )A.1000B.1100 C .1150 D.1200PBA小刚小军小华(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B.3 C .2 D.1C 1A 1A BB 1CD8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5 B.6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 c m2,则四边形A 1DC C1的面积为( )A.10 cm 2 B .12 c m 2 C.15 cm 2D .17 c m210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4) B.(4,5) C.(3,4) D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x +1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠AB C=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DA C=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│0,则x =_______,y =_______. 三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CBAD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, A D∥BC , A D平分∠EAC,你能确定∠B 与∠C的数量关系吗?请说明理由。
人教版七年级数学下册期末考试测试卷(含答案)精选全文
精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
人教版七年级下册数学期末测试卷(含答案解析)
人教版七年级下册数学期末测试卷一.选择题(每小题3分,共36分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.二元一次方程2a+5b=﹣6,用含a的代数式表示b,下列各式正确的是()A.B.C.D.3.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠2=180°4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7、将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于()A.56°B.68°C.62°D.66°8、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40º D.30º9、若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.610、若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣5201511、若关于x的不等式组只有5个整数解,则a的取值范围()A.B.C.D.12、. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(–13,–13)C.(14,14)D.(–14,–14)二、填空题(每小题3分,共18分)13.如图,当剪刀口∠AOB增大21°时,∠COD增大__________度.14.在二元一次方程x+4y=13中,当x=5时,y=__________.15.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是__________位置.16、已知关于的不等式组只有两个整数解,则的取值范围__________.17、如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是__________.18、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是__________.三、解答题(共8小题,共66分)19.(6分)计算:20.(6分)解方程组:21.(8分)解不等式组:22.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.23.(9分)如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.24.(9分)已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.25.(10分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.D.4.D.5.A.6.D.7、B.8、D 9、B.10、B 11、A 12、C 二.填空题(共6小题,满分24分,每小题4分)13.21度.14.215.(9,12).16、17、2∠α=∠β+∠γ.18、(2011,2)三解答题19.答案为:20.答案为:x=2,y=–1.5;21.解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.22.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.23解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
【精品】人教版数学七年级下学期《期末检测试题》有答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E 、∠D 之间的是( )A . ∠A +∠E +∠D =180°B . ∠A +∠E -∠D =180°C . ∠A -∠E +∠D =180° D . ∠A +∠E +∠D =270°2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155∠=︒,则2∠的度数是()A . 35°B . 40°C . 45°D . 50°3. 若x 3x x 则x 的值为( )A . 1B . 0C . 0或1D . 0或±1 4. 若m 、n 满足()21150m n --m n +的平方根是( )A . 4±B . 2±C . 4D . 25. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1 B . 2 C . 3 D . 47. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3- B . 0 C . 3 D . 68. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩ 9. 不等式组104x x x +≥⎧⎨->⎩的所有整数解的和是( ) A . 0 B . 1 C . 2 D . 310. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示 上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人 二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______. 14. 333的值为__________. 15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 三、解答题 (共8小题,满分75分)16. (1)计算:()220191423--(2)解方程组425x y x y -=⎧⎨+=⎩17. 求满足不等式组()328 131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.19. 如图,已知//DC FP,12∠=∠,30FED∠=︒,80AG F∠=︒,FH平分EFG(1)说明://DC AB;(2)求PFH∠的度数.20. 如图,BED B D∠=∠+∠,猜想AB与CD有怎样位置关系,并说明理由.21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)参考答案一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E、∠D 之间的是( )A . ∠A +∠E+∠D =180°B . ∠A +∠E-∠D =180°C . ∠A -∠E+∠D =180° D . ∠A +∠E+∠D =270°【答案】B【解析】【分析】作EF∥A B ,则EF∥C D ∥A B ,根据平行线的性质即可求解.【详解】作EF∥A B ,则EF∥C D ∥A B ,∴∠A +∠A EF=180°,∠D =∠D EF,又∠A ED =∠A EF+∠D EF,故∠A +∠E-∠D =180°选B .【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的性质.∠=︒,则2∠的度数是() 2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155A . 35°B . 40°C . 45°D . 50°【答案】A【解析】【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【详解】解:如图由题意可得:∠1=∠3=55°∠2=∠4=90°-55°=35°故选:A【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.3. 若x3x x则x的值为( )A . 1B . 0C . 0或1D . 0或±1【答案】C【解析】【分析】根据平方根和立方根性质判断即可.3x x且x≥0,∴x=0或1.【点睛】此题主要考查了平方根和立方根,掌握它们的性质是解题的关键.4. 若m、n满足()21150+的平方根是( )--m nm nA . 4±B . 2±C . 4D . 2【答案】B【解析】【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键. 5. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 的坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 【答案】C【解析】【分析】将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),根据点Q 在y 轴上知m+3=0,据此知m=-3,再代入即可得.【详解】解:将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),∵点Q (m+3,2m+4)在y 轴上,∴m+3=0,即m=-3,则点Q 的坐标为(0,-2),故答案为(0,-2).【点睛】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y 轴上的点横坐标为0的特征. 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1B . 2C . 3D . 4【答案】C【解析】【分析】根据x 与y 互为相反数,得到x+y=0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出A 的值即可. 【详解】根据题意得:2350x y x y -=⎧⎨+=⎩①② ①+②×3得:5x=5,解得:x=1,把x=1代入②得:y=-1,把x=1,y=-1代入29ax ay -=得:A +2A =9,解得:A =3,故选C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3-B . 0C . 3D . 6 【答案】C【解析】【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得A 、B 的值,即可求得A +B 的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴A +B =3.故选C .【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.8. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩【答案】A【解析】【分析】根据数轴上表示的解集确定出所求即可.【详解】解:数轴上表示的解集对应的不等式组是42xx≥-⎧⎨<⎩,故选A .【点睛】此题考查了在数轴上表示不等式的解集,弄清不等式组表示解集的方法是解本题的关键.9. 不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是( )A . 0B . 1C . 2D . 3【答案】A【解析】【分析】分别求出各不等式的解集,再求出其公共解集即为此不等式组的解集,在此解集范围内得出符合条件的x 的整数值即可.【详解】解:104xx x+≥⎧⎨->⎩①②,解不等式①得x≥-1.解不等式②得x<2,所以原不等式组的解集为-1≤x<2,所以原不等式组的整数解为:-1,0,1,则所有整数解的和=-1+0+1=0.【点睛】本题考查的是解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人【答案】D【解析】【分析】 因为某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:5:3,即老年的人数是总人数的212355=++,利用来老年为160人,即可求出三个地区的总人数,进而求出青年的人数,分别判断即可. 【详解】解:A 、老年的人数是总人数的212355=++,老年所占区域的圆心角是1360725︒︒⨯=,故此选项正确,不符合题意;B 、参加活动的总人数是11608005÷=,故此选项正确,不符合题意; C 、中年人数是380024010⨯=,老年人数是160,中年人比老年人多80,故此选项正确,不符合题意; D 、青年人数是480040010⨯=,老年人比青年人少400-160=240人,故此选项错误,符合题意. 故选D .【点睛】此题主要考查了扇形图的应用,先求出总体的人数,再分别乘以各部分所占的比例,即可求出各部分的具体人数是解题关键.二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.【答案】60︒或120︒【解析】【分析】根据角的和差,分两种情况讨论可得答案.【详解】OA ⊥OC ,∴∠A OC =90°.分两种情况讨论:①OB 在∠A OC 的外部,如图1,∠B OC =A OC +∠A OB =30°+90°=120°;②OB 在∠A OC 的内部,如图2,∠B OC =∠A OC ﹣∠A OB =90°﹣30°=60°.故答案为60〫或120〫.【点睛】本题考查了垂线,利用角的和差是解题的关键,又利用了垂线的定义.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 【答案】3±【解析】【分析】先由x 、y 2x 1(y 3x 1)0+--=得出x+1=0,y-3x-1=0,从而求出x 、y 的值,然后再代入y 2-5x 求出平方根即可得出答案.【详解】解:∵x 、y 2x 1(y 3x 1)0+--=,∴x+1=0,y-3x-1=0,∴x=-1,y=2,则y 2-5x=9,y 2-5x 的平方根是±3.【点睛】本题考查了二次根式,完全平方的性质,此题比较简单,解题的关键是求出x 、y 的值,再代值计算.13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______.【答案】(2,4)-【解析】【分析】设点P 的坐标为(,)a b ,首先根据点到x,y 轴的距离求出,a b ,然后根据第四象限内点的坐标的特点求出A ,B 的值,进而可确定P 点的坐标.【详解】设点P 的坐标为(,)a b ,∵点P 距离x 轴4个单位长度,距离y 轴2个单位长度,∴2,4==a b , ∴2,4a b =±=± .∵点P 在第四象限,∴0,0a b >< ,∴2,4a b ==-,∴点P 的坐标为(2,4)-.故答案为:(2,4)-.【点睛】本题主要考查点到x,y 轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.14. 333⎛+ ⎪⎝⎭的值为__________. 【答案】4【解析】【分析】先去括号相乘然后再相加即可.【详解】解:333⎛+ ⎪⎝⎭=3+1=4.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 【答案】7【解析】【分析】根据代数式342x -的值不小于3x+5的值,即可得出关于x 的一元一次不等式,解不等式即可得出x 的取值范围,取期内最小的整数,此题得解.【详解】解:由已知得:342x -≥3x+5,解得:13x2,13672<<,∴x的最小整数为7.故答案为7.【点睛】本题考查了一元一次不等式的整数解,解题的关键是根据代数式342x-的值不小于3x+5的值找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.三、解答题 (共8小题,满分75分)16. (1)计算:201912-(2)解方程组425x yx y-=⎧⎨+=⎩【答案】(1)1(2)31xy=⎧⎨=-⎩.【解析】【分析】(1)根据乘方的意义,二次根式的性质,绝对值的性质,可得答案;(2)根据代入消元法,可得方程组的解.【详解】解:(1)原式=-1+4-((2)425 x yx y-=⎧⎨+=⎩①②②代入①得x+2x=9,解得x=3,把x=3代入②得y=-1.故方程组的解31 xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和实数的混合运算,(2)中利用代入消元法是解题关键.17. 求满足不等式组()328131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.【答案】不等式组的解集:-1≤x<2,整数解为:-1,0,1.【解析】分析:先求出不等式组的解集,然后在解集中找出所有的整数即可.详解:解不等式x-3(x-2)≤8,得:x≥-1,解不等式12x-1<3-32x,得:x<2,则不等式组的解集为-1≤x<2,所以不等式组的整数解为-1、0、1.点睛:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.【答案】(1)50,18;(2)见解析;(3)108.【解析】【分析】(1)根据统计图化学对应数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数.【详解】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生, m%=9÷50×100%=18%,故答案为50,18;(2)选择数学的有;50-9-5-8-10-3=15(名),补全的条形统计图如右图所示:(3)扇形统计图中,“数学”所对应的圆心角度数是:1536010850︒︒⨯=, 故答案为108.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19. 如图,已知//DC FP ,12∠=∠,30FED ∠=︒,80AG F ∠=︒,FH 平分EFG(1)说明://DC AB ;(2)求PFH ∠的度数.【答案】(1)见解析;(2)25PFH ∠=︒.【解析】【分析】(1)由D C ∥FP 知∠3=∠2=∠1,可得D C ∥A B ;(2)由(1)利用平行线的判定得到A B ∥PF ∥C D ,根据平行线的性质得到∠A GF=∠GFP ,∠D EF=∠EFP ,然后利用已知条件即可求出∠PFH 的度数.【详解】解:(1)∵D C ∥FP ,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴D C ∥A B ;(2)∵D C ∥FP ,D C ∥A B ,∠D EF=30°,∴∠D EF=∠EFP=30°,A B ∥FP ,又∵∠A GF=80°,∴∠A GF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH 平分∠EFG , 1GFH GFE 552︒∴∠=∠=, ∴∠PFH=∠GFP-∠GFH=80°-55°=25°.【点睛】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.20. 如图,BED B D ∠=∠+∠,猜想AB 与CD 有怎样的位置关系,并说明理由.【答案】//AB CD ,见解析.【解析】【分析】延长B E 交C D 于F ,通过三角形外角的性质可证明∠B =∠EFD ,则能证明A B ∥C D .【详解】解:延长B E 交C D 于F .∵∠B ED =∠B +∠D ,∠B ED =∠EFD +∠D ,∴∠B =∠EFD ,∴A B ∥C D .【点睛】本题主要考查三角形外角的性质及两直线平行的判定,可围绕截线找同位角、内错角和同旁内角. 21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)【答案】乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.【解析】【分析】由“4分钟后两人首次相遇”,可知跑步4分钟后,甲比乙多跑一圈,即可得到相等关系;设乙的速度为x 米/分,则甲的速度是2.5x 米/分,根据等量关系列出方程进行求解,即可得到乙和甲的速度;然后由乙跑了4分钟之后还差300米便可跑完一整圈,即可求出场地的周长.【详解】设乙的速度为x m/min ,则甲的速度为2.5x m/min.由题意,得2.5x ×4-4x =4x +300.解得x =150.所以2.5x =2.5×150=375,4x +300=4×150+300=900.答:乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【答案】小明至少答对18道题才能获得奖品.【解析】 试题分析:设小明答对x 道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可. 试题解析: 设小明答对x 道题,根据题意得, 6x-2(25-x)>90解这个不等式得,,∵x 为非负整数∴x 至少为18 答:小明至少答对18道题才能获得奖品.考点:一元一次不等式的应用.23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中的三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)【答案】(1)105°;(2)150°;(3)75°或255°【解析】【分析】(1)根据三角形的内角和定理可得∠C EN=180°-∠D C N-∠MNO ,代入数据计算即可得解; (2)根据角平分线的定义求出∠D ON=45°,利用内错角相等两直线平行求出C D ∥A B ,再根据两直线平行,同旁内角互补求解即可;(3)当C D 在A B 上方时,C D ∥MN ,设OM 与C D 相交于F ,根据两直线平行,同位角相等可得∠OFD =∠M=60°,然后根据三角形的内角和定理列式求出∠MOD ,即可得解;当C D 在A B 的下方时,C D ∥MN ,设直线OM 与C D 相交于F ,根据两直线平行,内错角相等可得∠D FO=∠M=60°,然后利用三角形的内角和定理求出∠D OF ,再求出旋转角即可.【详解】解:(1)在△C EN 中,∠C EN=180°-∠D C N-∠MNO =180°-45°-30°=105°;(2)∵OD 平分∠MON,∴∠D ON=12∠MPN=12×90°=45°,∴∠D ON=∠D =45°,∴C D ∥A B ,∴∠C EN=180°﹣∠MNO=180°﹣30°=150°;(3)如图1,C D 在A B 上方时,设OM与C D 相交于F,∵C D ∥MN,∴∠OFD =∠M=60°,在△OD F中,∠MOD =180°-∠D -∠OFD ,=180°-45°-60°,=75°,当C D 在A B 的下方时,设直线OM与C D 相交于F,∵C D ∥MN,∴∠D FO=∠M=60°,在△D OF中,∠D OF=180°-∠D -∠D FO=180°-45°-60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC 旋转75°或255°时,边C D 恰好与边MN平行.故答案为:75或255.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.。
【人教版】数学七年级下学期《期末考试卷》有答案解析
人教版数学七年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b22. 下列图形中不是轴对称图形的是()A. B. C. D. 3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15° B. 25° C. 35° D. 45°4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( ) A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A. 14B. 10C. 3D. 26. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( ) A. 2 B. 3 C. 4 D. 127. 如图,在△ABC 中,AB =AC,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( ) A. 30°B. 45°C. 50°D. 75° 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A . 8B. 6C. 5D. 4 二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 值为_____. 10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----. 19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整:解:因AD BC ⊥,EF BC ⊥, 所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米2018 16 14 … (1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.24. 已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.参考答案一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b2【答案】A【解析】A.结果是a6b2,故本选项正确;B.结果是2a,故本选项错误;C.结果是a3,故本选项错误;D.结果是a2−2ab+b2,故本选项错误;故选A.2. 下列图形中不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可.【详解】A、此选项中的图形是轴对称图形,故不符合题意;B、此选项中的图形不是轴对称图形,故符合题意;C、此选项中的图形是轴对称图形,故不符合题意;D、此选项中的图形是轴对称图形,故不符合题意,故选:B.【点睛】本题考查了轴对称图形的概念,理解轴对称图形的概念,寻找到对称轴是解答的关键.3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15°B. 25°C. 35°D. 45°【答案】C【解析】分析:如图,∵直尺的两边互相平行,∠1=25°, ∴∠3=∠1=25°.∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( )A. 摩托车比汽车晚到1 hB. A、B两地的距离为20 kmC. 摩托车的速度为45 km/hD. 汽车的速度为60 km/h【答案】C【解析】试题分析:分析图象可知A、4-3=1,摩托车比汽车晚到1h,故选项正确;B、因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,故选项正确;C、摩托车的速度为(180-20)÷4=40km/h,故选项错误;D、汽车的速度为180÷3=60km/h,故选项正确.故选C.考点:函数的图象.5. 若一个三角形的两边长分别为5和8,则第三边长可能是()A. 14B. 10C. 3D. 2【答案】B【解析】【分析】【详解】设第三边是x,由三角形边的性质可得:8-5<x<8+5,∴3<x<13.所以选B.6. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A. 2B. 3C. 4D. 12 【答案】B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.7. 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A. 30°B. 45°C. 50°D. 75°【答案】B【解析】 试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B . 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A. 8B. 6C. 5D. 4【答案】D【解析】【分析】 根据平行线定理判定AD CD ⊥,再有垂线段最短性质,作出辅助线,最后由角平分线性质解题即可.【详解】//AB CD AD AB ⊥,,AD CD ∴⊥,根据垂线段最短的原则,得,当PE BC ⊥时, PE 取最小值,如图,BE 和CE 分别平分ABC ∠和BCD ∠PE AE PE DE ∴==,,8AD =142PE AE DE AD ∴==== 故选:D .【点睛】本题考查平行线定理、垂线段最短性质、角平分线性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 的值为_____. 【答案】3【解析】【分析】根据完全平方公式的结构可知m+1=4,解之即可.【详解】∵()24x -=2816x x -+,∴()22116x m x -++=2816x x -+, ∴2(1)8m -+=-,即m+1=4,解得:m=3,故答案为:3.【点睛】本题考查了完全平方公式,熟记完全平方公式是解答的关键.10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.【答案】4【解析】试题分析:由中线性质,可得AG=2GD,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.【答案】12.【解析】【分析】由轴对称的性质可知:BC=CE=4,由点E 是AB 的中点可知BE=12AB=4,从而可求得答案. 【详解】解:∵点B 与点E 关于DC 对称,∴BC=CE=4.∵E 是AB 的中点,∴BE=12AB=4. ∴△BEC 的周长12.故答案为:12.【点睛】本题主要考查的是轴对称的性质,由轴对称图形的性质得到BC=CE=4是解题的关键.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.【答案】y =-12x +12(0<x <24) 【解析】【分析】 根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.【详解】解:根据题意可知,AB+BC+CD=24,即:2y+x=24.所以,y=2411222x x -=-+. 且x >0,11202x -+> 解得:0<x <24故答案为1122y x =-+(0<x <24). 【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.【答案】20º.【解析】【分析】根据OA ⊥OB 可知∠AOB =90°,根据∠AOE =40°,OC 平分∠AOF ,∠AOF +∠AOE =180°,求出∠BOD 的大小.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,又∵∠AOE =40°,∴∠AOF =180°−40°=140°,又∵OC 平分∠AOF ,∴∠AOC =12×140°=70°,∴∠BOD =180°−90°−70°=20°.故答案为:20°.【点睛】本题考查了角的计算,垂线、角平分线、邻补角.解题的关键的掌握角的计算方法,涉及垂线、角平分线、邻补角等概念,是一道关于角的综合题.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.【答案】14 【解析】试题分析:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为14;故答案为14. 考点:几何概率.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.【答案】55°【解析】【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC ,D 为BC 中点,∴AD 是∠BAC 的平分线,∠B=∠C ,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=12(180°-70°)=55°. 故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键. 16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.【答案】1或7.【解析】【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).【答案】(1)-5;(2)2.【解析】【分析】(1)先乘方,再乘除,最后算加减,注意负数的偶次方为正,负数的奇次方为负;(2)将20182020⨯转化成(20191)(20191)-+,再结合平方差公式计算即可. 【详解】计算:(1)解:原式=9114428-⨯-÷-() =94-+=-5;(2)解:原式=22019(20191)(20191)1--++=222019201911-++=2.【点睛】本题考查实数的混合运算、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----.【答案】(1)1x +;(2)254ab b -【解析】分析】(1)先利用完全平方公式、单项式乘以多项式运算法则进行计算,再合并同类项即可解答;(2)先利用平方差公式、多项式乘以多项式运算法则进行计算,再去括号合并同类项即可解答.【详解】(1)原式=2221x x x x ++--=1x +;(2)原式=22222()(242)a b a ab ab b ----+=222222242a b a ab ab b --++-=254ab b -.【点睛】本题考查了整式的混合运算,涉及平方差公式、完全平方公式、单项式乘以多项式、多项式乘以多项式、合并同类项等知识,是基础题型,熟练掌握相关知识的运算法则是解答的关键.19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 【答案】22x y -,8.【解析】【分析】先根据平方差公式、完全平方公式、单项式乘多项式运算法则对括号内的算式进行计算,再根据多项式除以单项式的运算法则进行运算,最后代值计算即可求解.【详解】解:原式=22222[()(2)(22)]2x y x xy y xy y y ---++-÷=22222(222)2x y x xy y xy y y --+-+-÷=2(44)2y xy y -+÷=22x y -,当1x =,3y =-时,原式=222(6)8x y -=--=.【点睛】本题考查了整式的化简求值,解答的关键是利用乘法公式和整式的混合运算的运算法则对原式进行化简.20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整: 解:因为AD BC ⊥,EF BC ⊥,所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.【答案】两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【解析】【分析】根据平行线的判定和性质解题.【详解】解:因为AD⊥BC ,EF⊥BC ,所以∠ADC =∠EFC =90°,根据“同位角相等,两直线平行”,所以AD//EF,根据“两直线平行,同位角相等”,所以∠1=∠CAD .因为∠3=∠C ,根据“同位角相等,两直线平行”,所以DG//AC,根据“两直线平行,内错角相等”,所以∠2=∠CAD .所以∠1=∠2.故答案为:两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【点睛】本题考查平行线的判定和性质,根据题目已知条件灵活运用平行线的判定和性质求解是解题关键. 21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米 2018 16 14 …(1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?【答案】(1)0.2;(2)0.2p x =;(3)200.2y x =-;(4)这只蜡烛100分钟后全部燃尽.【解析】【分析】(1)根据表格中的数据,可以计算出蜡烛每分钟燃烧的长度;(2)根据(1)中的结果和题意,可以写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)根据(1)中的结果和题意,可以写出剩余长度y 与燃烧时间x 之间的关系式;(4)令(3)中的y=0,然后求出相应的x 值,即可解答本题.【详解】解:(1)蜡烛每分钟燃烧的长度是:(20−18)÷10=0.2(cm),故答案为:0.2;(2)由题意可得,p=0.2x ,即燃烧的长度p 与燃烧时间x 之间的关系式为p=0.2x ;(3)由题意可得,剩余长度y 与燃烧时间x 之间的关系式为y=20−0.2x ;(4)当y=0时,0=20−0.2x ,解得,x=100,即这只蜡烛100分钟后全部燃尽.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由. 【答案】(1)△BCD ≌△ACE ,理由见解析;(2)BF ⊥AE ,理由见解析.【解析】【分析】 (1)根据等角的余角相等证明∠BCD=∠ACE ,进而证明△BCD ≌△ACE (SAS );(2)由(1)中的结论,结合全等三角形对应角相等的性质,得到∠CBG=∠CAF ,再由三角形内角和180度定理,证明∠BCA=∠AFG ,据此解题可得BF ⊥AE .【详解】解:(1)△BCD≌△ACE.理由如下:∵BC⊥CA,DC⊥CE,∴∠BCA=∠DCE=90°,∵∠BCD=∠BCA-∠DCG,∠ACE=∠DCE-∠DCG,∴∠BCD=∠ACE,在△BCD和△ACE中,BC=CA,∠BCD=∠ACE,DC=CE,∴△BCD≌△ACE(SAS);(2)BF⊥AE.理由如下:由(1)可知:∠BCA=90°,△BCD≌△ACE,∴∠CBG=∠CAF,∵∠BCA =180°-∠BGC-∠CBG,∠AFG =180°-∠AGF-∠CAF,∵∠BGC=∠AGF,∴180°-∠BGC-∠CBG=180°-∠AGF-∠CAF,∴∠BCA=∠AFG,∴∠AFG=90°,即BF⊥AE.【点睛】本题考查余角性质、全等三角形的判断与性质、三角形内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为 ,乙顾客获得一次转动转盘机会的概率为 . (2)甲顾客获得哪种奖品的概率最大?请说明理由.【答案】(1)1,0;(2得奖品文具盒的概率最大,理由见解析.【解析】【分析】(1)根据规定, 比较125、89与100的大小即可做出判断,进而求得概率;(2)分别求出获得各个奖品的概率,比较大小即可解答.【详解】解:(1)由125﹥100知,甲顾客一定获得一次转盘机会,是必然事件,所以甲顾客获得一次转动转盘机会的概率为1,由89﹤100知,顾客乙不可能获得一次转动转盘机会,是不可能事件,所以乙顾客获得一次转动转盘机会的概率为0,故答案为:1,0;(2)∵转盘被等分成16份,其中红色占1份,黄色占1份,蓝色占2份,绿色占4份,∴P (获得奖品玩具熊)=116, P (获得奖品童话书)=116, P (获得奖品彩色笔)=21=168, P (获得奖品文具盒)=41=164, ∵1114816>>, ∴甲顾客获得文具盒的概率最大.【点睛】本题考查了求等可能事件的概率,解答的关键是熟练掌握简单几何概率的求法:概率=相应的份数与总份数的比值.24. 已知:∠ACB =90°,AC =BC ,AD ⊥CM ,BE ⊥CM ,垂足分别为D ,E,(1)如图1,①线段CD 和BE 的数量关系是 ;②请写出线段AD ,BE ,DE 之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD ,BE ,DE 之间的数量关系.【答案】(1)①CD =BE ;②AD =BE +DE .证明见解析;(2)②中的结论不成立.DE =AD +BE .【解析】【分析】(1)①此题可证明出△ACD 和△CBE 全等即可;②由①全等求解即可;(2)此时的结论不成立,此时变成DE =AD+BE ,依然用△ACD 和△CBE 全等证明即可.【详解】(1)①CD =BE .理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°,∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴CD =BE .②AD =BE+DE .理由:∵△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵CE =CD+DE =BE+DE ,∴AD =BE+DE .(2)②中的结论不成立. DE =AD+BE . 理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°, ∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°, ∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵DE =CD+CE =BE+AD ,∴DE =AD+BE .【点睛】此题考查全等三角形的性质及判定定理,灵活运用是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一、选择题(每题3分,共36分)1.下列图形中,是中心对称图形但不是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 圆 2.若a b >,则下列不等式中,不成立的是( )A . 55a b +>+ B. 55a b ->- C. 55a b > D. 55a b ->- 3.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为( )A. 2B. 3C. 7D. 164.不等式510x ≤-的解集在数轴上表示为( )A. B. C. D. 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A. 1种B. 2种C. 3种D. 4种 6.解方程组232210.x y x y -=⎧⎨+=⎩L L L L ,①②时,由②-①得( ) A. 28y =B. 48y =C. 28y -=D. 48y -= 7.方程1﹣22x -=13x +去分母得( ) A. 1﹣3(x ﹣2)=2(x+1) B. 6﹣2(x ﹣2)=3(x+1)C. 6﹣3(x ﹣2)=2(x+1)D. 6﹣3x ﹣6=2x+2 8.如图,将周长为4的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 5B. 6C. 7D. 8 9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A. 4种B. 3种C. 2种D. 1种10.如图,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数是( )A. 70°B. 35°C. 40°D. 50°11.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a 、b (a >b ),则()a b -等于( )A. 3B. 4C. 5D. 612.如图,88⨯方格纸上的两条对称轴EF 、MN 相交于中心点O ,对△ABC 分别作下列变换: ①先以点A 为中心顺时针方向旋转90o ,再向右平移4格、向上平移4格;②先以点O 为中心作中心对称图形,再以点A 的对应点为中心逆时针方向旋转90o ;③先以直线MN 为轴作轴对称图形,再向上平移4格,再以点A 的对应点为中心顺时针方向旋转90o . 其中,能将△ABC 变换成△PQR 的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(每题3分,共18分)13.一个正八边形的每个外角等于________度.14.如图,已知ABC ADE ∆≅∆,若4BE =,3AC =,则AB 的值为______.15.不等式2x>3的最小整数解是______.16.如图,在ABC ∆中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S ∆=,则BEF S ∆=______2cm .17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.如图,长方形ABCD 中,AB=4,AD=2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A→D→C→B 的方向运动,点P 以每秒3个单位的速度沿A→B→C→D 的方向运动,当P ,Q 两点相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值范围是_________.三、解答题(共66分)19.解方程:1132x x --= 20.2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得12C P C P +的值最小.22.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠交AD 于点E .若60C ∠=°,70BED ∠=︒.求ABC ∠和BAC ∠的度数.23.定义新运算:对于任意实数a 、b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,如:()()252251231615⊕=⨯-+=⨯-+=-+=-.(1)求()23-⊕的值;(2)若3x ⊕值小于13,4x ⊕的值大于3-,求x 的取值范围,并在数轴上表示出来.24.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:32m m --+;(3)在m 的取值范围内,当m 为何整数时不等式221mx x m +<+的解集为1x >.25.我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于48棵,且用于购买这两种树的资金不能超过7500元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?26.在ABC ∆中,AD BC ⊥于点D(1)如图1,若BAC ∠的角平分线交BC 于点E ,42B ∠=o ,7DAE ∠=o ,求C ∠的度数;(2)如图2,点,M N 分别在线段,AB AC 上,将ABC ∆折叠,点B 落在点F 处,点C 落在点G 处,折痕分别为DM 和DN ,且点F ,点G 均在直线AD 上,若90B C ∠+∠=o ,试猜想AMF ∠与ANG ∠之间的数量关系,并加以证明;(3)在(2)小题的条件下,将DMF ∆绕点D 逆时针旋转一个角度α(0360α<<o o ),记旋转中的DMF ∆为11DM F ∆(如图3),在旋转过程中,直线11M F 与直线AB 交于点P ,直线11M F 与直线BC 交于点Q ,若28B ∠=o ,是否存在这样的,P Q 两点,使BPQ ∆为直角三角形?若存在,请直接写出旋转角α的度数;若不存在,请说明理由.答案与解析一、选择题(每题3分,共36分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆【答案】B【解析】【分析】中心对称图形:把一个图形绕着某一点旋转180°后,如果旋转后的图形能够与原来的图形重合,轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,故B符合题意;C、正五边形是轴对称图形,不是中心对称图形,故C不符合题意;D、圆是轴对称图形,也是中心对称图形,故D不符合题意;故答案为B.【点睛】此题考查中心对称图形和轴对称图形,解题关键在于掌握其定理2.若a b>,则下列不等式中,不成立的是( ) A. 55a b+>+ B. 55a b->- C. 55a b> D. 55a b->-【答案】D【解析】A. B. 不等式的两边都加或都减同一个整式,不等号的方向不变,故A. B正确;C. 不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D. 不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选D.点睛:此题考查了不等式的基本性质,属于基础题.3.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为()A. 2B. 3C. 7D. 16【答案】C【解析】分析:先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.详解:此三角形第三边的长为x,则9-6<x <9+6,即3<x <15,只有选项C 符合题意.故选C .点睛:本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 4.不等式510x ≤-的解集在数轴上表示为( ) A.B. C. D. 【答案】C【解析】试题分析:解不等式510x ≤-,得:2x ≤-.表示在数轴上为:.故选C . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A. 1种B. 2种C. 3种D. 4种 【答案】C【解析】试题分析:由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.解:①正方形的每个内角是90°,4个能组成镶嵌;②长方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选C .6.解方程组232210.x y x y -=⎧⎨+=⎩L L L L ,①②时,由②-①得( ) A. 28y =B. 48y =C. 28y -=D. 48y -=【答案】B【解析】【分析】方程组中两方程相减得到结果,即可做出判断.【详解】解:解方程组232210.x y x y -=⎧⎨+=⎩L L L L ,①②时,由②-①得y-(-3y )=10-2,即4y=8, 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 7.方程1﹣22x -=13x +去分母得( ) A. 1﹣3(x ﹣2)=2(x+1) B. 6﹣2(x ﹣2)=3(x+1)C. 6﹣3(x ﹣2)=2(x+1)D. 6﹣3x ﹣6=2x+2 【答案】C【解析】【分析】方程两边乘以6去分母得到结果,即可做出判断.【详解】解:去分母得:6-3(x-2)=2(x+1),故选C .点睛:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 8.如图,将周长为4的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 5B. 6C. 7D. 8【答案】B【解析】【分析】 根据平移的性质可得DF=AC ,AD=CF=1,再根据周长的定义列式计算即可得解.【详解】解:∵△ABC 沿BC 方向向右平移1个单位得到△DEF ,∴DF=AC ,AD=CF=1,∴四边形ABFD 的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC 的周长+CF+AD=4+1+1=6.故选B .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A. 4种B. 3种C. 2种D. 1种 【答案】C【解析】设租二人间x 间,租三人间y 间,则四人间客房7-x-y .依题意得:234(7)2070{x y x y x y ++--=-->,解得:x >1.∵2x+y=8,y >0,7-x-y >0,∴x=2,y=4,7-x-y=1;x=3,y=2,7-x-y=2.故有2种租房方案.故选C . 10.如图,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数是( )A. 70°B. 35°C. 40°D. 50°【答案】C【解析】 试题解析:∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,∴AC ′=AC ,∠B ′AB =∠C ′AC ,∴∠AC ′C =∠ACC ′,∵CC ∥′AB ,70ACC CAB ∴∠'=∠=o ,70AC C ACC ∴∠'=∠'=o ,18027040.CAC ∴∠'=-⨯=o o o 40.B AB o ∴∠'= 故选C.11.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a 、b (a >b ),则()a b -等于( )A. 3B. 4C. 5D. 6【答案】D【解析】设重叠部分面积为c,a-b=(a+c)-(b+c)=18-12=6.故选D.⨯方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:12.如图,88①先以点A为中心顺时针方向旋转90o,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90o;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90o.其中,能将△ABC变换成△PQR的是()A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】根据图形的平移、旋转和轴对称变化的性质与运用得出.【详解】解:根据题意分析可得:①②③都可以使△ABC变换成△PQR.故选D.点睛:本题考查图形的变化,要求学生熟练掌握平移、旋转和轴对称变化的性质与运用.二、填空题(每题3分,共18分)13.一个正八边形的每个外角等于________度.【答案】45【解析】︒÷︒【详解】解:3608=45故答案:45.14.如图,已知ABC ADE ∆≅∆,若4BE =,3AC =,则AB 的值为______.【答案】7【解析】【分析】根据△ABC ≌△ADE ,得到AE=AC ,由4BE =,3AC =,根据AB=BE+AE 即可解答.【详解】∵△ABC ≌△ADE ,∴AE=AC ,∵4BE =,3AC =,∴AB=BE+AE=4+3=7.故答案为:7.【点睛】此题考查全等三角形的性质,解题的关键是熟记全等三角形的对应边相等.15.不等式2x>3的最小整数解是______.【答案】2【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的整数即可.【详解】解不等式得:x>32, 则最小整数解是:2.故答案为2 【点睛】此题考查一元一次不等式的整数解,掌握运算法则是解题关键16.如图,在ABC ∆中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S ∆=,则BEF S ∆=______2cm .【答案】4【解析】【分析】利用三角形的中线的性质即可解决问题;【详解】∵点D,E,F,分别为BC、AD、CE的中点,且S△ABC=16,∴S△ABD=S△ADC=8,S△BDE=S△DEC=4,∴S△BEC=8,∴S阴=12•S△BEC=4,故答案为4.【点睛】此题考查三角形的中线的性质,解题的关键是理解三角形的中线把三角形分成面积相等的两个三角形.17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.【答案】3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x的值或取值范围是_________.【答案】0<x≤43或x=2.【解析】【分析】由题意可得当0<x≤43△AQM是直角三角形,当43<x<2时△AQM是锐角三角形,当x=2时,△AQM是直角三角形,当2<x<3时△AQM是钝角三角形.【详解】解:当点P在AB上时,点Q在AD上时,此时△APQ为直角三角形,则0<x≤43;当点P在BC上时,点Q在AD上时,此时△APQ为锐角三角形,则43<x<2;当点P在C处,此时点Q在D处,此时△APQ为直角三角形,则x=2时;当点P在CD上时,点Q在DC上时,此时△APQ为钝角三角形,则2<x<3.故答案是:0<x≤43或x=2.【点睛】本题主要考查矩形的性质和列代数式的知识点,解答本题的关键是熟练掌握矩形的性质,还要熟练掌握三角形形状的判断,此题难度一般.三、解答题(共66分)19.解方程:1132 x x--=【答案】9 5【解析】【分析】方程两边都乘以(x-1)化为整式方程,然后求解,再进行检验即可;【详解】去分母,得2x-6=3(1-x ),解得x=95. 经检验:x=95是原方程的解; 【点睛】此题考查解分式方程,解题关键在于检验. 20.2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 【答案】−1⩽x<2【解析】【分析】分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可. 【详解】2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 由①得x ⩾−1,由②得x<2,原不等式的解为−1⩽x<2【点睛】此题考查解一元一次不等式组,解题关键在于掌握运算法则21.如图所示正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得12C P C P +的值最小.【答案】见解析【解析】分析:(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)根据轴对称的性质画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)连接C 1C 2交直线m 于点P ,则点P 即为所求点.详解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)连接连接C 1C 2交直线m 于点P ,则点P 即为所求点.点睛:本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠交AD 于点E .若60C ∠=°,70BED ∠=︒.求ABC ∠和BAC ∠的度数.【答案】40°,80°.【解析】【分析】先根据AD 是△ABC 的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°-∠ADB-∠BED=20°.根据BE 平分∠ABC 得出∠ABC=2∠DBE=40°. 根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.【详解】∵AD 是△ABC 的高,∴∠ADB=90°.又∵∠DBE+∠ADB+∠BED=180°,∠BED=70°,∴∠DBE=180°-∠ADB-∠BED=20°.∵BE 平分∠ABC ,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°-∠ABC-∠C=80°.【点睛】此题考查三角形内角和定理,熟知三角形内角和是180°是解题的关键.23.定义新运算:对于任意实数a 、b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,如:()()252251231615⊕=⨯-+=⨯-+=-+=-.(1)求()23-⊕的值;(2)若3x ⊕的值小于13,4x ⊕的值大于3-,求x 的取值范围,并在数轴上表示出来.【答案】(1)11;(2)-1<x <5.数轴见解析;【解析】【分析】(1)根据运算的定义把所求的式子化成一般的形式,然后计算即可;(2)根据运算的定义列出两个不等式,然后解不等式组求得不等式组的解集.【详解】(1)(-2)⊕3=(-2)×(-2-3)+1=10+1=11;(2)3⊕x=3(3-x )+1=10-3x ,4⊕x=4(4-x )+1=17-4x ,根据题意得: 103131743x x -⎧⎨--⎩<> , 解得:-1<x <5.在数轴上表示出来为:.【点睛】此题考查一元一次不等式的解集,解题关键在于掌握其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 24.已知方程组713x y m x y m +=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:32m m --+;(3)在m 的取值范围内,当m 为何整数时不等式221mx x m +<+的解集为1x >. 【答案】(1)-2<m ≤3;(2)1-2m ;(3)-1. 【解析】【分析】(1)先求出方程组的解,根据x 为非正数,y 为负数,组成不等式组,解不等式组,即可解答. (2)根据m 的取值范围,绝对值的性质化简,即可解答. (3)由不等式的性质求出m 的范围,结合(1)中所求范围可得答案.【详解】(1)解原方程组得: 324x m y m -⎧⎨--⎩==, ∵x≤0,y <0,∴30240m m -≤⎧⎨--⎩< , 解得-2<m≤3;(2)|m-3|-|m+2|=3-m-m-2=1-2m ;(3)解不等式2mx+x <2m+1得(2m+1)x <2m+1,∵x >1,∴2m+1<0,∴m <-12, ∴-2<m <-12, ∴m=-1.【点睛】此题考查解二元一次方程组,一元一次不等式组的解集,熟练掌握加减消元法和解不等式组的能力是解题的关键.25.我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于48棵,且用于购买这两种树的资金不能超过7500元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?【答案】(1)购买A 种树苗每棵需100元,购买B 种树苗每棵需50元;(2)购买的方案有:购进A 种树苗48棵,B 种树苗52棵; 购进A 种树苗49棵,B 种树苗51棵;购进A 种树苗50棵,B 种树苗50棵;(3)购进A 种树苗48棵,B 种树苗52棵所付工钱最少,最少工钱为2480元.【解析】【分析】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据“购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元”列二元一次方程组求解可得;(2)设购进A 种树苗m 棵,则购进B 种树苗(100)m -棵,根据“A 种树苗不能少于48棵,且用于购买这两种树苗的资金不能超过7500元”列不等式组求解可得;(3)根据(2)中所得方案,分别计算得出费用即可.【详解】解:(1)(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据题意,得:8395056800x y x y +=⎧⎨+=⎩,解得:10050x y =⎧⎨=⎩, 答:A 种树苗每棵100元,B 种树苗每棵50元;(2)设购进A 种树苗m 棵,则购进B 种树苗(100﹣m )棵,根据题意,得:48100010050(100)7500m m m m ⎧⎪-⎨⎪+-⎩……„,解得:48≤m ≤50,所以购买的方案有:1、购进A 种树苗48棵,B 种树苗52棵;2、购进A 种树苗49棵,B 种树苗51棵;3、购进A 种树苗50棵,B 种树苗50棵;(3)方案1的费用为48×30+52×20=2480元,方案2的费用为49×30+51×20=2490元,方案3的费用为50×30+50×20=2500元,所以购进A 种树苗48棵,B 种树苗52棵所付工钱最少,最少工钱为2480元.【点睛】本题主要考查一元一次不等式组、二元一次方程组的应用,解题的关键是仔细审题,找到题目蕴含的相等或不等关系得出方程组、不等式组.26.在ABC ∆中,AD BC ⊥于点D(1)如图1,若BAC ∠的角平分线交BC 于点E ,42B ∠=o ,7DAE ∠=o ,求C ∠的度数; (2)如图2,点,M N 分别在线段,AB AC 上,将ABC ∆折叠,点B 落在点F 处,点C 落在点G 处,折痕分别为DM 和DN ,且点F ,点G 均在直线AD 上,若90B C ∠+∠=o ,试猜想AMF ∠与ANG ∠之间的数量关系,并加以证明;(3)在(2)小题的条件下,将DMF ∆绕点D 逆时针旋转一个角度α(0360α<<o o ),记旋转中的DMF ∆为11DM F ∆(如图3),在旋转过程中,直线11M F 与直线AB 交于点P ,直线11M F 与直线BC 交于点Q ,若28B ∠=o ,是否存在这样的,P Q 两点,使BPQ ∆为直角三角形?若存在,请直接写出旋转角α的度数;若不存在,请说明理由.【答案】(1)∠C=56°;(2)∠AMF=∠ANG.证明见解析;(3)满足条件的旋转角为28°或56°或208°或236°.【解析】【分析】(1)利用三角形的内角和定理即可解决问题;(2)结论:∠AMF=∠ANG.由翻折可知:∠B=∠F,∠C=∠DGN,由∠B+∠C=90°,推出∠BAC=90°,∠F+∠DGN=90°,推出∠BAD+∠CAD=90°,由∠BAD=∠F+∠AMF,∠CAD=∠DGN-∠ANG,推出∠F+∠AMF+∠DGN-∠ANG=90°,可得∠AMF=∠ANG;(3)分两种情形①当∠PQB=90°时;②当∠BPQ=90°时.分别求解即可解决问题.【详解】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°在Rt△AED中,∵∠EAD=7°,∴∠AED=83°,∵∠AED=∠B+∠BAE,∠B=42°,∴∠BAE=∠CAE=41°,∴∠BAC=82°,∴∠C=180°-42°-82°=56°.(2)结论:∠AMF=∠ANG.理由:如图2中,由翻折可知:∠B=∠F,∠C=∠DGN,∵∠B+∠C=90°,∴∠BAC=90°,∠F+∠DGN=90°,∴∠BAD+∠CAD=90°,∵∠BAD=∠F+∠AMF,∠CAD=∠DGN-∠ANG,∴∠F+∠AMF+∠DGN-∠ANG=90°,∴∠AMF=∠ANG.(3)①如图3-1当∠PQB=90°时,∵∠B=∠F′=28°,∴∠F′DQ=90°-28°=62°,∵∠FDB=90°,∴∠FDF′=90°-62°=28°,∴旋转角为28°.②如图3-2,当∠BPQ=90°时,∵∠B=∠F′=28°,∴∠PQB=90°-28°=62°,∵∠PQB=∠F′+∠F′DB,∴∠F′DB=62°-28°=34°,∴∠FDF′=90°-34°=56°,∴旋转角为56°,同法可得当旋转角为208°或236°时,也满足条件,综上所述,满足条件的旋转角为28°或56°或208°或236°.【点睛】本题考查三角形综合题、旋转变换、翻折变换、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题。