二重积分的计算方法(1)

合集下载

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法本文在介绍二重积分的计算方法前,先来介绍与二重积分有关的性质,最后总结出二重积分的计算步骤.(一)二重积分的性质性质1 设,为常数,则⎰⎰[f (x, y) +g(x, y)]d=⎰⎰f (x, y)d+⎰⎰g(x, y)d.D D D性质2 如果闭区域D 被有限条曲线分为有限个部分闭区域,则在D 上的二重积分等于在各部分闭区域上的二重积分的和⎰⎰f (x, y)d=⎰⎰f (x, y)d+⎰⎰f (x, y)d.D D1 D2性质3 如果在D 上,f (x, y) =1 ,是D 的面积,则⎰⎰1d=⎰⎰d=.D D性质4 如果在D 上,f (x, y) ≤g(x, y) ,则特别地,有⎰⎰f (x, y)d≤⎰⎰g(x, y)d.D D⎰⎰f (x, y)d≤⎰⎰ f (x, y) d.D D性质5 设M ,m 分别是f (x, y) 在闭区域D 上的最大值和最小值,是D 的面积,则m≤⎰⎰f (x, y)d≤M.D性质6 (二重积分的中值定理)设函数f (x, y) 在平面闭区域D 上连续,是D 的面积,则存在(,) ∈D ,使得⎰⎰f (x, y)d=Df (,).(二)二重积分的计算方法1.利用对称性和奇偶性进行判断(1)利用积分区域的对称性和被积函数的奇偶性①若积分区域D 关于y 轴对称,且被积函数f (x, y) 关于x 具有奇偶性,则1⎧⎪2⎰⎰ f (x , y )dxdy , f (x , y )关x 于为偶函数 ⎰⎰ f (x , y )dxdy = ⎨ D 1 , D ⎪⎩0, f (x , y )关于x 为奇函数其中 D 1 为 D 在 y 轴右侧的部分.②若积分区域 D 关于 x 轴对称,且被积函数 f (x , y ) 关于 y 具有奇偶性,则⎧⎪2⎰⎰ f (x , y )dxdy , f (x , y )关y 于为偶函数⎰⎰ f (x , y )dxdy = ⎨ D 1, D ⎪⎩0, f (x , y )关于y 为奇函数其中 D 1 为 D 在 x 轴上方的部分.(2) 利用变量的对称性①若积分区域 D 关于 y = x 对称,则⎰⎰ f (x , y )dxdy = ⎰⎰ f ( y , x )dxdy .DD②若积分区域 D 关于 y = -x 对称,则⎰⎰ f (x , y )dxdy = ⎰⎰ f (- y ,-x )dxdy .DD2. 利用直角坐标计算二重积分(1) 适合先 y 后 x 的积分区域( X 型区域)若积分区域 D 由不等式1 (x ) ≤ y ≤ 2 (x ) , a ≤ x ≤ b 确定,则b 2 ( x )⎰⎰ f (x , y )dxdy = ⎰adx ⎰( x )f (x , y )dy .D1(2) 适合先 x 后 y 的积分区域( X 型区域)若积分区域 D 由不等式 1 ( y ) ≤ x ≤2( y ) , c ≤ y ≤ d 确定,则d2 ( y) ⎰⎰ f (x , y )dxdy = ⎰cdy ⎰ ( y ) f (x , y )dx .D1在化二重积分为二次积分时,为了计算简便,需要选择恰当的二次积分的次序,这时, 1既要考虑积分区域 D 的形状,又要考虑被积函数 f (x , y ) 的特性。

计算二重积分的几种简便方法

计算二重积分的几种简便方法

计算二重积分的几种简便方法摘要:本文旨在探讨计算二重积分的几种简便方法,通过对不同方法的比较和分析,旨在提高计算效率和准确性。

文章首先介绍了二重积分的基本概念及其在计算中的重要性,随后详细阐述了极坐标法、换元法、对称性法,并结合具体实例展示了这些方法的应用过程。

关键词:二重积分;极坐标法;换元法;对称性法一、引言二重积分是数学分析中的重要内容,广泛应用于物理、工程、经济等领域。

然而,二重积分的计算往往较为复杂,需要选择合适的方法进行简化。

因此,本文旨在探讨计算二重积分的简便方法,为相关领域的研究者提供实用的计算工具。

二、二重积分的基本概念与重要性1.二重积分的定义二重积分是多元函数积分学中的一个基本概念,它描述了一个二元函数在某一给定二维区域上的面积积分。

具体而言,二重积分可以看作是函数值在二维平面上某区域内所有点的累积和,或者理解为函数曲面在指定区域内与坐标平面所围成的体积。

形式上,二重积分可以表示为对两个变量的连续积分,通常写成∫∫f(x,y)dxdy的形式。

2.二重积分的几何与数值意义从几何角度看,二重积分可以表示某个二维区域内函数曲面的面积或者体积。

当被积函数为1时,二重积分计算的就是该区域的面积;当被积函数表示某种密度或强度时,二重积分则计算的是该区域内的总质量或总强度。

因此,二重积分在几何和物理领域具有广泛的应用。

从数值角度看,二重积分提供了一种计算函数在一定区域内平均值的方法。

此外,通过二重积分还可以研究函数的极值、曲线的长度等性质,进而揭示函数图形的变化规律。

3.二重积分的应用领域与范围二重积分在自然科学、工程技术和社会科学等多个领域具有广泛的应用。

在物理学中,二重积分用于计算质心、转动惯量、引力势能等;在经济学中,可以用于计算总收入、总成本等经济指标;在图像处理、计算机视觉等领域,二重积分也被用于计算图像特征、积分变换等。

此外,二重积分还广泛应用于地理学、气象学、生物医学等领域,用于解决各种实际问题。

二重积分的几种计算方法

二重积分的几种计算方法

二重积分的几种计算方法二重积分是数学分析的重要组成部分,二重积分是定积分的推广,是二元函数在一个平面的一个区域的积分。

计算二重积分的一般原则是将二重积分化为二次积分(即累次积分)加以计算。

求积的困难主要来自两个方面:一是被积函数的复杂性,二是积分区域的多样寻。

不同顺序二次积分计算的难易程度往往是不同的,又是错选积分顺序导致积分无法计算,有的二重积分必须通过换元才能求出。

计算二重积分的一般步骤如下:1) 画出积分区域D 的草图; 2) 求交点;3) 选择直角坐标系下计算,或极坐标系下计算; 4) 选择积分次序;5) 化二重积分为二次积分; 6) 计算。

一.二重积分的直接计算方法所谓连续函数(,)f x y 展步在有限封闭可求积二位域Ω内的二重积分乃是指数max 0max 0(,)lim(,)iji j x ijy f x y dxdy f x yx y ∆→Ω∆→=∆∆∑∑⎰⎰其中11,i i i j j j x x x y y y --∆=-∆=-,而其和为对所有j i ,,使Ω∈),(j i y x 的那些值来求的。

若域Ω有下面的不等式所给出,b x a ≤≤ )()(21x y y x y ≤≤其中)(1x y 和)(2x y 为闭区间[]b a ,上的连续函数,则对应的二重积分可按下面的公式计算⎰⎰⎰⎰Ω=bax y x y j i dy y x f dx dxdy y x f )()(21),(),(例1. 计算⎰⎰Dxydxdy,其中区域D 是由直线x y =与抛物线2x y =所围成的区域。

解: 积分区域D 如图1所示,有定义D 是简单区域,边界x y =与2x y =得交点为)0,0(和)1,1(。

若选择先对y 积分,则过x 轴上)1,0(内的任一点p 作y 轴的平行线,该线的与D 下边界交点在2x y =上,与D 上边界交点在x y =上,所求积分为2211002xxx x Dy xydxdy dx xydy x dx ⎡⎤==⋅⎢⎥⎣⎦⎰⎰⎰⎰⎰241)(211053=-=⎰dx x x 若选择先对x 积分,同理可得⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡==1021021yyyyDy x xydx dy xydxdy241)(211053=-=⎰dx y y图1若求二重积分时,遇到复杂区域,应将复杂区域化成若干个简单区域,然后根据)(,),(),(),(2121D D D y x f y x f dxdy y x f D D D+=+=⎰⎰⎰⎰⎰⎰,来计算。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要内容,用于计算平面上各种形状的曲线或曲面与坐标平面的“面积”。

在实际应用中,二重积分常常与物理、几何、概率统计等学科密切相关。

本文将详细介绍二重积分的计算方法,包括定积分的计算、计算面积和质量等应用问题,以及换元积分、极坐标系、重积分等高阶积分方法。

一、定积分的计算定积分是二重积分的基础,因此首先需要掌握如何计算定积分。

定积分可以通过定义式或者积分的性质计算。

1.定义式计算定积分的定义式如下:∫a^b f(x) dx = lim(n→∞) ∑(k=1,n) f(xi)Δx其中[a,b]是定积分的区间,f(x)是被积函数,x_i是区间[a,b]上的等间距点,Δx是x_i与x_i+1之间的距离。

当被积函数f(x)是连续函数时,可以通过定义式计算定积分。

具体方法是将区间[a, b]等分成n个小区间,取每个小区间的中点作为x_i,计算f(xi)Δx的和,然后取极限即可。

2.积分的性质计算定积分具有一些特殊的性质,可以利用这些性质计算定积分。

(1)和函数性质:∫a^b [f(x) + g(x)] dx = ∫a^b f(x) dx + ∫a^b g(x) dx(2)积分常数性质:∫a^b c f(x) dx = c∫a^b f(x) dx(3)分段函数性质:∫a^b ([f(x)]_a^c + [f(x)]_c^b) dx = ∫a^b f(x) dx(4)奇偶函数性质:当f(x)是奇函数时,∫-a^a f(x) dx = 0当f(x)是偶函数时,∫-a^a f(x) dx = 2∫0^a f(x) dx根据这些性质,可以将复杂的定积分化简为简单的定积分来计算。

二、计算面积二重积分还可以用于计算平面上一些特定形状的曲线与坐标平面的“面积”。

具体可以分为以下两种情况。

1.曲线位于坐标平面的上方:设z=f(x,y)是定义在区域D上的连续函数,且在区域D上始终大于等于0,若D的边界由曲线C所围成,则D的面积可以用二重积分来计算:∬D dσ = ∬D dxdy = ∬D dA = ∫∫D dxdy其中,dσ表示微面积元素,dA表示微面积。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法二重积分是微积分中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。

在实际问题中,我们经常需要对二元函数在某个区域上的积分进行计算,而二重积分就是用来描述这样的问题的数学工具。

本文将介绍二重积分的计算方法,希望能够帮助读者更好地理解和掌握这一知识点。

首先,我们来了解一下二重积分的定义。

对于平面上的有界闭区域D和在D 上有定义的连续函数f(x, y),我们可以将D分成许多小的面积ΔS,然后在每个小面积ΔS上取点(xi, yi),计算函数值f(xi, yi)与ΔS的乘积,然后将所有这些乘积相加,得到的极限值就是二重积分的值,即:∬D f(x, y) dxdy = lim Σ f(xi, yi)ΔS。

其中,ΔS是小面积ΔS的面积,Σ表示对所有小面积求和,极限值即为二重积分的值。

接下来,我们将介绍二重积分的计算方法。

在实际应用中,我们通常会遇到以下几种情况:1. 矩形区域上的二重积分计算。

当积分区域为矩形区域时,我们可以利用定积分的性质,将二重积分转化为两次定积分的形式进行计算。

具体而言,对于矩形区域D=[a, b]×[c, d]上的函数f(x, y),其二重积分可以表示为:∬D f(x, y) dxdy = ∫c^d ∫a^b f(x, y) dxdy。

这样,我们就可以将二重积分的计算转化为两次定积分的计算,从而简化了计算的过程。

2. 极坐标系下的二重积分计算。

在极坐标系下,二重积分的计算通常更加简便。

对于极坐标系下的二元函数f(r, θ),其二重积分可以表示为:∬D f(r, θ) drdθ。

在极坐标系下,积分区域D的描述通常更加简单,而且在计算过程中也更加方便,因此在一些问题中,我们可以通过将坐标系转化为极坐标系来简化计算过程。

3. 用换元法进行二重积分计算。

在一些复杂的情况下,我们可以利用换元法来简化二重积分的计算。

通过适当的变量替换,我们可以将原来的积分区域转化为一个更加简单的积分区域,从而简化计算过程。

0902二重积分的计算法-1

0902二重积分的计算法-1
D
b ϕ2( x) f ( x , y )dy ; = dx a ϕ1 ( x )

∫∫ f ( x , y )dσ ∫
D
d ϕ2 ( y) f ( x , y )dx . = dy c ϕ1 ( y )

[混合型] 混合型] (在积分过程中要正确选择积分次序) 在积分过程中要正确选择积分次序) 积分次序
y
A(x)
a
x
y = ϕ2 ( x)
b
x
D
y = ϕ1( x)
b ϕ ( x) ∴ ∫∫ f ( x , y )dσ =∫a dx ∫ϕ 2( x ) f ( x , y )dy . ……二次积分公式 ? 1 二次积分公式
D
◆如果积分区域为:c ≤ y ≤ d , ϕ1 ( y ) ≤ x ≤ ϕ 2 ( y ). 如果积分区域为:
π
练习1 练习 改变下列积分的积分次 序

1 2 x− x2 2 2− x dx f ( x , y )dy + dx f ( x , y )dy . 0 0 1 0



解 积分区域如图: 积分区域如图:
y = 2− x
原式 = ∫0 dy ∫
1
2− y
2
y = 2x − x2
1− 1− y
f ( x , y )dx.
1
o
1
x
2.设f ( x , y )在D上连续 , 其中 D是由直线 y = x , y = a及x = b (b > a )所围成的闭区域 , 证明 :
(1)∫
b x dx a a
∫ f ( x , y )dy = ∫
b b dy y a

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法(1)1 利用直角坐标系计算1.1 积分区域为X 型或Y 型区域时二重积分的计算对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即{}12(,)()(),D x y x x x ax b ϕϕ=≤≤≤≤,其中12(),()x x ϕϕ在[,]a b 上连续,则有21()()(,)(,)bx ax Df x y d dx f x y dy ϕϕσ=⎰⎰⎰⎰; (1)若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰.[1] (2)例1 计算22Dy dxdy x⎰⎰,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭.确定了积分区域然后可以利用公式(1)进行求解.解 积分区域为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭则2221221x x Dy y dxdy dx dy x x=⎰⎰⎰⎰ yyxyD2D121图321213xxy dx x ⎛⎫= ⎪⎝⎭⎰251133x dx x ⎛⎫=- ⎪⎝⎭⎰221412761264x x ⎛⎫=+= ⎪⎝⎭1.2 积分区域非X 型或Y 型区域二重积分的计算当被积函数的原函数比较容易求出,但积分区域并不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计算,这是可以将复杂的积分区域划分为若干x 型或y 型区域,然后利用公式123(,)(,)(,)(,)DD D D f x y d f x y d f x y d f x y d σσσσ=++⎰⎰⎰⎰⎰⎰⎰⎰ (3)进行计算,例2 计算二重积分Dd σ⎰⎰,其中D 为直线2,2y x x y ==及3x y +=所围成的区域.分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭=≤≤≤≤-均为x 型区域,进而通过公式(3)和(1)可进行计算.解 D 划分为()1,01,22x D x y x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,(){}2,13,23D x y x y y x =≤≤≤≤-则12D D D d d d σσσ=+⎰⎰⎰⎰⎰⎰12230122x x x x dx dy dx dy -=+⎰⎰⎰⎰ 120112322x x dx x dx ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 1222013333442x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦y图1.3 被积函数较为复杂时二重积分的计算二重积分化为二次定积分后的计算可以按定积分的求解进行,但是当被积函数较为复杂,虽然能定出积分限,但被积函数的原函数不易求出或根本求不出,这时可根据被积函数划分积分区域,然后进行计算.例3计算二重积分D,其中D 为区域1x ≤,02y ≤≤.分析 由于被积函数含有绝对值,其原函数不能直接求得,以至于不能直接化为二次积分进行计算,观察函数本身,不难发现当我们把积分区域划分为21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩两部分后,被积函数在每一个积分区域都可以化为基本函数,其原函数很容易求得.解 区域D 如图6可分为12D D ,其中21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩由公式(3)则12DD D =+2212111523x xdx dx π--=+=-⎰⎰⎰⎰2 利用变量变换法计算定理1 设(,)f x y 在有界区域D 上可积,变换():,T x x u v =,(),y y u v =,将,u v 平面按段光滑封闭曲线所围成的区域∆一对一地映成,x y 平面上的区域D ,函数(),x u v ,(),y u v 在∆内分别具有一阶连续偏导数且它们的雅克比行列式()()(),,0,x y J u v u v ∂=≠∂,(),u v ∈∆.则()()()()(,),,,,Df x y d f x u v y u v J u v dudv σ∆=⎰⎰⎰⎰ (4)(4)式叫做二重积分的变量变换公式,2.1 根据被积函数选取新变量使被积函数简化当被积函数较为复杂,这时可以考虑利用变量变换化被积函数为简单函数,原积分区域相应的转化为新的积分区域,进而利用公式进行计算.例4 求x y x yDedxdy -+⎰⎰,其中D 是由0,0,1x y x y ==+=所围曲线(图7)分析 由于被积函数含有e 的指数,且较为复杂,这时可以考虑替换变量,简化被积函数,如果做替换T :,.u x y v x y =+=-在变换T 作用下区域D 的原像∆如图8所示,根据二重积分的变量变换公式,积分计算就简单了.解 做变换()()12:12x u v T y u v ⎧=+⎪⎪⎨⎪=-⎪⎩ ()1,02J u v =>所以12x yux yvDedxdy e dudv -+∆=⎰⎰⎰⎰1012u v v v du e du -=⎰⎰()11012v e e dv -=-⎰ 14e e --=2.2 根据积分区域选择新变量计算二重积分当被积函数比较简单,积分区域却比较复杂时,可考虑积分区域,若有()(),,,u f x y v g x y ==且,m u n v αβ≤≤≤≤,则把xy 平面上的积分区域D 对应到uv 平面上简单的矩形区域∆,然后根据二重积分的变量变换公式(4)进行计算.例5 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围区域D 的面积()D μ.分析 D 的面积()DD dxdy μ=⎰⎰.实际是计算二重积分Ddxdy ⎰⎰,其被积函数很简单,但是积分区域却比较复杂,观察积分区域不难发现22,y y m n x x ==;,y y x x αβ==,如果设2,y yu v x x==,则有,m u n v αβ≤≤≤≤,解 D 的面积()DD dxdy μ=⎰⎰作变换2:u x v T v y u ⎧=⎪⎪⎨⎪=⎪⎩,[][],,m n αβ∆=⨯()()4,,,.uJ u v u v v =∈∆ 所以()()()22334433=6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--===⎰⎰⎰⎰⎰⎰. 例6 求233Dx dxdy y xy+⎰⎰.22:1,3,,3D xy xy y x y x ====所围区域. 分析 积分区域的处理与上题类似,可以做变量替换T :2,y u xy v x==,它把xy 平面上的区域D 对应到uv 平面上的矩形区域∆.解 令2:u xy T y v x =⎧⎪⎨=⎪⎩在变换T 作用下,区域D 的原像(){},13,13u v u v ∆=≤≤≤≤, ()1,03J u v v=≠ 所以233113Dx dxdy dudv y xy v uv v ∆=⋅++⎰⎰⎰⎰()3311du dv v v uv =+⎰⎰2ln 23=.2.3 利用极坐标变换计算二重积分当被积函数含有()22f x y +、x f y ⎛⎫⎪⎝⎭或y f x ⎛⎫⎪⎝⎭形式或积分区域的边界曲线用极坐标方程来表示比较方便,如圆形及圆形区域的一部分,可考虑用极坐标变换cos :sin x r T y r θθ=⎧⎨=⎩,0,02θθπ≤<∞≤≤ 这个变换除原点和正实轴外是一一对应的(严格来说极坐标变换在原点和正实轴上不是一对一的,但可以证明公式(1)仍然成立),其雅可比行列式为r .(1)如果原点0D ∉,且xy 平面上射线θ=常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r r θθ≤≤, αθβ≤≤.则有()()()()21,cos ,sin r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰(5)类似地,若xy 平面上的圆r =常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r θθθ≤≤,12r r r ≤≤那么()()()()2211,cos ,sin r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰(6)(2)如果原点O 为积分区域D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成()0r r θ≤≤,0θπ≤≤则有()()()20,cos ,sin r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰(7)(3)如果原点O 在积分区域D 的边界上,则∆为图()0r r θ≤≤,αθβ≤≤那么()()(),cos ,sin r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰(8)例7计算DI =,其中D 为圆域:221x y +≤分析 观察到积分区域为圆域,被积函数的形式为22()f x y +,且原点为D 的内点,故可采用极坐标变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩,可以达到简化被积函数的目的.解 作变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩, 则有DI =2100d πθ=⎰⎰120d πθ⎡=⎣⎰202d πθπ==⎰.例8 计算二重积分Dydxdy ⎰⎰,其中D 是由直线2,0,2x y y =-==,以及曲线x =所围成的平面区域.积分区域D 与1D 分析 首先根据题意,画出积分区域,由于一起围成规则图形正方形,且1D 为半圆区域,根据极坐标变换简化被积函数.解 积分区域如图15所示,1D D +为正方形区域,1D 为半圆区域,则有11DD D D ydxdy ydxdy ydxdy +=-⎰⎰⎰⎰⎰⎰,而12224D D ydxdy dx dy -+==⎰⎰⎰⎰,1:02sin ,2D r πθθπ≤≤≤≤故原式12sin 02sin D ydxdy d r rdr πθπθ=⋅⎰⎰⎰⎰428sin 3d ππθθ=⎰ 281cos 212cos 23422ππθπθ+⎛⎫=-+= ⎪⨯⎝⎭⎰. 2.4 利用广义极坐标变换计算一些二重积分与极坐标类似,作如下广义极坐标变换:cos ,0:sin ,02x ar r T y br θθθπ=≤≤∞⎧⎨=≤≤⎩并且雅可比行列式(),J u v abr = 同样有()(),cos ,sin Df x y dxdy f ar br abrdrd θθθ∆=⎰⎰⎰⎰ (9)例9计算D I =⎰⎰,其中(),0D x y y x a ⎧⎫⎪⎪=≤≤≤≤⎨⎬⎪⎪⎩⎭分析 根据给出被积函数和积分区域的形式,我们可以确定采用广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,可以达到简化积分区域和被积函数的目的.解 作广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,(),J u v abr =由(9)知DI =⎰⎰12d πθ=⎰⎰1206abc d abc ππθ==⎰⎰3 某些特殊函数的计算3.1 利用积分区域的对称性简化二重积分的计算如果D 可以分为具有某种对称性(例如关于某直线对称,关于某点对称)的两部分1D 和2D ,那么有如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值互为相反数,那么(),0Df x y d σ=⎰⎰如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值恒相等,那么()()()12,2,2,DD D f x y d f x y d f x y d σσσ==⎰⎰⎰⎰⎰⎰[3]例10 计算2Dx ydxdy ⎰⎰,其中D 为双曲线221x y -=及0,1y y ==所围成区域.分析 首先根据题意,在坐标系中划出积分区域,观察到()2,f x y x y =为x 的偶函数,另一方面D 关于y 轴对称,且(),f x y 在1D 在2D 上各点处的值与其在2D 上各对称点处的值恒相等,然后再化为累次积分计算.解 积分区域如图11所示:1D 为D 在第一象限内的部分,D 关于y 轴对称,又()2,f x y x y =为x 的偶函数,由对称性有1222DD x ydxdy x ydxdy =⎰⎰⎰⎰宜选择先对x 后对y 的积分次序 故原式1222DD x ydxdy x ydxdy =⎰⎰⎰⎰12002dy ydx =⎰()3122213y y dy =+⎰()()5212022111515y =+=.3.2 分段函数和带绝对值函数的二重积分计算分段函数:首先画出被被积函数和积分区域的图形,然后根据分段函数表达式将积分区域划分成若干个子区域,是在每个子区域上的被积函数的表达式是唯一的,最后再由性质加以讨论.被积函数带绝对值时,首先去掉绝对值号,同样也将积分区域划分成若干个子区域,使每个子区域上被积函数的取值不变号.例11 求224Dx y dxdy +-⎰⎰,其中D 为229x y +≤围成的区域.分析 被积函数表达式含有绝对值,为了去掉绝对值符号,应将积分区域分成使得22224040x y x y +-≥+-≤及的两部分,在两部分上分别积分后,再相加.O1解 为去绝对值号,将D 分成若干个子区域,即221:4D x y +≤ 222:49D x y ≤+≤在1D 内 222244x y x y +-=-- 在2D 内 222244x y x y +-=+- 故原式224Dx y dxdy +-⎰⎰()()12222244D D x y dxdy x y dxdy =--++-⎰⎰⎰⎰,利用极坐标计算有()()122222448D x y dxdy d r rdr πθπ--=-=⎰⎰⎰⎰ ()()2232220125442D x y dxdy d r rdr πθπ+-=-=⎰⎰⎰⎰ 故原式2541822πππ=+=. 例12 求(),Df x y dxdy ⎰⎰,其中()(),0,0,0,x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他,D 由,,0x y a x y b y +=+==和y b a =+所围成()0b a >>.分析 首先划出积分区域,将区域D 分解为如图所示三个区域,根据被积函数的形式,分别计算出每个积分区域上的积分,再利用二重积分对区域的可加性再相加即得.解 如图12,并由(),f x y 表达式可得123D D D D =.在1D 上有 (),0f x y =,则()1,0D f x y dxdy =⎰⎰.因而()()23x y x y D D I edxdy edxdy -+-+=+⎰⎰⎰⎰()()0a b xab xx y x y a xadx edy dx e dy ---+-+-=+⎰⎰⎰⎰1a b a b ae be e e ----=-+-。

高数讲义第二节二重积分的计算(一)

高数讲义第二节二重积分的计算(一)
解:先画出积分区域 D , 并确定 D 的类型
方法一:将 D 看做 Y 型区域
y x2
y x y2
(4 , 2)
2
y
x y2
0 1
x
(1 , 1)
1 y 2 , y2 x y2
x y d x d y
2 1
d
y
y2 y2
xy d x
D
x y d x d y
2 1
d
y
y2 y2
xy d x
D
1 2
x
2
1 0
y
(
d xd
x2
y
x4
)
1 2
dx
1 x2
0
1 2
(1 ( x3
3
x2)dx x5) 1
5
0
1 15
例 2 求 ( x2 y)dxdy,其中D是由抛物线
D
y x2和 x y2所围平面闭区域.
解:画积分区域 两曲线的交点
x y2
y x2
x
(0,0) y2
, (1,1),
· y M 2 y 2( x )
y
· M 2 y 2( x )
D
D
· M 1 y 1( x )
0a x b x
· M 1 y 1( x )
0 a x bx
类型 I (X 型):D 由直线 x = a , x = b 与曲线
y 1( x ) 和 y 2( x ) 所围成,即
D { ( x, y ) | a x b, 1( x) y 2( x) }
dx
y
A(x)
0
a
z f ( x, y)
y 1( x )

二重积分计算技巧总结

二重积分计算技巧总结
D
4 2 首先 O 在区域内,所以 r 0 ,然后过 O 作射线,射线与 y 1 相交,就将参数方程代入被
O 与区域内点的连线的张角范围为 : 交的曲线得到 r sin 1 r
1 1 ,于是 D : ;0 r sin 4 2 sin
y2 y u u ,v 则 x 2 , y . v v x x
1 v2 J 1 v

2u u v3 4 u v 2 v
于是原区域 D 变换成新区域 D m, n , ,这样原来不规则的区域变成了矩形区域, 方便积分。 面积 S
1dxdy 1 J dudv
1 1 1 (u v) , y (v u ) ,则 J= 2 2 2 D 的边界一一对应得到新区域 D : 1 x 0 u v 0 u v 2 1 y 0 v u 0 u v 2 x
x y 1
1 1 u v v u 1 v 1 2 2
D D


dv n (n 2 m 2 )( 3 3 ) u d u v 4 m 6 3 3
(2)极坐标下的二重积分 极坐标代换法基本格式为:
x r cos y r sin
被积函数 f x, y 化为 f r cos , r sin r , 接下来重要的是讨论 r , 的范围。 其中 r , 的 范围由于积分次序的不同而不同。 若积分次序为先 r 后 ,则对应方法为“张角 射线” ,其中确定张角的方法为,原点与区 域内点的连线的最小、最大夹角;作射线确定 r 的范围:过原点 O 作射线,把先后与所作 射线相交的边界线化成 r r 的形式,就确定出 r 的范围。 比如:求 f x, y dxdy ,其中 D 的范围如图:

二重积分的基本计算方法

二重积分的基本计算方法

二重积分的基本计算方法二重积分是微积分中的重要概念之一,用于计算平面上某个区域内的面积、质量、质心等物理量。

在本文中,我们将介绍二重积分的基本计算方法。

我们来看二重积分的定义。

对于二元函数f(x,y),在平面上的一个闭区域D上,可以定义二重积分为:∬D f(x,y) dA其中,dA表示平面上的面积元素,可以表示为dx dy或者dy dx。

二重积分的计算方法主要有两种:先对x进行积分,再对y进行积分;或者先对y进行积分,再对x进行积分。

第一种方法是先对x进行积分,再对y进行积分。

具体步骤如下:1. 将区域D在x轴上的投影为[a, b],在y轴上的投影为[c, d],则二重积分可以表示为:∬D f(x,y) dA = ∫[a,b]∫[c,d] f(x,y) dy dx2. 针对y进行积分时,将x看作常数,即将f(x,y)中的x替换为常数,然后对y进行积分。

积分的上限为d,下限为c。

3. 最后对x进行积分,将y看作常数,即将上一步得到的结果作为一个关于x的函数,然后对x进行积分。

积分的上限为b,下限为a。

第二种方法是先对y进行积分,再对x进行积分。

具体步骤如下:1. 将区域D在y轴上的投影为[c, d],在x轴上的投影为[a, b],则二重积分可以表示为:∬D f(x,y) dA = ∫[c,d]∫[a,b] f(x,y) dx dy2. 针对x进行积分时,将y看作常数,即将f(x,y)中的y替换为常数,然后对x进行积分。

积分的上限为b,下限为a。

3. 最后对y进行积分,将x看作常数,即将上一步得到的结果作为一个关于y的函数,然后对y进行积分。

积分的上限为d,下限为c。

无论采用哪种方法,最终的结果都是相同的。

在实际计算中,可以根据具体情况选择合适的积分顺序,以简化计算过程。

除了基本的计算方法之外,还可以利用二重积分来计算一些特殊区域的面积、质量、质心等物理量。

例如,对于平面上的一个闭区域D,可以使用二重积分来计算该区域的面积。

10.2二重积分的计算(1)

10.2二重积分的计算(1)

xydx]dy
2
1
[
y
x2 ] y dy 21
2
1
[
y3 2
y ]dy 2
y4 [
8
y2 4
]
12
1
1 8
.
例 2 计算 y 1 x2 y2d , 其中 D 是由直线 D
y x、x 1和 y 1 所围成的闭区域.
解 如图, D 既是 X 型, 又是Y 型.若视为X
型, 则
11
原积分 [ y 1 x2 y2dy]dx 1 x
第二节 二重积分的计算法(1)
一、利用直角坐标系计算二重积分 二、交换二次积分次序 三、对称性、奇偶性的应用
一、利用直角坐标系(right angle coordinate system)计算二重积分
如果积分区域为:a x b, 1( x) y 2( x).
[X-型]
y 2(x)
D
y 1( x)
y2 x 及直线 y x 2所围成的闭区域.
解 如图,
D 既是 X 型, 也是Y 型. 但易见选择前者计算
较麻烦, 需将积分区域划分为两部分来计算, 故选
择后者.
2 y2
xyd
[ 1 y2
xydx]dy
D
2 [ x2 1 2
y]
y y2
2
dy
1 2
2
[ y( y 2)2 y5 ]dy
)(e
y
1 0
)
(e
1)2 .
例 6 求两个底圆半径都等于 R 的直交圆柱面所围
成的立体的体积.
解 设两个圆柱面的方程分别为 x2 y2 R2 及
d
dy
2 ( y) f ( x, y)dx.

二重积分的计算

二重积分的计算

y = 1 − x. 所以
∫∫ ∫ ∫ f (x, y)dσ =
1
1− x
dx f (x, y)dy.
0
0
D
y
同理
∫∫ ∫ ∫ f (x, y)dσ =
1
dy
1− y
f (x, y)dx.
0
0
D
x+ y =1
O
x
3.∫∫ f (x, y)dxdy. 其中 D = {(x, y) 0 ≤ y ≤ x, 0 ≤ x ≤ 1}. D
例7.5 交换下列积分次序
1
x2
1.∫0 dx∫0 f (x, y)dy.
解 积分区域如图所示, 所以
1
x2
∫0 dx∫0 f (x, y)dy
1
1
= ∫0 dy∫ y f (x, y)dx.
y
y = x2, x = y
1
D O 1x
∫∫ 例7.6 计算积分 xydσ, 其中D由 y = 1, y = x, x = 2 D
一、利用直角坐标系计算二重积分
利用直角坐标计算二重积分的关键是将二重积 分化为二次积分. 如果积分区域为: a ≤ x ≤ b, ϕ1( x) ≤ y ≤ ϕ2( x).
[X-型]
y = ϕ2(x)
D
y = ϕ1(x)
y = ϕ2(x)
D
y = ϕ1( x)
a
b
a
b
其中函数ϕ1( x) 、ϕ2( x) 在区间 [a,b]上连续.
1.将区域投影至 x轴, 得区间[a,b];
2.由 x = a, x = b得区域的上、下边界曲线 y = ϕ2 ( x),
y = ϕ1 ( x), 则

二重积分的计算法

二重积分的计算法

二重积分的计算法二重积分是微积分中的重要概念之一,用于计算平面上的曲线或曲面的面积、质量、质心等物理量。

本文将以二重积分的计算法为主题,介绍二重积分的概念、计算方法以及一些应用。

一、二重积分的概念在平面上,设有一个有界闭区域D,可以将其分割为许多小的面积元素。

二重积分的概念就是将这些小的面积元素累加起来,从而求得整个区域D的面积。

一般来说,二重积分可以表示为:∬D f(x,y) dA其中,f(x,y)是定义在D上的一个函数,dA表示面积元素的微元。

二、二重积分的计算方法1. 通过直接定积分计算:如果D可以用简单的几何图形表示(如矩形、三角形等),那么可以通过直接计算定积分的方法求得二重积分的值。

具体计算方法如下:将D分割为若干个小矩形或小三角形,然后计算每个小面积元素的面积,最后将这些小面积元素的面积相加即可得到二重积分的值。

2. 通过极坐标变换计算:当被积函数f(x,y)具有一定的对称性时,可以通过极坐标变换将二重积分转化为极坐标下的积分。

具体的计算方法如下:设有二重积分∬D f(x,y) dA,通过极坐标变换可以将其转化为∬D' g(r,θ) r dr dθ的形式,其中g(r,θ)是原函数f(x,y)在极坐标下的表示形式。

3. 通过变量代换计算:当被积函数f(x,y)在直角坐标系下比较复杂,难以直接计算时,可以通过变量代换的方法将其转化为简单的形式,从而计算二重积分的值。

具体的计算方法如下:设有二重积分∬D f(x,y) dA,通过变量代换可以将其转化为∬D' f(u,v) |J| du dv的形式,其中(u,v)是变量代换后的坐标,|J|是变换的雅可比行列式。

三、二重积分的应用1. 计算平面图形的面积:二重积分可以用来计算平面上的曲线或曲面的面积。

通过将曲线或曲面分割为小的面积元素,并将其面积相加,可以得到整个曲线或曲面的面积。

2. 计算质量和质心:对于有一定密度分布的平面图形,可以用二重积分来计算其质量和质心。

第二节二重积分的计算法(1)

第二节二重积分的计算法(1)

o
A
(2)的特例
d
0
2
( )
0
f ( cos , sin ) d .
3. 极坐标系下区域的面积
dd .
D
8
机动 目录 上页 下页 返回 结束
[观察练习] 下列各图中区域 D 分别与 x , y 轴相切 于原点,试问 的变化范围是什么? (1)
i i
i
D
( ri ) 2 i 是比ri i更 高阶的无穷小量,若 1 略去 ( ri ) 2 i , 则得 2
o
i
A
i ri ri i ,
2
机动 目录 上页 下页 返回 结束
从而得极坐标系下的面积元素为
d rdrd
d


2 ( )
1 ( )
f ( cos , sin ) d .
6
机动 目录 上页 下页 返回 结束
(2)极点O恰在区域D的边界曲线之上时
( )
区域特征如图
,
0 ( ).

o
D
(1)的特例
A

f ( cos , sin ) dd D
6
2 sin r
4 sin
r d r 15 ( 3 ) 2
13
机动 目录 上页 下页 返回 结束
sin( x 2 y 2 ) dxdy, 【例 4】计算二重积分 2 2 x y D 2 2 其中积分区域为 D {( x , y ) | 1 x y 4}.
o
a x

a
arccos

a

第二节: 二重积分的计算(一)

第二节: 二重积分的计算(一)

D { ( x, y ) | c y d , 1( y) x 2( y) }
y
y
d
·M 1
x 1( y ) D
c
·M 2
x 2( y )
d
x 1( y )
x 2( y )
D
c
· M 1
·M 2
0
x
0
x
特点:用平行于 x 轴的直线自左往右穿过 D 时,与 D 的边界最多只有两个交点。
D : 0 x 1, x2 y x,
y x2
( x2 y)dxdy
1 dx
0
x
x
2
(
x
2
y)dy
D
1
[
x
2
(
x x2 ) 1 ( x x4 )]dx 33 .
0
2
140
例3:计算二重积分 x y d x d y
D
其中 D 是由抛物线 y 2 x 及直线
所围成的闭区域。
b a
d
x
2(x) 1(x)
f (x,
y) d y
累次积分法又俗称 “穿线法”
0
ax
bx
X 型区域
y
• 若 D 是一边平行于坐标轴的
d
矩形区域,如图所示,则
D
c
f (x, y) d x d y
0a
bx
D
b a
d
x
d c
f (x,
y) d y
d c
d
y
b
a
f (x,
y) d x
• 当 D 既是 X 型,又是 Y 型区域时
D
(0,1)为顶点的三角形.

二重积分计算方法

二重积分计算方法

二重积分计算方法二重积分是微积分中的一种重要概念,用于计算平面上的曲面面积、一些物理量的总量等问题。

在本文中,我将向您介绍二重积分的计算方法。

首先,我们需要了解二重积分的定义。

对于一个定义在闭区域D上的函数f(x,y),其在D上的二重积分可以表示为:∬Df(x,y)dA其中,dA表示微小面积元素,可以看作是一个非常小的正方形区域。

为了计算二重积分,我们需要确定积分区域D以及函数f(x,y)的表达式。

接下来,将介绍几种常用的计算方法。

1.直角坐标系下的二重积分在直角坐标系下,二重积分的计算可以分为两种情况:先积x再积y,或者先积y再积x。

在具体计算时,我们可以采用以下步骤:a)确定积分区域D,并在坐标平面上对其进行准确定位。

b)根据题目给出的条件,写出函数f(x,y)的表达式。

c)根据积分顺序,分别计算内、外积分的上下限,并对函数f(x,y)进行必要的变换(如换元、利用对称性等)。

d)将上下限代入函数f(x,y)的表达式,计算出积分的被积函数。

e)对内、外积分依次进行计算,并最终得出结果。

2.极坐标系下的二重积分在一些问题中,使用直角坐标系来计算二重积分可能比较复杂,此时可以尝试使用极坐标系来简化计算。

计算极坐标系下的二重积分的步骤如下:a)确定积分区域D,并在坐标平面上对其进行准确定位。

b)根据题目给出的条件,写出函数f(r,θ)的表达式,其中r为极径,θ为极角。

c)根据积分顺序,确定被积函数中r和θ的上下限,并对函数f(r,θ)进行必要的变换。

d)将上下限代入函数f(r,θ)的表达式,计算出积分的被积函数。

e)对内、外积分依次进行计算,并最终得出结果。

3.利用对称性简化计算在一些情况下,函数f(x,y)具有一定的对称性,可以通过利用对称性来简化二重积分的计算过程。

常见的对称性包括奇偶性、轮换对称性、中心对称性等。

例如,如果函数f(x,y)是关于y轴对称的,则可以将计算范围限制在x≥0的情况下,并将最终结果乘以24.利用变换简化计算在一些问题中,我们可以通过变换的方法将二重积分转化为其中一种标准形式,然后使用标准形式的计算公式来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 利用直角坐标系计算1.1 积分区域为X 型或Y 型区域时二重积分的计算对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即{}12(,)()(),D x y x x xa xb ϕϕ=≤≤≤≤,其中12(),()x x ϕϕ在[,]a b 上连续,则有21()()(,)(,)bx ax Df x y d dx f x y dy ϕϕσ=⎰⎰⎰⎰; (1)若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰.[1](2)例1 计算22Dy dxdy x⎰⎰,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭.确定了积分区域然后可以利用公式(1)进行求解.解 积分区域为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭则2221221x x Dyy dxdy dx dy x x =⎰⎰⎰⎰ y y=xxy=1 D2D1xO 211 2图3图1321213xxy dx x ⎛⎫= ⎪⎝⎭⎰ 251133x dx x ⎛⎫=- ⎪⎝⎭⎰221412761264x x ⎛⎫=+= ⎪⎝⎭1.2 积分区域非X 型或Y 型区域二重积分的计算当被积函数的原函数比较容易求出,但积分区域并不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计算,这是可以将复杂的积分区域划分为若干x 型或y 型区域,然后利用公式123(,)(,)(,)(,)DD D D f x y d f x y d f x y d f x y d σσσσ=++⎰⎰⎰⎰⎰⎰⎰⎰ (3)进行计算,例2 计算二重积分Dd σ⎰⎰,其中D 为直线2,2y x x y ==及3x y +=所围成的区域.分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭=≤≤≤≤-均为x 型区域,进而通过公式(3)和(1)可进行计算.解 D 划分为()1,01,22x D x y x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,(){}2,13,23D x y x y y x =≤≤≤≤-则12DD D d d d σσσ=+⎰⎰⎰⎰⎰⎰12230122xxxxdx dy dx dy -=+⎰⎰⎰⎰ 120112322x x dx x dx ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭⎰⎰1222013333442x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦1.3 被积函数较为复杂时二重积分的计算3D oxy1D2D 图 4y xOx=2yy=2xx+y=3图5二重积分化为二次定积分后的计算可以按定积分的求解进行,但是当被积函数较为复杂,虽然能定出积分限,但被积函数的原函数不易求出或根本求不出,这时可根据被积函数划分积分区域,然后进行计算.例3 计算二重积分2Dy x dxdy -⎰⎰,其中D 为区域1x ≤,02y ≤≤.分析 由于被积函数含有绝对值,其原函数不能直接求得,以至于不能直接化为二次积分进行计算,观察函数本身,不难发现当我们把积分区域划分为21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩两部分后,被积函数在每一个积分区域都可以化为基本函数,其原函数很容易求得.解 区域D 如图6可分为12D D ,其中21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩ 由公式(3)则12222DD D y x dxdy y x dxdy x ydxdy -=-+-⎰⎰⎰⎰⎰⎰221212211523x xdx y x dy dx x ydy π--=-+-=-⎰⎰⎰⎰2 利用变量变换法计算定理1 设(,)f x y 在有界区域D 上可积,变换():,T x x u v =,(),y y u v =,将,u v 平面按段光滑封闭曲线所围成的区域∆一对一地映成,x y 平面上的区域D ,函数(),x u v ,(),y u v 在∆内分别具有一阶连续偏导数且它们的雅克比行列式()()(),,0,x y J u v u v ∂=≠∂,(),u v ∈∆.则 ()()()()(,),,,,Df x y d f x u v y u v J u v dudv σ∆=⎰⎰⎰⎰ (4)(4)式叫做二重积分的变量变换公式,2.1 根据被积函数选取新变量使被积函数简化当被积函数较为复杂,这时可以考虑利用变量变换化被积函数为简单函数,原积分区域相应的转OyxD1D2图6化为新的积分区域,进而利用公式进行计算.例4 求x y x yDedxdy -+⎰⎰,其中D 是由0,0,1x y x y ==+=所围曲线(图7)分析 由于被积函数含有e 的指数,且较为复杂,这时可以考虑替换变量,简化被积函数,如果做替换T :,.u x y v x y =+=-在变换T 作用下区域D 的原像∆如图8所示,根据二重积分的变量变换公式,积分计算就简单了.解 做变换()()12:12x u v T y u v ⎧=+⎪⎪⎨⎪=-⎪⎩ ()1,02J u v =>所以12x yux yvDedxdy e dudv -+∆=⎰⎰⎰⎰1012u v v v du e du -=⎰⎰()11012v e e dv -=-⎰ 14e e --=2.2 根据积分区域选择新变量计算二重积分当被积函数比较简单,积分区域却比较复杂时,可考虑积分区域,若有()(),,,u f x y v g x y ==且,m u n v αβ≤≤≤≤,则把xy 平面上的积分区域D 对应到uv 平面上简单的矩形区域∆,然后根据二重积分的变量变换公式(4)进行计算.DyxO图7图8vuO例5 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围区域D 的面积()D μ.分析 D 的面积()DD dxdy μ=⎰⎰.实际是计算二重积分Ddxdy ⎰⎰,其被积函数很简单,但是积分区域却比较复杂,观察积分区域不难发现22,y y m n x x ==;,y y x xαβ==,如果设2,y yu v x x ==,则有,m u n v αβ≤≤≤≤,解 D 的面积()DD dxdy μ=⎰⎰作变换2:u x v T v y u ⎧=⎪⎪⎨⎪=⎪⎩,[][],,m n αβ∆=⨯ ()()4,,,.uJ u v u v v =∈∆ 所以()()()22334433=6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--===⎰⎰⎰⎰⎰⎰. 例6 求233Dxdxdy y xy+⎰⎰.22:1,3,,3D xy xy y x y x ====所围区域. 分析 积分区域的处理与上题类似,可以做变量替换T :2,y u xy v x==,它把xy 平面上的区域D 对应到uv 平面上的矩形区域∆.解 令2:u xy T y v x =⎧⎪⎨=⎪⎩在变换T 作用下,区域D 的原像(){},13,13u v u v ∆=≤≤≤≤, ()1,03J u v v=≠ 所以233113Dx dxdy dudv y xy v uv v ∆=⋅++⎰⎰⎰⎰()3311dudv v v uv =+⎰⎰2ln 23=.2.3 利用极坐标变换计算二重积分当被积函数含有()22f x y +、x f y ⎛⎫⎪⎝⎭或y f x ⎛⎫⎪⎝⎭形式或积分区域的边界曲线用极坐标方程来表示比较方便,如圆形及圆形区域的一部分,可考虑用极坐标变换cos :sin x r T y r θθ=⎧⎨=⎩,0,02θθπ≤<∞≤≤ 这个变换除原点和正实轴外是一一对应的(严格来说极坐标变换在原点和正实轴上不是一对一的,但可以证明公式(1)仍然成立),其雅可比行列式为r .(1)如果原点0D ∉,且xy 平面上射线θ=常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r r θθ≤≤, αθβ≤≤.则有()()()()21,cos ,sin r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰(5)类似地,若xy 平面上的圆r =常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r θθθ≤≤,12r r r ≤≤那么()()()()2211,cos ,sin r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰(6)(2)如果原点O 为积分区域D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成()0r r θ≤≤,0θπ≤≤则有()()()20,cos ,sin r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰(7)(3)如果原点O 在积分区域D 的边界上,则∆为()0r r θ≤≤,αθβ≤≤那么yxD1D 图 8()()(),cos ,sin r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰(8)例7 计算221Dd I x y σ=--⎰⎰,其中D 为圆域:221x y +≤分析 观察到积分区域为圆域,被积函数的形式为22()f x y +,且原点为D 的内点,故可采用极坐标变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩,可以达到简化被积函数的目的.解 作变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩, 则有221Dd I x yσ=--⎰⎰21211d rdr rπθ=-⎰⎰12201r d πθ⎡⎤=--⎣⎦⎰202d πθπ==⎰.直线例8 计算二重积分Dydxdy ⎰⎰,其中D 是由2,0,2x y y =-==,以及曲线22x y y =--所围成的平面区域. 积分区域D 与1D 分析 首先根据题意,画出积分区域,由于一起围成规则图形正方形,且1D 为半圆区域,根据极坐标变换简化被积函数.解 积分区域如图15所示,1D D +为正方形区域,1D 为半圆区域,则有11DD D D ydxdy ydxdy ydxdy +=-⎰⎰⎰⎰⎰⎰,而12224D D ydxdy dx dy -+==⎰⎰⎰⎰,又1:02sin ,2D r πθθπ≤≤≤≤故原式12sin 02sin D ydxdy d r rdr πθπθ=⋅⎰⎰⎰⎰428sin 3d ππθθ=⎰ 281cos 212cos 23422ππθπθ+⎛⎫=-+=⎪⨯⎝⎭⎰. 2.4 利用广义极坐标变换计算一些二重积分与极坐标类似,作如下广义极坐标变换:cos ,0:sin ,02x ar r T y br θθθπ=≤≤∞⎧⎨=≤≤⎩ 并且雅可比行列式(),J u v abr = 同样有()(),cos ,sin Df x y dxdy f ar br abrdrd θθθ∆=⎰⎰⎰⎰ (9)例9 计算22221D x y I c dxdy a b =--⎰⎰,其中()22,01,0x D x y y b x a a ⎧⎫⎪⎪=≤≤-≤≤⎨⎬⎪⎪⎩⎭分析 根据给出被积函数和积分区域的形式,我们可以确定采用广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,可以达到简化积分区域和被积函数的目的.解 作广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,(),J u v abr =由(9)知22221Dx y I c dxdy a b =--⎰⎰122001d c r abrdr πθ=-⎰⎰12216abc d r r dr abc ππθ=-=⎰⎰3 某些特殊函数的计算3.1 利用积分区域的对称性简化二重积分的计算如果D 可以分为具有某种对称性(例如关于某直线对称,关于某点对称)的两部分1D 和2D ,那么有如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值互为相反数,那么(),0Df x y d σ=⎰⎰如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值恒相等,那么()()()12,2,2,DD D f x y d f x y d f x y d σσσ==⎰⎰⎰⎰⎰⎰[3]例10 计算2Dx ydxdy ⎰⎰,其中D 为双曲线221x y -=及0,1y y ==所围成区域.分析 首先根据题意,在坐标系中划出积分区域,观察到()2,f x y x y =为x 的偶函数,另一方面D 关于y 轴对称,且(),f x y 在1D 在2D 上各点处的值与其在2D 上各对称点处的值恒相等,然后再化为累次积分计算.解 积分区域如图11所示:1D 为D 在第一象限内的部分,D 关于y 轴对称,又()2,f x y x y =为x 的偶函数,由对称性有1222DD x ydxdy x ydxdy =⎰⎰⎰⎰ 宜选择先对x 后对y 的积分次序 故原式1222DD x ydxdy x ydxdy =⎰⎰⎰⎰211202y dy x ydx +=⎰⎰()31220213y y dy =+⎰()()521202214211515y =+=-.3.2 分段函数和带绝对值函数的二重积分计算分段函数:首先画出被被积函数和积分区域的图形,然后根据分段函数表达式将积分区域划分成若干个子区域,是在每个子区域上的被积函数的表达式是唯一的,最后再由性质加以讨论.被积函数带绝对值时,首先去掉绝对值号,同样也将积分区域划分成若干个子区域,使每个子区域上被积函数的取值不变号.例11 求224Dx y dxdy +-⎰⎰,其中D 为229x y +≤围成的区域.分析 被积函数表达式含有绝对值,为了去掉绝对值符号,应将积分区域分成使得22224040x y x y +-≥+-≤及的两部分,在两部分上分别积分后,再相加.解 为去绝对值号,将D 分成若干个子区域,即xyO D1D211221:4D x y +≤ 222:49D x y ≤+≤在1D 内 222244x y x y +-=-- 在2D 内 222244x y x y +-=+- 故原式224Dxy dxdy +-⎰⎰()()12222244D D x y dxdy x y dxdy =--++-⎰⎰⎰⎰,利用极坐标计算有()()1222220448D xy dxdy d r rdr πθπ--=-=⎰⎰⎰⎰()()2232220125442D xy dxdy d r rdr πθπ+-=-=⎰⎰⎰⎰ 故原式2541822πππ=+=. 例12 求(),Df x y dxdy ⎰⎰,其中()(),0,0,0,x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他,D 由,,0x y a x y b y +=+==和y b a =+所围成()0b a >>.分析 首先划出积分区域,将区域D 分解为如图所示三个区域,根据被积函数的形式,分别计算出每个积分区域上的积分,再利用二重积分对区域的可加性再相加即得.解 如图12,并由(),f x y 表达式可得123D D D D =.在1D 上有 (),0f x y =,则()1,0D f x y dxdy =⎰⎰.因而()()23x y x y D D I edxdy edxdy -+-+=+⎰⎰⎰⎰()()0a b xab xx y x y a xadx edy dx e dy ---+-+-=+⎰⎰⎰⎰D1 D2xyaa+b D3 12a11 / 11 a b a b ae be e e ----=-+-。

相关文档
最新文档