高考数学函数经典题型(2020年10月整理).pdf

合集下载

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是.22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?参考答案与试题解析⼀.选择题(共15⼩题)1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)【解答】解:由x2﹣4x﹣5>0,得x<﹣1或x>5.令t=x2﹣4x﹣5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则需内层函数t=x2﹣4x﹣5在(a,+∞)上单调递增且恒⼤于0,则(a,+∞)⊆(5,+∞),即a≥5.∴a的取值范围是[5,+∞).故选:D.2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0是,y=f(x)>0,故排除B,故选:A.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3﹣,则f(﹣x)=﹣x3+=﹣f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=在(0,+∞)为减函数,y2=﹣在(0,+∞)为增函数,所以当x>0时,f(x)=x3﹣单调递增,故选:A.4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0【解答】解:⽅法⼀:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y﹣x>0,由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0.⽅法⼆:取x=﹣1,y=0,满⾜2x﹣2y<3﹣x﹣3﹣y,此时ln(y﹣x+1)=ln2>0,ln|x﹣y|=ln1=0,可排除BCD.故选:A.5.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.【解答】解:y=f(x)=x cos x+sin x,则f(﹣x)=﹣x cos x﹣sin x=﹣f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除C,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,故选:A.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]【解答】解:∵定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,f(x)的⼤致图象如图:∴f(x)在(0,+∞)上单调递减,且f(﹣2)=0;故f(﹣1)<0;当x=0时,不等式xf(x﹣1)≥0成⽴,当x=1时,不等式xf(x﹣1)≥0成⽴,当x﹣1=2或x﹣1=﹣2时,即x=3或x=﹣1时,不等式xf(x﹣1)≥0成⽴,当x>0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≥0,此时,此时1<x≤3,当x<0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≤0,即,得﹣1≤x<0,综上﹣1≤x≤0或1≤x≤3,即实数x的取值范围是[﹣1,0]∪[1,3],故选:D.7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减【解答】解:由,得x.⼜f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),∴f(x)为奇函数;由f(x)=ln|2x+1|﹣ln|2x﹣1|=,∵==.可得内层函数t=||的图象如图,在(﹣∞,)上单调递减,在(,)上单调递增,则(,+∞)上单调递减.⼜对数式y=lnt是定义域内的增函数,由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.故选:D.8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:a=30.7,b=()﹣0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.【解答】解:因为a log34=2,则log34a=2,则4a=32=9则4﹣a==,故选:B.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a=log 32=<=,b=log53=>=,c=,∴a<c<b.故选:A.11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵==log53•log58<=<1,∴a<b;∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8;∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b,综上,c>b>a.故选:A.12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;且f(a)<f(2b) a<2b;故选:B.13.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)【解答】解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意,当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1)在[0,)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)还有两个交点,即可,即x3=kx2﹣2x在(,+∞)还有两个根,即k=x+在(,+∞)还有两个根,函数y=x+≥2,(当且仅当x=时,取等号),所以,且k>2,所以k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故选:D.14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:把R0=3.28,T=6代⼊R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,两边取对数得0.38t=ln2,解得t=≈1.8.故选:B.15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69【解答】解:由已知可得=0.95K,解得e﹣0.23(t﹣53)=,两边取对数有﹣0.23(t﹣53)=﹣ln19,解得t≈66,故选:C.⼆.填空题(共6⼩题)16.(2020•北京)函数f(x)=+lnx的定义域是{x|x>0}.【解答】解:要使函数有意义,则,所以,所以x>0,所以函数的定义域为{x|x>0},故答案为:{x|x>0}.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是①②③.【解答】解:设甲企业的污⽔排放量W与时间t的关系为W=f(t),⼄企业的污⽔排放量W与时间t的关系为W=g(t).对于①,在[t1,t2]这段时间内,甲企业的污⽔治理能⼒为,⼄企业的污⽔治理能⼒为﹣.由图可知,f(t1)﹣f(t2)>g(t1)﹣g(t2),∴>﹣,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率⼩于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是﹣4.【解答】解:y=f(x)是奇函数,可得f(﹣x)=﹣f(x),当x≥0时,f(x)=x,可得f(8)=8=4,则f(﹣8)=﹣f(8)=﹣4,故答案为:﹣4.19.(2020•上海)若函数y=a•3x+为偶函数,则a=1.【解答】解:根据题意,函数y=a•3x+为偶函数,则f(﹣x)=f(x),即a•3(﹣x)+=a•3x+,变形可得:a(3x﹣3﹣x)=(3x﹣3﹣x),必有a=1;故答案为:1.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为[,+∞).【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【解答】解:根据条件(1)可得f(0)=0或f(1)=1,⼜因为关于x的⽅程f(x)=a⽆实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).三.解答题(共3⼩题)22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.【解答】解:(1)∵f(x)=﹣x为减函数,∴f(x)<f(x﹣1),∴f(x)=﹣x具有A性质;∵g(x)=2x为增函数,∴g(x)>g(x﹣1),∴g(x)=2x不具有A性质;(2)依题意,对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,∴为增函数(不可能为常值函数),由双勾函数的图象及性质可得a≥1,当a≥1时,函数单调递增,满⾜对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,综上,实数a的取值范围为[1,+∞).(3)∵D为整数集,具有A性质的函数均为常值函数,∴当t=﹣2,f(x)=f(x﹣2)恒成⽴,即f(2k)=p(k∈Z),f(2n﹣1)=q(n∈Z),由题意,p=q,则f(2k)=f(2n﹣1),当x=2k,f(x)=f(x+2n﹣2k﹣1),∴m=2n﹣2k﹣1(n,k∈Z),当x=2n﹣1,f(x)=f(x+2k﹣2n+1),∴m=2k﹣2n+1(n,k∈Z),综上,m为奇数.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.【解答】解:(1)∵v=,∴v越⼤,x越⼩,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最⼤为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代⼊v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,①当0<x<40时,令y=,则y'=,若0<x<<1,则y'>0,y单调递增,由于y>0,所以q=100x﹣135•<100;若<x<40,则y'<0,y单调递减,此时有q单调递增,所以q<100×40﹣135×≈4000>100.②当40≤x≤80时,q是关于x的⼆次函数,开⼝向下,对称轴为x=,此时q有最⼤值,为>4000.综上所述,⻋辆密度q的最⼤值为.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?【解答】解:(1)投放点ω1(120,0),ω2(60,0),f60(10)表示与B(10,0)距离最近的投放点(即ω2)的距离,所以f60(10)=|60﹣10|=50,同理分析,f60(80)=|60﹣80|=20,f60(95)=|120﹣95|=25,由题意得,f60(x)={|60﹣x|,|120﹣x|}min,则当|60﹣x|≤|120﹣x|,即x≤90时,f60(x)=|60﹣x|;当|60﹣x|>|120﹣x|,即x>90时,f60(x)=|120﹣x|;综上f60(x)=;(2)由题意得f t(x)={|t﹣x|,|120﹣x|}min,所以f t(x)=,则f t(x)与坐标轴围成的⾯积如阴影部分所示,所以S=t2+=t2﹣60t+3600,由题意,S<S(60),即t2﹣60t+3600<2700,解得20<t<60,即垃圾投放点ω2建在(20,0)与(60,0)之间时,⽐建在中点时更加便利.考点卡⽚1.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的⾃变量的取值范围.求解函数定义域的常规⽅法:①分⺟不等于零;②根式(开偶次⽅)被开⽅式≥0;③对数的真数⼤于零,以及对数底数⼤于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题⽅法点拨】求函数定义域,⼀般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的⾃变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如⻓度、⾯积必须⼤于零、⼈数必须为⾃然数等).(3)若⼀函数解析式是由⼏个函数经四则运算得到的,则函数定义域应是同时使这⼏个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同⼀对应法则f下的量“x”“x+a”“x﹣a”所要满⾜的范围是⼀样的;②函数g (x)中的⾃变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题⽅向】⾼考会考中多以⼩题形式出现,也可以是⼤题中的⼀⼩题.2.函数的图象与图象的变换【函数图象的作法】函数图象的作法:通过如下3个步骤(1)列表;(2)描点;(3)连线.解题⽅法点拨:⼀般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直⻆坐标系中,准确描点,然后连线(平滑曲线).命题⽅向:⼀般考试是以⼩题形式出现,或⼤题中的⼀问,常⻅考题是,常⻅函数的图象,有时结合函数的奇偶性、对称性、单调性知识结合命题.【图象的变换】1.利⽤描点法作函数图象其基本步骤是列表、描点、连线.⾸先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最⼤值点、最⼩值点、与坐标轴的交点等),描点,连线.2.利⽤图象变换法作函数的图象(1)平移变换:y=f(x)a>0,右移a个单位(a<0,左移|a|个单位) y=f(x﹣a);y=f(x)b>0,上移b个单位(b<0,下移|b|个单位) y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)A>1,伸为原来的A倍(0<A<1,缩为原来的A倍) y=Af(x).(3)对称变换:y=f(x)关于x轴对称 y=﹣f(x);y=f(x)关于y轴对称 y=f(﹣x);y=f(x)关于原点对称 y=﹣f(﹣x).(4)翻折变换:y=f(x)去掉y轴左边图,保留y轴右边图,将y轴右边的图象翻折到左边 y=f(|x|);y=f(x)留下x轴上⽅图将x轴下⽅图翻折上去y=|f(x)|.解题⽅法点拨1、画函数图象的⼀般⽅法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析⼏何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利⽤图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上⾯两种⽅法都失效时,则可采⽤描点法.为了通过描少量点,就能得到⽐较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.2、寻找图象与函数解析式之间的对应关系的⽅法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性⽅⾯,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利⽤上述⽅法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利⽤上述⽅法,排除错误选项,筛选正确选项.注意联系基本函数图象和模型,当选项⽆法排除时,代特殊值,或从某些量上寻找突破⼝.3、(1)利有函数的图象研究函数的性质从图象的最⾼点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的⾛向趋势,分析函数的单调性、周期性等.(2)利⽤函数的图象研究⽅程根的个数有关⽅程解的个数问题常常转化为两个熟悉的函数的交点个数;利⽤此法也可由解的个数求参数值.4、⽅法归纳:(1)1个易错点﹣﹣图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每⼀次的变换所得图象对应的解析式,这样才能避免出错.(2)3个关键点﹣﹣正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:①正确求出函数的定义域;②熟练掌握⼏种基本函数的图象,如⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、形如y=x+的函数;③掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常⽤的⽅法技巧,来帮助我们简化作图过程.(3)3种⽅法﹣﹣识图的⽅法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等⽅⾯来获取图中所提供的信息,解决这类问题的常⽤⽅法有:①定性分析法,也就是通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.3.函数单调性的性质与判断【知识点的认识】⼀般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个⾃变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这⼀区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题⽅法点拨】证明函数的单调性⽤定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利⽤函数的导数证明函数单调性的步骤:第⼀步:求函数的定义域.若题设中有对数函数⼀定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第⼆步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利⽤f′(x)=0的根和不可导点的x的值从⼩到⼤顺次将定义域分成若⼲个⼩开区间,并列表.第四步:由f′(x)在⼩开区间内的正、负值判断f(x)在⼩开区间内的单调性;求极值、最值.第五步:将不等式恒成⽴问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题⽅向】从近三年的⾼考试题来看,函数单调性的判断和应⽤以及函数的最值问题是⾼考的热点,题型既有选择题、填空题,⼜有解答题,难度中等偏⾼;客观题主要考查函数的单调性、最值的灵活确定与简单应⽤,主观题在考查基本概念、重要⽅法的基础上,⼜注重考查函数⽅程、等价转化、数形结合、分类讨论的思想⽅法.预测明年⾼考仍将以利⽤导数求函数的单调区间,研究单调性及利⽤单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能⼒.4.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常⻅的⼀般以两个函数的为主.【解题⽅法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题⽅向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.5.函数奇偶性的性质与判断【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题⽅法点拨】①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.⾮奇⾮偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题⽅向】函数奇偶性的应⽤.本知识点是⾼考的⾼频率考点,⼤家要熟悉就函数的性质,最好是结合其图象⼀起分析,确保答题的正确率.6.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,⼀般情况下也就是把它们并列在⼀起,所以说关键还是要掌握奇函数和偶函数各⾃的性质,在做题时能融会贯通,灵活运⽤.在重复⼀下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题⽅法点拨】参照奇偶函数的性质那⼀考点,有:①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x) a=1【命题⽅向】奇偶性与单调性的综合.不管出什么样的题,能理解运⽤奇偶函数的性质是⼀个基本前提,另外做题的时候多多总结,⼀定要重视这⼀个知识点.7.抽象函数及其应⽤【知识点的认识】抽象函数是指没有给出函数的具体解析式,只给出了⼀些体现函数特征的式⼦的⼀类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之⼀.【解题⽅法点拨】①尽可能把抽象函数与我们数学的具体模型联系起来,如f (x +y )=f (x )+f (y ),它的原型就是y =kx ;②可通过赋特殊值法使问题得以解决例:f (xy )=f (x )+f (y ),求证f (1)=f (﹣1)=0令x =y =1,则f (1)=2f (1) f (1)=0令x =y =﹣1,同理可推出f (﹣1)=0③既然是函数,也可以运⽤相关的函数性质推断它的单调性;【命题⽅向】抽象函数及其应⽤.抽象函数是⼀个重点,也是⼀个难点,解题的主要⽅法也就是我上⾯提到的这两种.⾼考中⼀般以中档题和⼩题为主,要引起重视.8.指数函数的图象与性质【知识点的认识】1、指数函数y =a x (a >0,且a ≠1)的图象和性质:y =a xa >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同⼀坐标系内分别作函数的图象,易看出:当a>l时,底数越⼤,函数图象在第⼀象限越靠近y轴;同样地,当0<a<l时,底数越⼩,函数图象在第⼀象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=a x与函数y=的图象关于y轴对称.3、利⽤指数函数的性质⽐较⼤⼩:若底数相同⽽指数不同,⽤指数函数的单调性⽐较:若底数不同⽽指数相同,⽤作商法⽐较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.9.对数的运算性质【知识点的认识】对数的性质:①=N;②log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.10.对数值⼤⼩的⽐较【知识点归纳】1、若两对数的底数相同,真数不同,则利⽤对数函数的单调性来⽐较.2、若两对数的底数和真数均不相同,通常引⼊中间变量(1,﹣1,0)进⾏⽐较3、若两对数的底数不同,真数也不同,则利⽤函数图象或利⽤换底公式化为同底的再进⾏⽐较.(画图的⽅法:在第⼀象限内,函数图象的底数由左到右逐渐增⼤)11.对数函数的图象与性质【知识点归纳】12.反函数【知识点归纳】【定义】⼀般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,⽤y 把x表示出,得到x=g(y).若对于y在中的任何⼀个值,通过x=g(y),x在A中都有唯⼀的值和它对应,那么,x=g(y)就表示y是⾃变量,x是因变量是y的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了⻆⾊(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是⼀⼀映射;(3)⼀个函数与它的反函数在相应区间上单调性⼀致;(4)⼤部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C。

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020年高考数学(理)函数和导数知识点归纳汇总目录基本初等函数性质及应用 (3)三角函数图象与性质三角恒等变换 (17)函数的图象与性质、函数与方程 (43)导数的简单应用与定积分 (60)利用导数解决不等式问题 (81)利用导数解决函数零点问题 (105)基本初等函数性质及应用题型一 求函数值 【题型要点解析】已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化.例1.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【解析】 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=4231-⎪⎭⎫⎝⎛x 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.【答案】 B例2.已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln 1+x 2+x ,x ≥0,3x 2+ln 1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.【解析】 若x >0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2+ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.【答案】 (-∞,-2)∪(0,+∞)例3.已知a >b >1,若log a b +log b a =52,a b=b a ,则a =________,b =________.【解析】 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2.∴2b=b 2,∴b =2,a =4.【答案】 4;2 题组训练一 求函数值1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的最小值是( )A.32 B .1C.12D .2【解析】 log 12a =-log 2a ,f (log 2 a )+f (log 12a )≤2f (1),所以2f (log 2a )≤2f (1),所以|log 2 a |≤1,解得12≤a ≤2,所以a 的最小值是12,故选C.【答案】 C2.若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎪⎭⎫⎝⎛31,0x ,则函数f (x )在[0,3]上的最小值等于________.【解析】令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.【答案】 -13题型二 比较函数值大小 【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.例1.已知a =3421-⎪⎭⎫ ⎝⎛,b =5241-⎪⎭⎫ ⎝⎛,c =31251-⎪⎭⎫⎝⎛,则( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c【解析】 因为a =3421-⎪⎭⎫ ⎝⎛=243,b =5241-⎪⎭⎫ ⎝⎛=245,c =31251-⎪⎭⎫⎝⎛=523,显然有b <a ,又a =423<523=c ,故b <a <c .【答案】 D例2.已知a =π3,b =3π,c =e π,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >aD .b >a >c【解析】 ∵a =π3,b =3π,c =e π,∴函数y =x π是R 上的增函数,且3>e>1,∴3π>e π,即b >c >1;设f (x )=x 3-3x ,则f (3)=0,∴x =3是f (x )的零点,∵f ′(x )=3x 2-3x ·ln 3,∴f ′(3)=27-27ln 3<0,f ′(4)=48-81ln 3<0,∴函数f (x )在(3,4)上是单调减函数,∴f (π)<f (3)=0,∴π3-3π<0,即π3<3π,∴a <b ;又∵e π<πe <π3,∴c <a ;综上b >a >c .故选D.【答案】 D题组训练二 比较函数值大小 1.若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c【解析】 对A :由于0<c <1,∴函数y =x c 在R 上单调递增,则a >b >1⇔a c >bc ,A 错误;对B :由于-1<c -1<0,∴函数y =x c -1在(1,+∞)上单调递减,又∴a >b >1,∴a c -1<b c -1⇔ba c <ab c ,B 错误;对C :要比较a log b c 和b log a c ,只需比较a ln c lnb 和b lnc ln a ,只需比较ln c b ln b 和ln ca ln a,只需b ln b 和a ln a ;构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇔a ln a >b ln b >0⇔1a ln a <1b ln b ,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇔b log a c >a log b c ,C 正确;对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln c ln b ⇔log a c >log b c ,D 错误.故选C.【答案】 C2.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【解析】 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0,g (a )<0<f (b ),选A.【答案】 A题型三 求参数的取值范围 【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3)注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.例1.已知f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B.⎪⎭⎫ ⎝⎛-21,1C.⎪⎭⎫⎢⎣⎡-21,1D.⎪⎭⎫⎝⎛21,0【解析】 要使函数f (x )的值域为R ,需使⎩⎨⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎨⎧a <12,a ≥-1,∴-1≤a <12.故选C.【答案】 C例2.设函数f (x )=⎩⎨⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎪⎭⎫ ⎝⎛-21x >1的x 的取值范围是________.【解析】 由题意,当x >12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +2x -12>1恒成立,即x >12满足题意;当0<x ≤12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +x -12+1>1恒成立,即0<x ≤12满足题意;当x ≤0时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =x +1+x -12+1>1,解得x >-14,即-14<x ≤0.综上,x 的取值范围是⎪⎭⎫ ⎝⎛+∞,41 【答案】⎪⎭⎫⎝⎛+∞,41题组训练三 求参数的取值范围例1.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【解析】 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显示不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.【答案】 (1,2]例2.设函数f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x <12,4x-3,x ≥12的最小值为-1,则实数a 的取值范围是________.【解析】 当x ≥12时,4x -3为增函数,最小值为f ⎪⎭⎫⎝⎛21=-1,故当x <12时,x 2-2x +a ≥-1.分离参数得a ≥-x 2+2x -1=-(x -1)2,函数y =-(x -1)2开口向下,且对称轴为x =1,故在⎪⎭⎫ ⎝⎛∞-21,上单调递增,所以函数在x =12处有最大值,最大值为-221⎪⎭⎫⎝⎛-=-14,即a ≥-14.【答案】⎪⎭⎫⎢⎣⎡+∞-,41【专题训练】 一、选择题1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)等于( )A .1B.45 C .-1D .-45【解析】 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 2 45)=-(2log 245+15)=-1.【答案】C2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0,则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【解析】 ∵对任意的x 1,x 2∈(-∞,0), 且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数. ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 【答案】 A3.已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x-1),则f ⎪⎭⎫⎝⎛31等于( )A .2-log 23B .log 23-log 27C .log 27-log 23D .log 23-2【解析】 因为f (x )是奇函数,且f (2-x )=f (x ),所以f (x -2)=-f (x ),所以f (x -4)=f (x ),所以f ⎪⎭⎫ ⎝⎛31=f ⎪⎭⎫ ⎝⎛-312=f ⎪⎭⎫ ⎝⎛35=-f ⎪⎭⎫ ⎝⎛-354=-f ⎪⎭⎫⎝⎛37.又当x ∈[2,3]时,f (x )=log 2(x -1), 所以f ⎪⎭⎫ ⎝⎛37=log 2⎪⎭⎫⎝⎛-137=log 243=2-log 23,所以f ⎪⎭⎫⎝⎛31=log 23-2,故选D.【答案】 D4.已知函数y =f (x )是R 上的偶函数,设a =ln1π,b =(ln π)2,c =ln π,当对任意的x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )【解析】 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,f (x 1)-f (x 2)(x 1-x 2)<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1π=-lnπ<-1,b =(ln π)2,c =ln π=12ln π,所以|b |>|a |>|c |,因此f (c )>f (a )>f (b ),故选D.【答案】 D5.已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b【解析】 因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减;因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减.因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π3<20.2<log 39,所以b >a >c ,选A.【答案】 A6.设a =0.23,b =log 0.30.2,c =log 30.2,则a ,b ,c 大小关系正确的是( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a【解析】 根据指数函数和对数函数的增减性知,因为0<a =0.23<0.20=1,b =log 0.30.2>log 0.30.3=1,c =log 30.2<log 31=0,所以b >a >c ,故选B.【答案】B7.对任意实数a ,b 定义运算“Δ”:a Δb =⎩⎨⎧a ,a -b ≤2,b ,a -b >2,设f (x )=3x+1Δ(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】 由题意得f (x )=⎩⎨⎧-x +1,x >0,3x +1,x ≤0,∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎨⎧m ≥0,m +1≤3,得0≤m ≤2,故选C.【答案】 C8.已知函数f (x )=a |log 2 x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,给出下列命题:①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若0<m <n <1,则有F (m )-F (n )<0成立;④当a >0时,函数y =F (x )-2有4个零点.其中正确命题的个数为( )A .0B .1C .2D .3【解析】 ①∵函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0f (-x ),x <0,∴|f (x )|=|a |log 2x |+1|,∴F (x )≠|f (x )|,①不对;②∵F (-x )=⎩⎨⎧f (-x ),x <0f (x ),x >0=F (x ),∴函数F (x )是偶函数,故②正确;③∵当a <0时,若0<m <n <1,∴|log 2m |>|log 2n |,∴a |log 2m |+1<a |log 2n |+1,即F (m )<F (n )成立,故F (m )-F (n )<0成立,所以③正确;④∵f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,∴x >0时,(0,1)单调递减,(1,+∞)单调递增, ∴x >0时,F (x )的最小值为F (1)=1, 故x >0时,F (x )与y =-2有2个交点,∵函数F (x )是偶函数,∴x <0时,F (x )与y =-2有2个交点,故当a >0时,函数y =F (x )-2有4个零点,所以④正确.【答案】D 二、填空题1.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.【解析】 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2). 从而x 1f (x 2)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .【答案】 b <a <c2.已知函数f (x )=⎩⎨⎧2x,x ≤1ln (x -1),1<x ≤2若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.【解析】 设g (x )=5-mx ,则函数g (x )的图象是过点(0,5)的直线.在同一坐标系内画出函数y =f (x )和g (x )=5-mx 的图象,如图所示.∵不等式f (x )≤5-mx 恒成立,∴函数y =f (x )图象不在函数g (x )=5-mx 的图象的上方.结合图象可得,①当m <0时不成立;②当m =0时成立;③当m >0时,需满足当x =2时,g (2)=5-2m ≥0,解得0<m ≤52.综上可得0≤m ≤52.∴实数m 的取值范围是⎣⎢⎡⎦⎥⎤0,52.3.已知函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]【解析】 函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,将x 换为-x ,函数值不变,即有f (x )图象关于y 轴对称,即f (x )为偶函数,有f (-x )=f (x ),当x ≥0时,f (x )=x ln(1+x )+x 2的导数为f ′(x )=ln (1+x )+x 1+x+2x ≥0,则f (x )在[0,+∞)递增,f (-a )+f (a )≤2f (1),即为2f (a )≤2f (1),可得f (|a |))≤f (1),可得|a |≤1,解得-1≤a ≤1.【答案】 D4.已知函数f (x )=⎩⎨⎧(3a -1)x -4a ,(x <1),log a x , (x ≥1)在R 上不是单调函数,则实数a 的取值范围是________.【解析】 当函数f (x )在R 上为减函数时,有3a -1<0且0<a <1且(3a -1)·1+4a ≥log a 1,解得17≤a <13,当函数f (x )在R 上为增函数时,有3a -1>0且a >1且(3a -1)·1+4a ≤log a 1,a 无解.∴当函数f (x )在R 上为单调函数时,有17≤a <13,∴当函数f (x )在R 上不是单调函数时,有a >0且a ≠1且a <17或a ≥13即0<a <17或13≤a <1或a >1.5.定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 016],则函数f (x )=log 2x 在[1,22 016]上的“均值”为 ________.【解析】 根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1·22 016=22 016,当x 1∈[1,22 016]时,选定x 2=22 016x 1∈[1,22 016],可得M =12log 2(x 1x 2)=1 008.【答案】 1 008三角函数图象与性质三角恒等变换题型一 函数y =A sin(ωx +φ)的解析式与图象 【题型要点解析】解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.【例1】函数f (x )=A sin(ωx +φ)+b 的部分图象如图,则S =f (1)+…+f (2017)等于( )A .0 B.4 0312C.4 0352 D.4 0392【解析】由题设中提供的图象信息可知⎩⎪⎨⎪⎧A +b =32,-A +b =12,解得A =12,b =1,T =4⇒ω=2π4=π2,所以f(x)=12sin⎪⎭⎫⎝⎛+ϕπx2+1,又f(0)=12sin⎪⎭⎫⎝⎛+⨯ϕπ2+1=12sinφ+1=1⇒sinφ=0,可得φ=kπ,所以f(x)=12sin⎪⎭⎫⎝⎛+ππkx2+1,由于周期T=4,2017=504×4+1,且f(1)+f(2)+f(3)+f(4)=4,所以S=f(1)+…+f(2016)+f(2017)=2016+f(2017)=2016+f(1)=2016+32=4 0352,故选C.【答案】 C【例2】.已知函数f(x)=sin2ωx-12(ω>0)的周期为π2,若将其图象沿x轴向右平移a个单位(a>1),所得图象关于原点对称,则实数a的最小值为( )A.π4B.3π4C.π2D.π8【解析】∵f(x)=1-cos 2ωx2-12=-12cos 2ωx,2π2ω=π2,解得ω=2,从而f(x)=-12cos 4x.函数f(x)向右平移a个单位后,得到新函数为g(x)=-12cos(4x-4a).∴cos 4a=0,4a=π2+kπ,k∈Z,当k=0时,a的最小值为π8.选D.【答案】 D题组训练一函数y=A sin(ωx+φ)的解析式与图象1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,且f (α)=1,α∈⎪⎭⎫ ⎝⎛3,0π,则cos ⎪⎭⎫ ⎝⎛+652πα等于( )A.13 B .±223C.223D .-223【解析】由题图可知A =3,易知ω=2,φ=5π6,即f (x )=3sin ⎪⎭⎫ ⎝⎛+652πx . 因为f (α)=3sin ⎪⎭⎫ ⎝⎛+652πα=1,所以sin ⎪⎭⎫⎝⎛+652πα=13, 因为α∈⎪⎭⎫⎝⎛3,0π,所以2α+5π6∈⎪⎭⎫ ⎝⎛+652πα, 所以cos ⎪⎭⎫⎝⎛+652πα=-223,故选D. 【答案】 D2.已知曲线C 1:y =cos x ,C 2:y =sin ⎪⎭⎫⎝⎛+322πx ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为C 1,C 2函数名不同,所以将C 2利用诱导公式转化成与C 1相同的函数名,则C 2:y =sin ⎪⎭⎫ ⎝⎛+322πx =cos ⎪⎭⎫ ⎝⎛-+2322ππx =cos ⎪⎭⎫ ⎝⎛+62πx ,则由C 1上各点的横坐标缩短到原来的12倍变为y =cos 2x ,再将曲线向左平移π12个单位得到C 2,故选D.【答案】 D3.设函数y =sin ωx (ω>0)的最小正周期是T ,将其图象向左平移14T 后,得到的图象如图所示,则函数y =sin ωx (ω>0)的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24737,24737ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12737,12737ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++242167,24767ππππ 【解析】 方法一 由已知图象知,y =sin ωx (ω>0)的最小正周期是2×7π12=7π6,所以2πω=7π6,解得ω=127,所以y =sin 127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ 方法二 因为T =2πω,所以将y =sin ωx (ω>0)的图象向左平移14T 后,所对应的解析式为y =sin ω⎪⎭⎫ ⎝⎛+ωπ2x .由图象知,ω⎪⎭⎫ ⎝⎛+ωππ2127=3π2,所以ω=127, 所以y =sin127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是 ()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ(k ∈Z ). 【答案】 A题型二 三角函数的性质 【题型要点】(1)奇偶性的三个规律:①函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z ); ②函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );③函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ).(2)对称性的三个规律①函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得; ②函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得; ③函数y =A tan(ωx +φ)的图象的对称中心的横坐标由ωx +φ=k π2(k ∈Z )解得.(3)三角函数单调性:求形如y=A sin(ωx+φ)(或y=A cos(ωx+φ))(A、ω、φ为常数,A≠0,ω>0)的单调区间的一段思路是令ωx+φ=z,则y=A sin z(或y=A cos z),然后由复合函数的单调性求得.(4)三角函数周期性:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π|ω|.应特别注意y=|A sin(ωx+φ)|的周期为T=π|ω|.【例3】设函数f(x)=sinωx·cosωx-3cos2ωx+32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y=f(x+φ)(0<φ<π2)是奇函数,求函数g(x)=cos(2x-φ)在[0,2π]上的单调递减区间.【解】(1)f(x)=sinωx·cosωx-3cos2ωx+3 2=12sin2ωx-3(1+cos 2ωx)2+32=12sin2ωx-32cos2ωx=sin⎪⎭⎫⎝⎛-32πωx,设T为f(x)的最小正周期,由f(x)的图象上相邻最高点与最低点的距离为π2+4,得∴22⎪⎭⎫⎝⎛T+[2f(x)max]2=π2+4,∵f(x)max=1,∴22⎪⎭⎫⎝⎛T+4=π2+4,整理得T=2π.又ω>0,T=2π2ω=2π,∴ω=12.(2)由(1)可知f (x )=sin ⎪⎭⎫ ⎝⎛-3πx ,∴f (x +φ)=sin ⎪⎭⎫ ⎝⎛-+3πϕx .∵y =f (x +φ)是奇函数,则sin ⎪⎭⎫ ⎝⎛-3πϕ=0,又0<φ<π2,∴φ=π3, ∴g (x )=cos(2x -φ)=cos ⎪⎭⎫ ⎝⎛-32πx .令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z , ∴单调递减区间是⎥⎦⎤⎢⎣⎡++32,6ππππk k k ∈Z . 又∵x ∈[0,2π],∴当k =0时,递减区间是⎥⎦⎤⎢⎣⎡32,6ππ;当k =1时,递减区间是⎥⎦⎤⎢⎣⎡35,67ππ∴函数g (x )在[0,2π]上的单调递减区间是⎥⎦⎤⎢⎣⎡32,6ππ,⎥⎦⎤⎢⎣⎡35,67ππ.【例4】.已知函数f (x )=sin(ωx +π6)(ω>0)的最小正周期为4π,则( )A .函数f (x )的图象关于原点对称B .函数f (x )的图象关于直线x =π3对称C .函数f (x )图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数f (x )在区间(0,π)上单调递增【解析】2πω=4π⇒ω=12,所以f (x )=sin ⎪⎭⎫⎝⎛+62πx 不是奇函数,图象不关于原点对称;x =π3时f (x )=32不是最值,图象不关于直线x =π3对称; 所有点向右平移π3个单位长度后得y =sin ⎥⎦⎤⎢⎣⎡+-6)3(21ππx =sin 12x 为奇函数,图象关于原点对称;因为x ∈(0,π)⇒12x +π6∈⎪⎭⎫⎝⎛32,6ππ,所以函数f (x )在区间(0,π)上有增有减,综上选C.【答案】 C【例5】.已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈⎥⎦⎤⎢⎣⎡-32,12ππ的图象如图所示,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)等于( )A .1 B. 2 C. 3D .2【解析】 根据函数f (x )=2sin(ωx +φ),x ∈[-π12,2π3]的图象知,3T 4=2π3-⎪⎭⎫ ⎝⎛-12π=3π4,∴T =π,∴ω=2πT =2; 又x =-π12时,2×⎪⎭⎫⎝⎛-12π+φ=0,解得φ=π12, ∴f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx ;又f (x 1)=f (x 2),且x 1≠x 2,不妨令x 1=0,则x 2=π3, ∴x 1+x 2=π3,∴f (x 1+x 2)=2sin ⎪⎭⎫⎝⎛+⨯632ππ=1.故选A. 【答案】 A题组训练二 三角函数的性质1.如图是函数y =A sin(ωx +φ)⎪⎭⎫ ⎝⎛≤>>2,0,0πϕωA 图象的一部分.为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解析】 观察图象知,A =1,T =2⎪⎭⎫⎝⎛-365ππ=π,ω=2πT =2,即y =sin(2x +φ);将点⎪⎭⎫ ⎝⎛0,3π代入得⎪⎭⎫⎝⎛+⨯ϕπ32sin =0,结合|φ|≤π2,得φ=π3,所以y =sin ⎪⎭⎫ ⎝⎛+32πx .故选A. 【答案】 A2.已知函数f (x )=cos 2ωx 2+32sin ωx -12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎥⎦⎤⎝⎛125,0π B.⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65 C.⎥⎦⎤ ⎝⎛65,0π D.⎥⎦⎤ ⎝⎛125,0π∪⎥⎦⎤⎢⎣⎡1211,65 【解析】 函数f (x )=cos 2ωx 2+32sin ωx -12=12cos ωx +32sin ωx =sin ⎪⎭⎫ ⎝⎛+6πωx ,可得T =2πω≥π,0<ω≤2,f (x )在区间(π,2π)内没有零点,函数的图象如图两种类型,结合三角函数可得:⎩⎪⎨⎪⎧ωπ+π6≥02ωπ+π6≤π或⎩⎪⎨⎪⎧πω+π6≥π2ωπ+π6≤2π,解得ω∈⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65.故选B.【答案】 B题型三 三角恒等变换 【题型要点解析】三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等; (2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.【例6】如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C位于第一象限,点B 的坐标为⎪⎭⎫⎝⎛-135,1312,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.【解析】由题意得|OC |=|OB |=|BC |=1, 从而△OBC 为等边三角形,所以sin ∠AOB =sin ⎪⎭⎫ ⎝⎛-απ3=513,又因为3cos 2α2-sinα2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎪⎭⎫ ⎝⎛-απ3=513.【答案】513【例7】.已知sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫ ⎝⎛+83πα等于( ) A .-45B.45 C .-35D.35【解析】 ∵sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫⎝⎛+83πα=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+82παπ=-sin ⎪⎭⎫ ⎝⎛-8πα=-45,故选A.【答案】 A【例8】.已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β等于( )A.π12B.π6C.π4D.π3【解析】 cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β),由已知cos α=35,cos(α-β)=7210,0<β<α<π2,可知sinα=45,sin(α-β)=210 ,代入上式得cos β=35×7210+45×210=25250=22,所以β=π4,故选C.【答案】 C题组训练三 三角恒等变换1.若sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则cos 2α的值为( )A .-35B.35 C .-45D.45【解析】 由sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则sin α+3cos α=0,可得:tan α=sin αcos α=-3; 则cos 2α=cos 2α-sin 2α=1-tan 2αtan 2α+1=1-91+9=-45.故选C. 【答案】 C2.已知cos ⎪⎭⎫ ⎝⎛-3πx =13,则cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π的值为( ) A .-19B.19 C.53D .-53【解析】 cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π =-cos ⎪⎭⎫ ⎝⎛-322πx +sin 2⎪⎭⎫ ⎝⎛-3πx =1-2cos 2⎪⎭⎫ ⎝⎛-3πx +1-cos 2⎪⎭⎫ ⎝⎛-3πx=2-3cos 2⎪⎭⎫ ⎝⎛-3πx =53. 【答案】 C3.已知cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫ ⎝⎛-απ3=-14,α∈⎪⎭⎫⎝⎛2,3ππ.则sin 2α=________.【解析】 cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫⎝⎛-απ3=cos ⎪⎭⎫ ⎝⎛+απ6·sin ⎪⎭⎫ ⎝⎛+απ6=12sin ⎪⎭⎫ ⎝⎛+32πα=-14,即sin ⎪⎭⎫ ⎝⎛+32πα=-12.∵α∈⎪⎭⎫⎝⎛2,3ππ,∴2α+π3∈⎪⎭⎫ ⎝⎛34,ππ, ∴cos ⎪⎭⎫ ⎝⎛+32πα=-32,∴sin 2α=sin ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+332ππα=sin ⎪⎭⎫ ⎝⎛+32παcos π3-cos ⎪⎭⎫ ⎝⎛+32παsin π3=12.【答案】12题型四 三角函数性质的综合应用 【题型要点】研究三角函数的性质的两个步骤第一步:先借助三角恒等变换及相应三角函数公式把待求函数转化为y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【例9】设函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,其中0<ω<3.已知f⎪⎭⎫⎝⎛6π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎥⎦⎤⎢⎣⎡-43,4ππ上的最小值. 【解析】 (1)因为f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎪⎪⎭⎫ ⎝⎛-x x ωωcos 23sin 21 =3⎪⎭⎫ ⎝⎛-3sin πωx由题设知f ⎪⎭⎫⎝⎛6π=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎪⎭⎫ ⎝⎛-32πx所以g (x )=3sin ⎪⎭⎫ ⎝⎛-+34ππx =3sin ⎪⎭⎫ ⎝⎛-12πx因为x ∈⎥⎦⎤⎢⎣⎡-43,4ππ,所以x -π12∈⎥⎦⎤⎢⎣⎡-32,3ππ,当x -π12=-π3, 即x =-π4时,g (x )取得最小值-32.【答案】 -32题组训练四 三角函数性质的综合应用已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎪⎭⎫⎝⎛32π的值.(2)求f (x )的最小正周期及单调递增区间. 【解析】 (1)由sin 2π3=32,cos 2π3=-12,f ⎪⎭⎫⎝⎛32π=223⎪⎪⎭⎫ ⎝⎛-221⎪⎭⎫ ⎝⎛--23×32×⎪⎭⎫ ⎝⎛-21得f ⎪⎭⎫⎝⎛32π=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2si ⎪⎭⎫⎝⎛+62πx 所以f (x )的最小正周期是π 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z . 解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k πk ∈Z .【专题训练】一、选择题1.已知α满足sin α=13,则cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫⎝⎛-απ4=( )A.718B.2518 C .-718D .-2518【解析】 cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫ ⎝⎛-απ4=22()cos α-sin α·22()cos α+sin α=12()cos 2α-sin 2α=12(1-2sin 2α)=12⎪⎭⎫ ⎝⎛⨯-9121=718,选A. 【答案】 A2.若函数f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1(ω>0)在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,则ω的取值范围是( )A .[0,1)B.⎪⎭⎫⎢⎣⎡+∞,43 C .[1,+∞)D.⎥⎦⎤ ⎝⎛43,0 【解析】 由题意,因为f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1=4sin ωx ·1-cos ⎝⎛⎭⎪⎫ωx +π22+cos2ωx -1=2sin ωx (1+sin ωx )+cos2ωx-1=2sin ωx 所以⎥⎦⎤⎢⎣⎡-ωπωπ2,2表示函数含原点的递增区间,又因为函数在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,所以⎥⎦⎤⎢⎣⎡-32,2ππ⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,即⎩⎪⎨⎪⎧-π2ω≤-π2π2ω≥2π3⇒⎩⎨⎧ω≤1ω≤34,又ω>0,所以0<ω≤34,故选D.【答案】 D3.函数f (x )=A sin(ωx +φ)(A >0,ω>0)在x =1和x =-1处分别取得最大值和最小值,且对于∀x 1,x 2∈[-1,1](x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2>0,则函数f (x +1)一定是( )A .周期为2的偶函数B .周期为2的奇函数C .周期为4的奇函数D .周期为4的偶函数【解析】 由题意可得,[-1,1]是f (x )的一个增区间,函数f (x )的周期为2×2=4,∴2πω=4,ω=π2, ∴f (x )=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x .再根据f (1)=A sin ⎪⎭⎫ ⎝⎛+ϕπ2=A ,可得sin ⎪⎭⎫⎝⎛+ϕπ2=cos φ=1,故φ=2k π,k ∈Z ,∴f (x +1)=A sin ⎥⎦⎤⎢⎣⎡++ππk x 2)1(2=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x =A cos π2x ,∴f (x +1)是周期为4的偶函数,故选D. 【答案】D4.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向左平移π3个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎪⎭⎫⎝⎛0,12π对称B .关于直线x =π12对称C .关于点⎪⎭⎫⎝⎛0,6π对称D .关于直线x =π6对称【解析】 由于函数最小正周期为π,所以ω=2,即f (x )=sin(2x +φ).向左平移π3得到sin ⎪⎭⎫⎝⎛++ϕπ322x 为奇函数,故2π3+φ=π,φ=π3,所以f (x )=sin ⎪⎭⎫ ⎝⎛+322πx .f ⎪⎭⎫⎝⎛12π=sin π2=1,故x =π12为函数的对称轴,选B. 【答案】 B5.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图,f ⎪⎭⎫⎝⎛-2413π=( )A .-62 B .-32C .-22D .-1【解析】 根据函数f (x )=A sin(ωx +φ)的部分图象知,A =2,T 4=7π12-π3=π4,∴T =2πω=π,解得ω=2; ∴f (x )=2sin(2x +φ). 由五点法画图知,ω×π3+φ=2π3+φ=π,解得φ=π3,∴f (x )= 2 sin(2x +π3),∴f ⎪⎭⎫ ⎝⎛-2413π=2sin(-13π12+π3)=2sin(-3π4)=-1,故选D. 【答案】 D6.函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,若f (0)=-3,且函数f (x )的图象关于直线x =-π12对称,则以下结论正确的是( )A .函数f (x )的最小正周期为π3B .函数f (x )的图象关于点⎪⎭⎫⎝⎛0,97π对称 C .函数f (x )在区间⎪⎭⎫⎝⎛2411,4ππ上是增函数D .由y =2cos 2x 的图象向右平移5π12个单位长度可以得到函数f (x )的图象 【解析】 函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,∵f (0)=-3,即2sin φ=-3,∵-π2<φ<π2, ∴φ=-π3又∵函数f (x )的图象关于直线x =-π12对称,∴-ω×π12-π3=π2+k π,k ∈Z . 可得ω=12k -10,∵0<ω<12.∴ω=2.∴f (x )的解析式为:f (x )=2sin ⎪⎭⎫ ⎝⎛-32πx .最小正周期T =2π2=π,∴A 不对. 当x =7π9时,可得y ≠0,∴B 不对. 令-π2≤2x -π3≤π2,可得-π12≤x ≤5π12,∴C 不对.函数y =2cos 2x 的图象向右平移5π12个单位, 可得2cos 2⎪⎭⎫ ⎝⎛-125πx =2cos ⎪⎭⎫ ⎝⎛-652πx=2sin ⎪⎭⎫ ⎝⎛+-2652ππx =2sin ⎪⎭⎫ ⎝⎛-32πx . ∴D 项正确.故选D. 【答案】 D 二、填空题7.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫ ⎝⎛<><2,0,0πϕωA 的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2),则f (x )=________.【解析】 由题意可得A =2,T 2=2π,T =4π,∴ω=2πT =2π4π=12,∴f (x )=2sin ⎪⎭⎫⎝⎛+ϕ2x ,∴f (0)=2sin φ=1.由|φ|<π2,∴φ=π6,∴f (x )=2sin ⎪⎭⎫⎝⎛+62πx . 【答案】 2sin ⎪⎭⎫⎝⎛+62πx8.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.【解析】 f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,则ω2=π4,所以ω=π2.【答案】π29.已知sin ⎪⎭⎫ ⎝⎛-απ3=13⎪⎭⎫ ⎝⎛<<20πα,则sin ⎪⎭⎫⎝⎛+απ6=________.【解析】 ∵sin ⎪⎭⎫ ⎝⎛-απ3=13,∴cos ⎪⎭⎫ ⎝⎛+απ6=cos ⎥⎦⎤⎢⎣⎡--)3(2αππ=sin ⎪⎭⎫ ⎝⎛-απ3=13;又0<α<π2,∴π6<π6+α<2π3, ∴sin ⎪⎭⎫ ⎝⎛+απ6=223.【答案】22310.已知π2<β<α<34π,cos(α-β)=1213,sin(α+β)=-35,则sin2α=__________A.5665 B .-5665 C.6556D .-6556【解析】由题意得π2<β<α<3π4,则0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213⇒sin(α-β)=513,sin(α+β)=-35⇒cos(α+β)=-45,则sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=513×(-45)+1213×(-35)=-5665,故选B.【答案】 B 三、解答题11.已知函数f (x )=sin ωx cos ωx -3cos 2ωx +32(ω>0)图象的两条相邻对称轴为π2.(1)求函数y =f (x )的对称轴方程;(2)若函数y =f (x )-13在(0,π)上的零点为x 1,x 2,求cos(x 1-x 2)的值.【解析】 (1)函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32.化简可得f (x )=12sin 2ωx -32cos 2ωx =sin ⎪⎭⎫ ⎝⎛-32πωx ,由题意可得周期T =π,∴π=2π2ω∴w =1∴f (x )=sin ⎪⎭⎫ ⎝⎛-32πx故函数y =f (x )的对称轴方程为2x -π3=k π+π2(k ∈Z ),即x =k π2+5π12(k ∈Z )(2)由函数y =f (x )-13在(0,π)上的零点为x 1,x 2,可知sin ⎪⎭⎫ ⎝⎛-321πx =sin ⎪⎭⎫ ⎝⎛-322πx =13>0,且0<x 1<5π12<x 2<2π3. 易知(x 1,f (x 1))与(x 2,f (x 2))关于x =5π12对称, 则x 1+x 2=5π6,∴cos(x 1-x 2)=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--1165x x π=cos ⎪⎭⎫ ⎝⎛-6521πx =cos ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-2321ππx=sin ⎪⎭⎫ ⎝⎛-321πx =13.12.已知函数f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx (0<ω<2),且f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎪⎭⎫ ⎝⎛2α=536,求cos ⎪⎭⎫ ⎝⎛-32πα的值.【解】 (1)f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin2ωx +32cos2ωx +32=3sin ⎪⎭⎫ ⎝⎛+62πωx +32, 因为函数y =f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π,。

2020年高考数学经典题题精选三角函数解答题.docx

2020年高考数学经典题题精选三角函数解答题.docx

2020 年高考数学经典题题精选三角函数解答题求函数 y=sinx+cosx+1的最 及取得最 相x 的 .解:由 y=sinx +cosx +1得 y=2 sin(x+4 )+1 ⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∴ y max =2 +1⋯⋯⋯⋯⋯⋯ 4 分y min =- 2 +1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分由 x+4=2k π+2得 x=2k π+(k ∈ Z)即 x=2k π+4(k ∈ Z) , y取最大 2 +1⋯⋯⋯⋯⋯ 94分由 x+=2k π-2即 x=2k π- 3y 取最小 1-2 ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分441.已知函数 f ( x)2a cos 2 x b sin x cos x, 且 f (0) 2, f (3 ) 1 3 .22( 1)求 f ( x ) 的最大 与最小 ;( 2)若 f ( ) 0, a (0,2 ), 求 的 .解:(1)由 f (0)=2 a =2,得 a =1 , f ( )1 a3 , 2 ⋯⋯⋯⋯( 3 分)243∴ f ( x )=2cos 2x +2sin x cos x =sin2 x +cos2 x +1=2 sin(2x) 1 ⋯⋯⋯⋯( 5 分)4∴ f ( x ) 的最大 是2 1,最小 是 12 . ⋯⋯⋯⋯⋯⋯( 6 分)( 2)∵ f () 0, 得 2 sin( 2) 1 0sin( 2) 2, . ⋯⋯( 8 分)44224 2k或 2 4 2k5 , k Z44k或k, kZ(10分 )42( 0,2 ),2 或3 或 3 或 7 (12分 ).2 442.已知函数 f ( x)a sin x cos x3acos 2 x3 a b.(a0)2( 1) x R ,写出函数的 减区 ;( 2)x [0, ], f x3,求 数 a, b的 .( ) 的最小 是- 2,是大 是2解:( 1) f ( x)a(sin x cos x3 cos 2 x3 ) b2a (1sin 2x3 1 cos2 x3 ) b = a sin( 2x ) b ⋯⋯⋯⋯4 分22 23a0, x R, f ( x) 的 减区 是 [ k5 , k11]( kZ ) ⋯⋯⋯⋯ 6 分12 12( 2)x [ 0, ] 2x[ 0, ] 2x3[ , 2] ⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分23 3sin( 2x) [ 3 ,1]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分32∴函数 f ( x) 的最小 是3 a b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2最大 a b 3 ⋯⋯⋯ 11 分解得 a 2,b 32 ⋯⋯ 12 分3.求函数 ysin 2 x sin xcos(6 x)的周期和 增区 .解ysin 2 x sin x(coscos x sin sin x)663sin 2x3sin x cos x3(1 cos2x) 3sin 2 x224 43 (3sin 2x 3 3 3) . ⋯⋯ 6 分44 cos2x)sin(2 x2 4423∴函数的周期T.⋯⋯⋯⋯⋯⋯ 8 分25当2k ≤ 2x≤2k,即 k( k ∈ Z) 函数≤ x ≤ k235 21212增加,即函数的增区 是[ k] (k ∈Z) .⋯⋯ 12分, k12124.已知函数 f ( x)5sin x cos x 5 3 cos 2 x 5 32(Ⅰ)求 f(x) 的最小正周期;(Ⅱ)求 f(x) 的 增区 .解:(Ⅰ)f (x) 5sin x cos x5 3 cos 2 x5 325sin 2x 5 31cos2x5 3 2 225 sin 2x 5 3 cos2x25(sin 2x cos3 cos2x sin)35sin(2x3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴最小正周期 T=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分2(Ⅱ)由 意,解不等式22k2x32 2k ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分5得kxk( k Z )12125f ( x) 的 增区 是 [k k ]( kZ ) ⋯⋯⋯⋯⋯⋯ 12 分12 ,125.已知函数f ( x)3 2 cos 2 x 8sin4 x , 求 f ( )的定 域,判断它的奇偶性,并求其cos2xx域 .解: f ( x)32(1 sin 2 x) 8sin 4 x12sin 2 x 8sin 4 xcos 2xcos2x(1 4 sin 2 x)(1 2 sin 2 x)4 sin 2x1.分cos2x( 4 )由 cos2x0,得 2x k, 解得 x k , k z224所以函数的定义域为 { x | x R, 且 xk , k 分24因为 的定义域关于原点对称 , 且 f ( x)f ( x),f ( x)是偶函数分f ( x).(9 )又f ( x) 4sin 2 x 1,且 xk , kz2 4f ( x)的值域为 { y |1y 5,且 y 3}.(12分 )6.已知函数f ( ) 2sin 2x sin 2 x 1,x.xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)在 定的坐 系中画出函数f (x) 在 [0, ] 上的 象 .解:( I ) f ( x)2sin 2 x sin 2x 1sin 2x(1 2sin 2 x)sin 2 x cos2x=2 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分x,所以当 2x2k, 即xk 3 (k Z ) , f ( x) 的最大 2 .R428即 f (x) 取得最大x 的集合 { x | xk3 , k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( II ) 象如下 所示: ( 卷 注意以下3 点)1.最小 f (3)2 ,8最小 f (7)2 . ⋯⋯⋯⋯⋯⋯ 10 分82.增区 [ 0,3 ], [ 7 , ];3 8 78减区 [, ] ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分8 83. 象上的特殊点: ( 0,- 1),(4 ,1),(,1), (3, 1), ( ,1) ⋯⋯⋯ 14 分24[ 注: 象上的特殊点 两个扣1 分,最多扣2 分 ]7.已知函数 ysinx3 cos x, x R.22( 1)求 y 取最大 相 的x 的集合;( 2) 函数的 象 怎 的平移和伸 可以得到y sin x( xR) 的 象 .解: y 2sin(x). ⋯⋯ 4 分23(1)当y 最大2.x { x | x 4k3 , k Z} ⋯⋯ 8 分( 2)把 y2sin(x3) 象向右平移2 ,再把每个点的 坐村 原来的 1,横坐232不 . 然后再把每个点的横坐 原来的1, 坐 不 , 即可得到 y sin x 的2象⋯⋯ 12 分8.已知函数f ( ) 4 sin 2 x 2sin 2 x 2,x .xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)求 :函数f (x) 的 象关于直x8称( 1)解: f (x) 2sin 2x 2sin 2x 22 sin 2x 2(12 sin 2 x) 2 sin 2x 2cos 2x=22 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分xR ,所以当 2x2k ,即x k3Z ) , f ( x) 的最大 2 2 .4(k28即 f (x) 取得最大x 的集合 { x | xk3, k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( 2) 明:欲 函数f ( x) 的 象关于直x称,只要 明 于任意x R ,8有 f (x) f (8x) 成立即可 .8f (x) 2 2 sin[2(x)4] 2 2 sin(2x)2 2 cos 2x;882f (x) 22 sin[ 2(8x)]2 2 sin(2 x) 2 2 cos2 x.842f (x) f (8x).8从而函数 f ( x) 的 象关于直 x称 . ⋯⋯ 14 分8[ 注:如果学生用f () 2 2( f ( x))min ;8或求出所有的 称 方程,然后x是其中一条, ( 2)中扣去 2 分]89. 已知定 在区[,2] 上的函数 yf (x) 的 象关于直x称,36当 x [2 ] ,函数 f (x) A sin( x) ( A 0 ,0 ,) ,其 象如,2632所示 .y(1)2] 的表达式;求函数 y f ( x) 在 [,13(2) 求方程 f ( x)2?的解 .?o 6?2xx6( 1)当x[, 2 ]时,函数 f ( x)Asin(x) ( A 0 ,0 ,22),观察图象易得:63A 1 , 1 ,3,即 x[6,2] 时,函数 f ( x)sin( x3),由函数 y f ( x) 的图象3关于直线x6对称得, x[,6] 时,函数 f ( x)sin x .∴ f ( x)sin(x 3 )x[ 6,23].sin x x[, 6 )( 2 )当x[, 2]时,由 sin( x3)2得, x34或3x12或x5;当632412 x[,6 ] 时,由sin x22得, x34或 x4. ∴方程 f (x)22的解集为 {34, 4 ,12,125}10.已知函数 f ( x)sin( x)cos( x) 的定义域为R,(1)当0 时,求f (x)的单调区间;( 2)若(0, ),且 sin x0,当为何值时, f ( x) 为偶函数.解:(1)0 时, f (x)sin x cos x 2 sin( x)4当 2k x2k,即2k 3x2k( k Z )时f (x)24244单调递增;当 2k2x42k3,即 2k4x2k5( k Z )时f (x) 24单调递减;( 2)若f(x) 偶函数,则 sin( x)c os( x)sin(x)cos(x)即 sin( x)sin( x)cos(x)cos( x) =0 2sin x cos2sin xsin02sin x(cos sin)02 cos()04Q(0,)4,此时, f (x) 是偶函数.。

2020高考数学八类热点函数分项训练(解析版)

2020高考数学八类热点函数分项训练(解析版)

由于 f (0) a , f (1) 2 a , f (3) 18 a ,
所以最大值 M =18 a ,最小值 N 2 a ,故 M N 20,
③若 a 0 ,则必存在实数 x0 ,使 f [ f ( x0 )] x0 ; ④函数 g (x) ax2 bx c(a 0) 的图象与直线 y x 一定没有交点 ,
其中正确的结论是 ____________(写出所有正确结论的编号) . 【答案】①②④
【解析】因 为 函 数 f x 的 图 象 与 直 线 y x 没 有 交 点 ,所 以 f x x a 0 或 f x x a 0 恒
所以函数 f x
2
2 x 2x b 图像上存在两点关于直线
y x 对称,
令l: y
y xm x m ,由 y 2x2 2x b
2x2 3x b m 0 ,
设 M x1, y1 、 N x2, y2 为直线与抛物线的交点,线段 MN 中点为 E xE , yE ,
9 8b m 0
所以
x1 x2
3
,所以 E
取值范围是(

A.
7, 2
B.
,1 4
7
C.
,0 2
1
D.
0, 4
【答案】 C
【解析】∵ g( x)= 4x ﹣ 2,当 x< 1 时, g x 2
0 恒成立,当 x≥1 时, g( x)≥0, 2
又∵ ? x∈R, f(x)< 0 或 g( x)< 0,∴ f( x)= m( x﹣2m )( x+m +3)< 0 在 x≥1 时恒成立, 2
A.2 【答案】 C
B.4
C. 20
D. 18
【解析】对函数进行求导得到: f ( x) 3x2 3 , 令 f (x) 0 ,解得: x1 1 , x2 1, 当 0 x 1时, f (x) 0 ;当 1≤ x≤3 时, f ( x) 0 , 所以函数 f ( x) 在 0,1 上单调递减,函数 f ( x) 在 1,3 上单调递增,

2020年高考数学题型总结之函数——函数与方程

2020年高考数学题型总结之函数——函数与方程

题型一:函数与方程※方法与指导:1、已知函数根的关系,求函数值①利用函数的对称轴或者对称中心求根之和(三角函数或者其他周期函数)②利用二次函数写出根之和或根之积③利用有两个根、则满足2、已知函数根的个数求函数根关系的范围①利用均值不等式和基本不等式(可以取到最值)②利用对勾函数的单调性求最值③构造函数求函数最值3、已知根的个数求参数范围①数形结合(第一想到相切、第二极限迫近法)I、如果为非二次函数的函数要想到利用导数求切线(斜率定义)II、如果为二次函数要想到判别式确定根的个数问题III、如果为直线要想到直线过定点和切线或者其他直线斜率进行比较②构造函数I、分离参数求导(求导有时候会复杂)求最值(有时会用到洛必达)II、构造一个函数(会讨论参数范围)注:构造一个函数时,若含有对数函数,应该把对数函数前未知数除掉III、构造两个函数注1、在相同位置取得不同最值,或者在不同位置取得相同最值。

注2、构造函数时一般会出现、、、注3、若有二次函数一般对称轴会和有关4、函数形式:、、的根的个数讨论①画的图像注1.画图时先绝对值再平移变换(去左,右翻左)注2、画图时先平移变换再绝对值(去下,下翻上)注3、基础函数直接画图注4、非基础函数求导画图注5、与()的图像②换元并讨论函数根的个数问题③代入后依据②讨论根的个数(利用分参或者二次函数存在性定理)5、任意存在题型中求函数的值域问题①、有,求函数在定义域上的最值问题②、有,求函数在定义域上的最值问题③,有,求函数在定义域上的最值问题④在上存在()使得求的值域D,且在上有解教学建议:适合中等偏上学生的题,也适合教师的题,一个可以提升自己的题!题型一:函数与方程练习题1.定义域为R的函数,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)等于()A.0 B.2 C.8 D.102.设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),则x1+4x2的取值范围是()A.[4,+∞)B.(4,+∞)C.[5,+∞)D.(5,+∞)3.已知函数f(x)=若F(x)=f(x)+m有两个零点x1,x2,则x1x2的取值范围是()A.(﹣∞,e)B.(﹣∞,0)C.[e,0] D.[﹣l,0]4.已知函数f(x)=(a>0,且a≠1)在R上单调递增,且关于x的方程|f(x)|=x+3恰有两个不相等的实数解,则a的取值范围是()A.(,]B.(0,]∪{} C.[,)∪{}D.[,]∪{}5.已知函数f(x)=,函数g(x)=mx,若函数y=f(x)﹣2g(x)恰有三个零点,则实数m的取值范围是()A.(﹣,)B.(﹣,1)C.(﹣)D.(﹣∞,)6.已知函数f(x)=lnx﹣x3+2ex2﹣(a+e2)x在定义域内有零点,则实数a的取值范围为()A.B.C.D.7.若函数f(x)=log2x﹣kx在区间[1,+∞)有零点,则实数k的取值范围是()A.(0,] B.[0,] C.(,] D.[,]8.已知函数f(x)=sin2x的图象与直线2kx﹣2y﹣kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1﹣x2)tan(x2﹣2x3)=()A.﹣2 B. C.0 D.19.已知函数,设1≤x1<x2<…<x n≤16,若|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|≤M,则M的最小值为()A.3 B.4 C.5 D.610.已知函数f(x)=,若关于x的方程f(x)=m(m∈R)恰有三个不同的实数根a,b,c,则a+b+c的取值范围是()A.()B.()C.()D.()11.已知函数f(x)=,若关于x的方程f(f(x))=m只有两个不同的实根,则m的取值范围为()A.[1,2] B.[1,2)C.[0,1] D.[0,1)12.已知函数f(x)=,当x∈[m,+∞)时,f(x)的取值范围为(﹣∞,e+2],则实数m的取值范围是()A.(] B.(﹣∞,1] C.[] D.[ln2,1]13.已知函数f(x)=(kx﹣2)e x﹣x(x>0),若f(x)<0)的解集为(s,t),且(s,t)中恰有两个整数,则实数k的取值范围为()A.B.C.D.14.若函数f(x)=cos(2x﹣)﹣a(x∈[0,])恰有三个不同的零点x1,x2,x3,则x+x2+x3的取值范围是()1A.[,)B.[,)C.(,] D.(,]15.记函数f(x)=e x﹣x﹣a,若曲线y=﹣cos2x+2cos x+1上存在点(x0,y0)使得f(y0)=y0,则a的取值范围是()A.(﹣∞,e2﹣4)B.[2﹣2ln2,e2﹣4] C.[2﹣2ln2,e﹣2+4] D.(﹣∞,e﹣2+4)16.若直线y=a分别与直线y=2x﹣3,曲线y=e x﹣x(x≥0)交于点A,B,则|AB|的最小值为()A.6﹣3ln3 B.3﹣ln3 C.e D.0.5e17.已知函数f(x)=,若方程f(x)=ax有四个不等的实数根,则实数a的取值范围是()A.(﹣1,1)B.(0,1)C.(1,+∞)D.(,e)18.已知函数,若关于x的方程|f(x)﹣a|+|f(x)﹣a﹣1|=1有且仅有两个不同的整数解,则实数a的取值范围是()A.,B., C.[﹣1, D.[0,3]19.已知函数f(x)=的图象上存在两个点关于y轴对称,则实数m的取值范围为()A.(1,+∞)B.(2,+∞)C.(1,2)D.(0,1)20.已知函数只有一个零点,则a的取值范围为()A.B.C.D.21.已知函数,则方程f(x)=kx+1有3个不同的实根,则实数k的取值范围为()A.(﹣∞,0] B.C.D.(0,+∞)22.已知函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),则实数2a+b的取值范围是()A.[3+2,+∞)B.(3+2,+∞)C.[6,+∞)D.(6,+∞)23.已知函数,,则方程f(g(x))=a的实根个数最多为()A.6 B.7 C.8 D.924.函数在区间[﹣3,4]上零点的个数为()A.4 B.5 C.6 D.825.已知函数f(x)=,g(x)=(其中e为自然对数的底数).当k∈(0,﹣)时,函数h(x)=f[g(x)]﹣k的零点个数为()A.3个B.4个C.5个D.6个26.已知a∈Z,若m∈(0,e),x1,x2∈(0,e),且x1≠x2,使得,则满足条件的a的取值个数为()A.5 B.4 C.3 D.227.已知函数.若方程f(x)﹣a=0恰有两个不同的实数根,则实数a的取值范围是()A.B.C.D.28.已知函数f(x)=,当a<0时,方程f2(x)﹣2f(x)+a=0有4个不相等的实数根,则a的取值范围是()A.﹣15≤a<﹣8 B.C.﹣15<a<﹣8 D.29.已知函数,m,n满足f(m2﹣2n)+f(n2﹣2m)≥0,则|m+7n+4|的取值范围是()A.[2,12] B.[2,22] C.[12,22] D.30.已知函数(e为自然对数的底),若方程f(﹣x)+f(x)=0有且仅有四个不同的解,则实数m的取值范围是()A.(0,e)B.(e,+∞)C.(0,2e)D.(2e,+∞)31.设函数f(x)=,则函数g(x)=f(x)﹣ln(x+e2)的零点个数为()A.1个B.2个C.3个D.4个32.已知定义域为R的函数的满足f(x)=4f(x+2),当x∈[0,2)时,,设f(x)在[2n﹣2,2n)上的最大值为,且{a n}的前n项和为S n,若S n<k对任意的正整数n均成立,则实数k的取值范围为()A.(,+∞)B.[,+∞)C.[2,+∞)D.[,+∞)33.设函数,则f(﹣2)+f(log22019)=()A.1011 B.1010 C.1009 D.101234.已知函数f(x)=,若f(x1)=f(x2)(x1≠x2),则x1+x2的最大值为()A.B.2ln2﹣C.3ln2﹣2 D.ln2﹣135.已知定义在非零实数集上的奇函数y=f(x),函数y=f(x﹣2)与的图象共有4个交点,则该4个交点横坐标之和为()A.2 B.4 C.6 D.836.设函数,若函数g(x)=f2(x)+bf(x)+c有三个零点x1,x2,x3,则x1x2+x2x3+x1x3=()A.12 B.11 C.6 D.337.已知函数f(x)是定义在R上的偶函数,且满足,若函数F(x)=f(x)﹣m有6个零点,则实数m的取值范围是()A.B. C.D.38.已知函数,g(x)=f(x)﹣ax,若函数g(x)恰有三个不同的零点,则实数a的取值范围是()A. B. C.(﹣∞,﹣1) D.(7,+∞)39.函数f(x)对于任意实数x,都有f(﹣x)=f(x)与f(1+x)=f(1﹣x)成立,并且当0≤x≤1时,f(x)=x2,则方程f(x)﹣=0的根的个数是()A.2020 B.2019 C.1010 D.100940.已知函数f(x)=,函数g(x)=f(x)+a(a∈R)有三个不同的零点x1,x2,x3,则x1x2x3的取值范围是.参考答案与试题解析题型一:函数与方程1.定义域为R的函数,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)等于()A.0 B.2 C.8 D.10【解答】解:对于f2(x)+bf(x)+c=0来说,f(x)最多只有2解,又当x不等于2时,x最多四个解,不满足题中的条件.而题目要求5解,即可推断f(2)必为方程的一解.假设f(x)的一个解为A,得f(x)=|x﹣2|=A,推出x1=2+A,x2=2﹣A,∴x1+x2=4.同理可得x3+x4=4,∴x1+x2+x3+x4+x5=4+4+2=10,∴f(x1+x2+x3+x4+x5)=f(10)=|10﹣2|=8,故选:C.2.设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),则x1+4x2的取值范围是()A.[4,+∞)B.(4,+∞)C.[5,+∞)D.(5,+∞)【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a >1),可知x1是方程的解;x2是方程的解;则x1,x2分别为函数的图象与函数y=y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以,有x1x2=1,而x1≠x2则x 1+4x2=x1+x2+3x2≥>2+3=5即x1+4x2∈(5,+∞)故选:D.3.已知函数f(x)=若F(x)=f(x)+m有两个零点x1,x2,则x1x2的取值范围是()A.(﹣∞,e)B.(﹣∞,0)C.[e,0] D.[﹣l,0]【解答】解:作出f(x)的图象,F(x)=f(x)+m有两个零点,即f(x)=﹣m有两个不等实根x1,x2,即为﹣m=x1+1=lnx2,可得x1=﹣m﹣1,x2=e﹣m,m≥﹣1,则x1x2=(﹣m﹣1)e﹣m,可设g(m)=(﹣m﹣1)e﹣m,g′(m)=me﹣m,由m>0时,g′(m)>0,g(m)递增,﹣1≤m<0时,g′(m)<0,g(m)递减,即m=0处g(m)取得极小值,且为最小值﹣1,又x1x2≤0,即有x1x2的范围是[﹣1,0].故选:D.4.已知函数f(x)=(a>0,且a≠1)在R上单调递增,且关于x的方程|f(x)|=x+3恰有两个不相等的实数解,则a的取值范围是()A.(,] B.(0,]∪{}C.[,)∪{} D.[,]∪{}【解答】解:∵f(x)是R上的单调递增函数,∴y=1+log a|x﹣1|在(﹣∞,0]上单调递增,可得0<a<1,且0+4a≥1+0,即≤a<1,作出y=|f(x)|和y=x+3的函数草图如图所示:由图象可知|f(x)|=x+3在(0,+∞)上有且只有一解,可得4a≤3,或x2+4a=x+3,即有△=1﹣4(4a﹣3)=0,即有≤a≤或a=;由1+log a|x﹣1|=0,解得x=1﹣≤﹣3,即x≤0时,有且只有一解.则a的范围是[,]∪{}.故选:D.5.已知函数f(x)=,函数g(x)=mx,若函数y=f(x)﹣2g(x)恰有三个零点,则实数m的取值范围是()A.(﹣,)B.(﹣,1)C.(﹣)D.(﹣∞,)【解答】解:由题意,画出函数f(x)=的图象如下图所示:f(x)﹣2g(x)恰有三个零点即f(x)=2g(x)有三个不同交点,即f(x)=2mx有三个不同交点由图象可知,当直线斜率在k OA,k OB之间时,有三个交点即k OA<2m<k OB所以﹣可得故选:A.6.已知函数f(x)=lnx﹣x3+2ex2﹣(a+e2)x在定义域内有零点,则实数a的取值范围为()A.B.C.D.【解答】解:函数f(x)=lnx﹣x3+2ex2﹣(a+e2)x的定义域为(0,+∞),令lnx﹣x3+2ex2﹣(a+e2)x=0,得=x2﹣2ex+ax+e2;设g(x)=,则g′(x)=,则当0<x<e时,g′(x)>0,∴g(x)在区间(0,e)上单调递增;当x>c时,g′(x)<0,∴g(x)在区间(e,+∞)上单调递减;∴x=e时,函数g(x)取得最大值为g(x)max=g(e)=;设h(x)=x2﹣2ex+a+e2=(x﹣e)2+a,则当x=e时,h(x)取得最小值为h(x)min=h(e)=a;要使f(x)在定义域内有零点,则h(x)min≤g(x)max,即a≤,∴实数a的取值范围是(﹣∞,].故选:B.7.若函数f(x)=log2x﹣kx在区间[1,+∞)有零点,则实数k的取值范围是()A.(0,] B.[0,] C.(,] D.[,]【解答】解:根据题意,函数f(x)=log2x﹣kx在区间[1,+∞)有零点等价于函数y=log2x的图象与直线y=kx在[1,+∞)有交点,设过原点的直线y=kx与y=log2x(x∈[1,+∞))的图象相切于点A(x0,y0),由y′=,可得过原点的直线y=kx与y=log2x(x∈[1,+∞))的图象相切于点A的切线方程为:y﹣log2x=,又此直线过点(0,0),所以x0=e,即y′|=,即过原点的直线y=kx与y=log2x(x∈[1,+∞))的图象相切于点A的切线方程为:y=x,由图可知函数y=log2x的图象与直线y=kx在[1,+∞)有交点时,实数k的取值范围是0,故选:B.8.已知函数f(x)=sin2x的图象与直线2kx﹣2y﹣kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1﹣x2)tan(x2﹣2x3)=()A.﹣2 B.C.0 D.1【解答】解:由题意得直线2kx﹣2y﹣kπ=0(k>0)过定点(,0),且斜率k>0,由对称性可知,直线与三角函数图象切于另外两个点,所以x3+x1=π;x2=,f′(x)=2cos2x,则切线方程过点(x1,sin2x1),(x2,sin2x2),所以2(2x3﹣π)cos2x3= 2sin2x3,,而(x1﹣x2)tan(x2﹣2x3)=(﹣x3)tan(﹣2x3)=(π﹣2x3)cot2x3=﹣.故选:B.9.已知函数,设1≤x1<x2<…<x n≤16,若|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|≤M,则M的最小值为()A.3 B.4 C.5 D.6【解答】解:由,得f(1)=1,f(2)=0,f(16)=3.∵1≤x1<x2<…<x n≤16,∴|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|≤|f(x1)﹣f(x2)+f(x2)﹣f(x3)+…+f(x n﹣1)﹣f(x n)|=|f(x n)﹣f(x1)|≤|f(16)﹣f(2)|=|3﹣0|=3.又|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|≤M,则M的最小值为3.故选:A.10.已知函数f(x)=,若关于x的方程f(x)=m(m∈R)恰有三个不同的实数根a,b,c,则a+b+c的取值范围是()A.()B.()C.()D.()【解答】解:作图可得,a,b+c=2,所以a+b+c∈(),故选:D.11.已知函数f(x)=,若关于x的方程f(f(x))=m只有两个不同的实根,则m的取值范围为()A.[1,2] B.[1,2)C.[0,1] D.[0,1)【解答】解:f(f(x))=,画出函数图象,因为关于x的方程f(f(x))=m只有两个不同的实根,x1,x2,所以x1<0,x2>2,∴0≤m<1.故选:D.12.已知函数f(x)=,当x∈[m,+∞)时,f(x)的取值范围为(﹣∞,e+2],则实数m的取值范围是()A.(] B.(﹣∞,1] C.[] D.[ln2,1]【解答】解:当x≥ln2时,f(x)=(x﹣2)(x﹣e x)+3的导数为f′(x)=(x﹣1)(2﹣e x),当ln2≤x≤1时,f′(x)≤0,f(x)递减;x>1时,f′(x)>0,f(x)递增,x=1处f(x)取得极大值2+e,作出y=f(x)的图象,由当x∈[m,+∞)时,f(x)的取值范围为(﹣∞,e+2],由3﹣2x=2+e,可得x=,可得≤m≤1.故选:C.13.已知函数f(x)=(kx﹣2)e x﹣x(x>0),若f(x)<0)的解集为(s,t),且(s,t)中恰有两个整数,则实数k的取值范围为()A.B.C.D.【解答】解:由f(x)=(kx﹣2)e x﹣x<0,得(kx﹣2)e x<x,即kx﹣2<,(x>0),设h(x)=,(x>0),h′(x)==,由h′(x)>0得0<x<1,函数h(x)为增函数,由h′(x)<0得x>1,函数h(x)为减函数,即当x=1时,f(x)取得极大值,极大值为h(1)=,要使kx﹣2<,(x>0),在s,t)中恰有两个整数,则k≤0时,不满足条件.则k>0,当x=2时,h(2)=,当x=3时,h(3)=,即A(2,),B(3,),则当直线g(x)=kx﹣2在A,B之间满足条件,此时两个整数解为1,2,此时满足,即得,即+≤k<1+,即k的取值范围是[+,1+),故选:D.14.若函数f(x)=cos(2x﹣)﹣a(x∈[0,])恰有三个不同的零点x1,x2,x3,则x+x2+x3的取值范围是()1A.[,)B.[,)C.(,] D.(,]【解答】解:设t=2x﹣,因为x∈[0,],所以t∈[﹣,2π],则g(t)=cos t,t∈[﹣,2π],函数f(x)=cos(2x﹣)﹣a(x∈[0,])恰有三个不同的零点x1,x2,x3等价于y =g(t)与直线y=a有三个不同的交点,由图可知:t2+t3=2π,t1∈[﹣,0),即2x2+2x3=2π,2x1∈[﹣,0),即x2+x3=,x1∈[0,),所以x1+x2+x3∈[,),故选:A.15.记函数f(x)=e x﹣x﹣a,若曲线y=﹣cos2x+2cos x+1上存在点(x0,y0)使得f(y0)=y0,则a的取值范围是()A.(﹣∞,e2﹣4)B.[2﹣2ln2,e2﹣4]C.[2﹣2ln2,e﹣2+4] D.(﹣∞,e﹣2+4)【解答】解:y=﹣cos2x+2cos x+1=﹣(cos x﹣1)2+2,∵﹣1≤cos x≤1,∴﹣2≤y≤2,即﹣2≤y0≤2,若f(y0)=y0,有解,等价为f(x)=x,在﹣2≤x≤2上有解,即e x﹣x﹣a=x,即a=e x﹣2x在﹣2≤x≤2上有解,设h(x)=e x﹣2x,则h′(x)=e x﹣2,由h′(x)>0得ln2<x≤2,h(x)为增函数,由h′(x)<0得﹣2≤x<ln2,h(x)为减函数,即当x=ln2时,函数取得极小值同时也是最小值h(ln2)=2﹣2ln2,h(2)=e2﹣4,h(﹣2)=e﹣2+4,则h(﹣2)最大,即2﹣2ln2≤h(x)≤e﹣2+4,要使a=e x﹣2x在﹣2≤x≤2上有解,则2﹣2ln2≤a≤e﹣2+4,即实数a的取值范围是[2﹣2ln2,e﹣2+4],故选:C.16.若直线y=a分别与直线y=2x﹣3,曲线y=e x﹣x(x≥0)交于点A,B,则|AB|的最小值为()A.6﹣3ln3 B.3﹣ln3 C.e D.0.5e【解答】解:作出两个曲线的图象如图,设A(x1,a),B=(x2,a),则x1>x2,则2x1﹣3=e﹣x2,即x1=(e﹣x2+3),则|AB|=x1﹣x2=(e﹣x2+3)﹣x2=(﹣3x2+e+3),设f(x)=(e x﹣3x+3),x≥0,函数的导数f′(x)=(﹣3+e x),由f′(x)>0得x>ln3,f(x)为增函数,由f′(x)<0得0≤x<ln3,f(x)为减函数,即当x=ln3时,f(x)取得最小值,最小值为f(ln3)=(3+3﹣3ln3)=3﹣ln3,故选:B.17.已知函数f(x)=,若方程f(x)=ax有四个不等的实数根,则实数a的取值范围是()A.(﹣1,1)B.(0,1)C.(1,+∞)D.(,e)【解答】解:方程f(x)=ax有四个不等的实数根等价于y=g(x)=的图象与直线y=a有4个交点,①当x>0时,g′(x)=,易得y=g(x)在(0,1)为增函数,在(1,+∞)为减函数,②当x<0时,g′(x)=2x=,易得y=g(x)在(﹣∞,﹣1)为减函数,在(﹣1,0)为增函数,综合①②得y=g(x)的图象与直线y=a的图象的位置关系如图所示,则实数a的取值范围是0<a<1,故选:B.18.已知函数,若关于x的方程|f(x)﹣a|+|f(x)﹣a﹣1|=1有且仅有两个不同的整数解,则实数a的取值范围是()A.,B.,C.[﹣1,D.[0,3]【解答】解:要使方程|f(x)﹣a|+|f(x)﹣a﹣1|=1则当且仅当f(x)﹣a≥0,且f (x)﹣a﹣1≤0时,方程等价为f(x)﹣a﹣f(x)+a+1=1,即f(x)≥a,且f(x)≤a+1,得a≤f(x)≤a+1,即f(x)的图象夹在平行直线y=a和y=a+1之间的部分只有两个整数解.作出函数f(x)的图象如图:∵f(0)=﹣1,f(1)=0,f(﹣1)=,f(﹣2)=,∴要使a≤f(x)≤a+1的整数解只有两个,则其中一个整数解为x=0,另外一个整数解为﹣1,即满足,得,即﹣≤a<,即实数a的取值范围是[﹣,),故选:A.19.已知函数f(x)=的图象上存在两个点关于y轴对称,则实数m的取值范围为()A.(1,+∞)B.(2,+∞)C.(1,2)D.(0,1)【解答】解:函数f(x)=的图象上存在两个点关于y轴对称,即函数y=﹣x2+m的图象关于y轴对称变换后,与y=e x+,x>0的图象有交点,即方程e x+=﹣x2+m有正根,也即方程m=e x++x2有正根;令g(x)=e x++x2,x>0,则g′(x)=e x﹣e﹣x+2x,令h(x)=e x﹣e﹣x+2x,x>0,则h′(x)=e x+e﹣x+2>0恒成立,∴h(x)是单调增函数,则g′(x)>g′(0)=1﹣1+0=0,∴g(x)是单调增函数,∴g(x)>g(0)=1+1+0=2,∴m的取值范围是(2,+∞).故选:B.20.已知函数只有一个零点,则a的取值范围为()A.B.C.D.【解答】解:∵f(x)=只有一个零点,∴xlnx+a=0只有一解,即a=﹣xlnx只有一解.设g(x)=﹣xlnx(x>0),则g′(x)=﹣lnx﹣1=﹣(lnx+1),∴当0<x<时,g′(x)>0,当x时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,∴当x=时,g(x)取得最大值g()=.且当x→0时,g(x)→0,当x→+∞时,g(x)→﹣∞,∵a=g(x)只有一解,∴a≤0或a=.故选:C.21.已知函数,则方程f(x)=kx+1有3个不同的实根,则实数k的取值范围为()A.(﹣∞,0] B.C.D.(0,+∞)【解答】解:∵f(x)=kx+1恒过点(0,1),代入,得.令,解得或(舍去),又易知y=e x在(0,1)处的切线的斜率为1.则当时,f(x)=kx+1有3个不同的实根;当时,f(x)=kx+1有2个不同的实根;当时,f(x)=kx+1有1个或没有的实根;当k≤0时,f(x)=kx+1有2个不同的实根.故选:B.22.已知函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),则实数2a+b的取值范围是()A.[3+2,+∞)B.(3+2,+∞)C.[6,+∞)D.(6,+∞)【解答】解:∵f(x)=|lg(x﹣1)|,∵f(a)=f(b),∴|lg(a﹣1)|=|lg(b﹣1)|,又∵1<a<b,∴﹣lg(a﹣1)=lg(b﹣1),∴lg(a﹣1)+lg(b﹣1)=0∴(a﹣1)(b﹣1)=1,整理可得,ab=a+b,∴则2a+b=(2a+b)()=3当且仅当且即a=1+,b=时取等号∴2a+b的取值范围是[3+2,+∞)故选:A.23.已知函数,,则方程f(g(x))=a的实根个数最多为()A.6 B.7 C.8 D.9【解答】解:设t=g(x),则f(t)=a,则方程f(g(x))=a的实根个数为函数t=g(x)的图象与直线t=t1,t=t2,t=t3,t =t4的交点个数之和,要方程f(g(x))=a的实根个数最多,则需f(t)=a的解如图所示,由图(2)可知,函数t=g(x)的图象与直线t=t1,t=t2,t=t3,t=t4的交点个数之和为8,故选:C.24.函数在区间[﹣3,4]上零点的个数为()A.4 B.5 C.6 D.8【解答】解:设g(x)=1+x﹣+﹣+…﹣+,则g′(x)=1﹣x+x2﹣x3+…+x2018=,在区间[﹣3,4]上,>0,故函数g(x)在[﹣3,4]上是增函数,由于g(﹣3)式子中右边x的指数为偶次项前为负,奇数项前为正,结果必负,即g(﹣3)<0,且g(4)=1+4+(﹣+)+(﹣+)+…+(﹣+)>0,故在[﹣3,4]上函数g(x)有且只有一个零点.又y=cos2x在区间[﹣3,4]上有±,±,五个零点,且与上述零点不重复,∴函数f(x)=(1+x﹣+﹣+…﹣+)cos2x在区间[﹣3,4]上的零点的个数为1+5=6.故选:C.25.已知函数f(x)=,g(x)=(其中e为自然对数的底数).当k∈(0,﹣)时,函数h(x)=f[g(x)]﹣k的零点个数为()A.3个B.4个C.5个D.6个【解答】解:函数f(x)=2|x|﹣x2为偶函数,且f(x)的最大值为1,作出f(x)的图象;由g(x)=的导数为g′(x)=,可得x>﹣1时,g(x)递增,x<﹣2或﹣2<x<﹣1时,g(x)递减,x=﹣1取得极小值,作出g(x)的图象,函数h(x)=f[g(x)]﹣k的零点个数,即为f[g(x)]=k的解的个数,可令t=g(x),k=f(t),若k∈(0,﹣),则k=f(t)有4解,两个负的,两个正的(一个介于(0,),一个大于1),则t=g(x)有4解,符合题意.故选:B.26.已知a∈Z,若m∈(0,e),x1,x2∈(0,e),且x1≠x2,使得,则满足条件的a的取值个数为()A.5 B.4 C.3 D.2【解答】解:令f(x)=ax﹣lnx(0<x<e),(m﹣)2+3=t,则t=f(x)恒有两解,故f(x)在(0,e)上不单调,f′(x)=a﹣,当a≤0时,f′(x)<0,f(x)为减函数,不符合题意;当a>0,令f′(x)=0可得x=,故当≥e时,f(x)为单调函数,不符合题意;故0<<e.∴当x∈(0,)时,f′(x)<0,当x∈(,e)时,f′(x)>0,∴当x=时,f(x)取得最小值f()=1+lna,且x→0时,f(x)→+∞,x→e时,f(x)→ae﹣1,∵t=f(x)恒有两解,∴1+lna<t<ae﹣1恒成立,又m∈(0,e),t=(m﹣)2+3∴3≤t<5,∴,解得:≤a<e2.∵a∈Z,∴a的取值范围为{3,4,5,6,7}.故选:A.27.已知函数.若方程f(x)﹣a=0恰有两个不同的实数根,则实数a的取值范围是()A.B.C.D.【解答】解:的定义域为(0,+∞),∵f′(x)==,令f′(x)≥0可得,0,函数f(x)在(0,)上单调递增,令f′(x)<0可得,x,函数f(x)在(,+∞)上单调递减,当x=时,函数f(x)取极大值,也即为最大值f()=,又∵x→0时,f(x)→﹣∞,x→+∞时,f(x)>0,若方程f(x)=a恰有两个不同的实数根,则0<a<故选:A.28.已知函数f(x)=,当a<0时,方程f2(x)﹣2f(x)+a=0有4个不相等的实数根,则a的取值范围是()A.﹣15≤a<﹣8 B.C.﹣15<a<﹣8 D.【解答】解:令t=f(x),则方程f2(x)﹣2f(x)+a=0可转化为t2﹣2t+a=0,设方程t2﹣2t+a=0的解为t=t1,t=t2,则方程f2(x)﹣2f(x)+a=0有4个不相等的实数根等价于t=f(x)的图象与直线t=t,t=t2的交点共4个,1由函数t=f(x)的图象与直线t=t1,t=t2的位置关系可得:﹣3≤t1,设g(t)=t2﹣2t+a,则,解得:﹣15≤a<﹣8,故选:A.29.已知函数,m,n满足f(m2﹣2n)+f(n2﹣2m)≥0,则|m+7n+4|的取值范围是()A.[2,12] B.[2,22]C.[12,22] D.【解答】解:由题意,,可得f(x)为奇函数,又f(x)是R上的减函数,故f(m2﹣2n)+f(n2﹣2m)≥0f(m2﹣2n)≥﹣f(n2﹣2m)=f(2m﹣n2)m2﹣2n≤2m﹣n2(m﹣1)2+(n﹣1)2≤2,所以满足条件的(m,n)表示的区域是圆(x﹣1)2+(y﹣1)2=2的内部(含边界),则点(m,n)到直线x+7y+4=0的距离,则(﹣)≤|m+7n+4x≤(+),即12﹣10≤|m+7n+4x≤12+10,即2≤|m+7n+4x≤22,所以|m+7n+4|的取值范围是[2,22],故选:B.30.已知函数(e为自然对数的底),若方程f(﹣x)+f(x)=0有且仅有四个不同的解,则实数m的取值范围是()A.(0,e)B.(e,+∞)C.(0,2e)D.(2e,+∞)【解答】解:设F(x)=f(x)+f(﹣x),可得F(﹣x)=F(x),即有F(x)为偶函数,由题意考虑x>0时,F(x)有两个零点,当x>0时,﹣x<0,f(﹣x)=e x﹣mx+,即有x>0时,F(x)=xe x﹣e x+e x﹣mx+=xe x﹣mx+,由F(x)=0,可得xe x﹣mx+=0,由y=xe x,y=m(x﹣)相切,设切点为(t,te t),y=xe x的导数为y′=(x+1)e x,可得切线的斜率为(t+1)e t,可得切线的方程为y﹣te t=(t+1)e t(x﹣t),由切线经过点(,0),可得﹣te t=(t+1)e t(﹣t),解得t=1或﹣(舍去),即有切线的斜率为2e,由图象可得m>2e时,直线与曲线有两个交点,综上可得m的范围是(2e,+∞).故选:D.31.设函数f(x)=,则函数g(x)=f(x)﹣ln(x+e2)的零点个数为()A.1个B.2个C.3个D.4个【解答】解:函数g(x)=f(x)﹣ln(x+e2)的零点个数即为g(x)=0,即y=f(x)和y=ln(x+e2)的图象交点个数,作出y=f(x)的图象和y=ln(x+e2)的图象,可得它们共有3个交点,即零点个数为3.故选:C.32.已知定义域为R的函数的满足f(x)=4f(x+2),当x∈[0,2)时,,设f(x)在[2n﹣2,2n)上的最大值为,且{a n}的前n项和为S n,若S n<k对任意的正整数n均成立,则实数k的取值范围为()A.(,+∞)B.[,+∞)C.[2,+∞)D.[,+∞)【解答】解:当x∈[0,2)时,,可得0≤x<1时,f(x)的最大值为f()=;1<x≤2时,f(x)的最大值为f()=1,即有0≤x<2时,f(x)的最大值为;当2≤x<4时,f(x)=f(x﹣2)的最大值为;当4≤x<8时,f(x)=f(x﹣2)的最大值为;…可得{a n}为首项为,公比为的等比数列,可得S n==(1﹣)<,由S n<k对任意的正整数n均成立,可得k≥.故选:B.33.设函数,则f(﹣2)+f(log22019)=()A.1011 B.1010 C.1009 D.1012【解答】解:根据题意,10=log21024<log22019<11=log22048,则f(log22019)==,f(﹣2)=+log2(2+2)=,则f(﹣2)+f(log22019)=+=1012,故选:D.34.已知函数f(x)=,若f(x1)=f(x2)(x1≠x2),则x1+x2的最大值为()A.B.2ln2﹣C.3ln2﹣2 D.ln2﹣1【解答】解:设x1<x2,当x<0时,f(x)=2x2,f(x)单调递减,不存在x1<x2<0,使得f(x1)=f(x2),当x≥0时,f(x)=e x,f(x)单调递增,不存在0≤x1<x2,使得f(x1)=f(x2),∴x1<0≤x2,令2x12=e=t,t≥1,则x1=﹣,x2=lnt,x1+x2=lnt﹣,设g(t)=lnt﹣,t≥1,则g′(t)=﹣=,令g′(t)=0,解得t=8,当1≤t<8时,g′(t)>0;当t>8时,g′(t)<0,则g(t)在[1,8)上单调递增,在(8,+∞)上单调递减,可得g(t)max=g(8)=ln8﹣2=3ln2﹣2.故选:C.35.已知定义在非零实数集上的奇函数y=f(x),函数y=f(x﹣2)与的图象共有4个交点,则该4个交点横坐标之和为()A.2 B.4 C.6 D.8【解答】解:函数f(x)为奇函数,则函数f(x﹣2)关于点(2,0)对称,函数也关于点(2,0)对称,所以四个交点的横坐标之和为8,故选:D.36.设函数,若函数g(x)=f2(x)+bf(x)+c有三个零点x1,x2,x3,则x1x2+x2x3+x1x3=()A.12 B.11 C.6 D.3【解答】解:作出函数f(x)的图象如图所示,由图可得关于x的方程f(x)=t的解有两个或三个(t=1时有三个,t≠1时有两个),所以关于t的方程t2+bt+c=0只能有一个根t=1(若有两个根,则关于x的方程f2(x)+bf(x)+c=0有四个或五个根),由f(x)=1,可得x1,x2,x3的值分别为1,2,3,x1x2+x2x3+x1x3=1×2+2×3+1×3=11.故选:B.37.已知函数f(x)是定义在R上的偶函数,且满足,若函数F(x)=f(x)﹣m有6个零点,则实数m的取值范围是()A.B.C.D.【解答】解:∵f(x)是定义在R上的偶函数,若函数F(x)=f(x)﹣m有6个零点,∴等价为当x>0时,函数F(x)=f(x)﹣m有3个零点,且0不是函数F(x)=f(x)﹣m的零点,即当x>0时,f(x)=m有3个根,当0≤x<1时,f(x)=x2﹣=(x﹣)2﹣,当x≥1时,f(x)=,则f′(x)==当x>2时,f′(x)<0,函数为减函数,当1≤x<2时,f′(x)>0,函数为增函数,即当x=2时,函数f(x)为极大值,极大值为f(2)=,当x≥1时,f(x)≥0,作出f(x)在x≥0时的图象如图,要使y=m与y=f(x)在x≥0时有三个交点,则0<m<,即实数m的取值范围是(0,),故选:C.38.已知函数,g(x)=f(x)﹣ax,若函数g(x)恰有三个不同的零点,则实数a的取值范围是()A.B.C.(﹣∞,﹣1)D.(7,+∞)【解答】由g(x)=f(x)﹣ax=0得f(x)=ax,若函数g(x)恰有三个不同的零点,则等价为f(x)与y=ax有三个不同的交点,∵f(x)=x2+3x+4=(x+)2+,∴当a≥0,两个函数只有一个交点,不满足条件.∴a<0,要使f(x)与y=ax有三个不同的交点,则等价为当x>a时,y=ax与y=﹣x﹣1,有一个交点,此时a<﹣,当x≤a时,y=ax与f(x)=x2+3x+4有两个交点,则当y=ax与f(x)=x2+3x+4相切时,f(x)=x2+3x+4=ax.即x2+(3﹣a)x+4=0,则判别式△=(3﹣a)2﹣16=0得a﹣3=4或a﹣3=﹣4,则a=7(舍)或a=﹣1,当x=a时,f(a)=a2+3a+4,即A(a,a2+3a+4),当y=ax过点A时,直线y=ax与f(x)有两个交点,此时a2+3a+4=a•a=a2,得3a+4=0得a=﹣,要使当x≤a时,y=ax与f(x)=x2+3x+4有两个交点,则满足﹣≤a<﹣1,又a<﹣,∴﹣≤a<﹣,即实数a的取值范围是[﹣,﹣),故选:B.39.函数f(x)对于任意实数x,都有f(﹣x)=f(x)与f(1+x)=f(1﹣x)成立,并且当0≤x≤1时,f(x)=x2,则方程f(x)﹣=0的根的个数是()A.2020 B.2019 C.1010 D.1009【解答】解:由函数f(x)对于任意实数x,都有f(﹣x)=f(x),则函数f(x)为偶函数,又f(1+x)=f(1﹣x)成立,所以函数f(x)的图象关于直线x=1对称,联立f(﹣x)=f(x)与f(1+x)=f(1﹣x)可得f(x)=f(2+x),即函数f(x)为周期为2的周期函数,则函数y=f(x)的图象与直线y=在[0,1]有两个交点,在(1,3]有两个交点,在(3,5]有两个交点…在(2017,2019]有两个交点,在(2019,+∞)无交点,在(﹣∞,0)无交点,即交点个数为2020,故选:A.40.已知函数f(x)=,函数g(x)=f(x)+a(a∈R)有三个不同的零点x1,x2,x3,则x1x2x3的取值范围是[0,e] .【解答】解:作出函数f(x)的图象如图:则当﹣2≤x≤0时,抛物线的对称轴为x=﹣1,若函数g(x)=f(x)+a有三个不同的零点x1,x2,x3,不妨设x1<x2<x3,即g(x)=f(x)+a=0,f(x)=﹣a有三个不同的根,则0≤﹣a<1,即﹣1<a≤0,当x≤0时,﹣x2﹣2x+a=0,即x2+2x﹣a=0,则x1x2=﹣a,当x>0时,由lnx3+a=0,得lnx3=﹣a,即x3=e﹣a,则x1•x2•x3=﹣ae﹣a,设g(a)=﹣ae﹣a,﹣1<a≤0,则导数g′(a)=﹣e﹣a+ae﹣a=e﹣a(a+1),则当﹣1≤a≤0时,g′(a)≤0恒成立,即此时函数g(a)为减函数,则g(0)=0,g(﹣1)=e,即0≤g(a)≤e,即0≤x1•x2•x3≤e,即x1•x2•x3的取值范围是[0,e],故答案为:[0,e].。

2020年山东省高考数学试卷试卷及解析(26页)

2020年山东省高考数学试卷试卷及解析(26页)

2020年山东省高考数学试卷试卷及解析(26页)一、选择题(每小题5分,共50分)1. 设集合A={x|x^25x+6=0},B={x|x^23x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. { }2. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最大值为M,则M的取值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 54. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√35. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i6. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为()A. 0B. 1C. 2D. 37. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最小值为n,则n的取值为()A. 0B. 1C. 2D. 38. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 59. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√310. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i二、填空题(每小题5分,共20分)11. 若log2(3x2)=1,则x的值为_________。

12. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为_________。

13. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为_________。

高考数学历年函数试题及答案(2020年10月整理).pdf

高考数学历年函数试题及答案(2020年10月整理).pdf

1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1,x 2∈[0,21]都有).()()(2121x f x f x x f ⋅=+(Ⅰ)设);41(),21(,2)1(f f f 求= (Ⅱ)证明)(x f 是周期函数。

2. 设函数.,1|2|)(2R x x x x f ∈−−+= (Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤−⎢⎥⎣⎦上的图象x4.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244−++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+−+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223−+−=在)0,(−∞和),1(+∞都是增函数, 求 a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值. (Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围.9.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫−− ⎪⎝⎭,内是减函数,求a 的取值范围.10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b −=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =−+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<−+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像-1-3232112-12π7π83π45π8π23π8π4π8oyx13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(−>的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答:2. 解:(Ⅰ).7)2(,3)2(=−=f f 由于),2()2(),2()2(f f f f −≠−≠−故)(x f 既不是奇函数,也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+−≥−+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(−∞=在f 内的最小值为.43)21(=f故函数),()(+∞−∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+−=+= )42sin(21)4sin2cos 4cos 2(sin 21πππ−+=−⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x 83π−8π−8π 83π 85π y121−121+1故函数)(x f y =在区 间]2,2[ππ−上的图象是4. 解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222−−+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=−−=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.415. 解:函数f (x )的导数:.163)(2−+='x ax x f (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<−+ .3012360−<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'−<知由时是减函数;(II )当3−=a 时,133)(23+−+−=x x x x f =,98)31(33+−−x 由函数3x y =在R 上的单调性,可知 当3−=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3−>a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3−>a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是 6. 解: 由,222,A C B C B A −=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +−=.23)212(sin 22+−−=A当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7. 解:),1(23)('22−+−=a ax x x f其判别试.81212124222a a a −=+−=∆ (ⅰ)若,26,08122±==−=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞−∞>+∞∈−∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<−=∆a .),()(,0)('为增函数在恒有+∞−∞>x f x f 所以 ,232>a 即 ).,26()26,(+∞−−∞∈ a (ⅲ)若,08122>−=∆a 即,0)(',2626=<<−x f a 令 解得 .323,3232221a a x a a x −+=−−=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈−∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a − 解得 1≤.26<a由2x ≤1得,232a −≤3,a − 解得 .2626<<−a 从而 .)26,1[∈a 综上,a 的取值范围为),26,1[),26[]26, +∞−∞− 即 ∈a ).,1[]26,(+∞−−∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增;当23a >,由()0f x '=求得两根为3a x −±=即()f x在3a ⎛⎫−−∞ ⎪ ⎪⎝⎭,递增,33a a ⎛⎫−−+ ⎪ ⎪⎝⎭,递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫−− ⎪⎝⎭,内是减函数,33a a ⎛⎫−−− ⎪ ⎪⎝⎭,递减,∴233133a a ⎧−−⎪⎪⎨−+⎪−⎪⎩≤,且23a>,解得:2a ≥。

复合函数(2020年10月整理).pdf

复合函数(2020年10月整理).pdf

复合函数复合函数是中学数学里,深化函数概念、提高运用函数思想解决数学问题能力的重要工具,是进一步学习高等数学的重要基础,也是历年高考常考不衰的热点。

但高中数学教材未作介绍,而其他教辅资料上也仅给出描述性的非严格定义,因此,高一数学教学与高考数学复习中,介绍有关内容很有必要。

一、复合函数的概念我们常见的复合函数的描述性定义是:如果y 是u 的函数,而u 又是x 的函数,即)(u f y =,)(x g u =,那么y 关于x 的函数)]([x g f y =叫做函数f 和g 的复合函数,u 叫做中间变量。

例如x y 2sin =它与x y sin =不同,不是基本初等函数,而是由三角函数u y sin =和一次函数x u 2=经过“复合”而成的一个函数。

由于上述定义中对“复合”的定义没有明确界定,因而很多同学对复合函数的概念似是而非,含混不清,为此,我们精读这个定义,字斟句酌,纠错补缺,以使我们正确理解复合函数的概念。

1、由字面理解“复合”本来是指“合在一起,结合起来”的意思,但在复合函数的定义中,对复合步骤的方式有特殊的约定。

它不是泛指把几个简单函数随意地结合在一起,例如用四则运算把它们结合起来,得到的形如)()(x g b x f a ⋅±⋅或)()(x g b x f a ⋅⋅⋅的函数,而是专指把几个映射,像工厂中的生产流水线,依先后顺序合在一起,对同一自变量逐次映射,构作的一个复合映射确定的函数。

这里的几个映射可以相同,也可以不同,但只能是常数与基本初等函数间进行的幂运算、指数运算、对数运算、三角运算、反三角运算等。

自变量像被加工的零件依次通过第一个映射后到第二个映射,一直到通过全部映射。

例如,复合函数x y 2sin =是自变量x 先“乘2”(第一次映射),再“取正弦”(第二次映射),最后得到y 关于x 的一个函数x y 2sin =,因此有人说复合函数是函数的函数。

为了叙述和应用的方便,我们通常用“层”来描述上述不同的映射所对应的函数。

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习导数与函数 五1.已知函数f(x)=lnx -x ,g(x)=ax 2+2x(a<0).(1)求函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最值; (2)求函数h(x)=f(x)+g(x)的极值点. 2.已知函数f(x)=x 3-3x 2+2x ,g(x)=tx ,.(1)求函数的单调增区间;(2)令h(x)=f(x)-g(x),且函数h(x)有三个彼此不相等的零点0,m,n ,其中m<n . ①若n=2m ,求函数h(x)在x=m 处的切线方程; ②若对,恒成立,求实数t 的取值范围.3.已知函数f(x)=xlnx.(1)若函数,求g(x)的极值;(2)证明:f(x)+1<e x-x 2. (参考数据:,,,)4.已知函数f(x)=(x -1)e x+1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x-1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.5.已知函数f(x)=e x (x -ae x).(1)当a=0时,求f(x)的极值;(2)若f(x)有两个不同的极值点,求a 的取值范围. 6.已知函数,.(1)当m<1时,讨论函数f(x)的单调性; (2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2.求证.7.已知(1)求函数的单调区间; (2)求函数在上的最小值;(3)对一切的,恒成立,求实数的取值范围.8.已知函数f(x)=ln x,g(x)=21ax+b. (1)若曲线f(x)与g(x)在x=1处相切,求g(x)的表达式; (2)若φ(x)=1)1(+-x x m -f(x)在[1,+∞)上是减函数,求实数m 的取值范围.9.设函数f(x)=(1-x 2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a 的取值范围.10.已知函数,(为自然对数的底数).(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:.11.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)12.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x +1,求函数f(x)的解析式; (2)讨论函数f(x)的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 14.已知函数(1)求函数的极值;(2)设函数,其中k ∈R ,求函数在区间[1,e]上的最大值.15.已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1).(Ⅰ)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (Ⅱ)若函数y=|f (x )﹣t|﹣1有三个零点,求t 的值.答案解析1.解:(1)依题意,f′(x)=1x -1,令1x-1=0,解得x=1.因为f(1)=-1,f ⎝ ⎛⎭⎪⎫1e =-1-1e ,f(e)=1-e ,且1-e<-1-1e <-1, 故函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为-1,最小值为1-e. (2)依题意,h(x)=f(x)+g(x)=lnx +ax 2+x(x>0),h′(x)=1x +2ax +1=2ax 2+x +1x,当a<0时,令h′(x)=0,则2ax 2+x +1=0. 因为Δ=1-8a>0,所以h′(x)=2ax 2+x +1x =2a (x -x 1)(x -x 2)x ,其中x 1=-1-1-8a 4a ,x 2=-1+1-8a4a.因为a<0,所以x 1<0,x 2>0,所以当0<x<x 2时,h′(x)>0; 当x>x 2时,h′(x)<0,所以函数h(x)在区间(0,x 2)内是增函数,在区间(x 2,+∞)内是减函数,故x 2=-1+1-8a4a为函数h(x)的极大值点,无极小值点.2.解:(1),所以,令 得到,所以的单调增区间是.(2)由方程得是方程的两实根,故,且由判别式得, ①若,得,故,得,因此,故函数在处的切线方程为. ②若对任意的,都有成立,所以,因为,所以, 当时,对有,所以,解得,又因为,得,则有;当时,,则存在的极大值点,且,由题意得,将代入得,进而得到,得,又因为,得,综上可知t的取值范围是或.3.解:(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(2)要证f(x)+1<e x﹣x2.即证e x﹣x2﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),e x﹣x2﹣xlnx≥e x﹣2x2+x﹣1,故只需证明当x>0时,e x﹣2x2+x﹣1>0恒成立,令k(x)=e x﹣2x2+x﹣1,(x≥0),则k′(x)=e x﹣4x+1,令F(x)=k′(x),则F′(x)=e x﹣4,令F′(x)=0,解得:x=2ln2,∵F′(x)递增,故x∈(0,2ln2]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(2ln2,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,由零点存在定理,可知∃x1∈(0,2ln2),∃x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 4.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e). ①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a . 当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 5.解:(1)当a=0时,f(x)=xe x ,f′(x)=(x +1)e x,令f′(x)>0,可得x>-1,故f(x)在(-1,+∞)上单调递增, 同理可得f(x)在(-∞,-1)上单调递减,故f(x)在x=-1处有极小值f(-1)=-1e .(2)依题意,可得f′(x)=(x +1-2ae x )e x=0有两个不同的实根.设g(x)=x +1-2ae x ,则g(x)=0有两个不同的实根x 1,x 2,g′(x)=1-2ae x,若a≤0,则g′(x)≥1,此时g(x)为增函数,故g(x)=0至多有1个实根,不符合要求;若a>0,则当x<ln 12a 时,g′(x)>0,当x>ln 12a时,g′(x)<0,故此时g(x)在-∞,ln 12a 上单调递增,在ln 12a ,+∞上单调递减,g(x)的最大值为gln 12a =ln 12a -1+1=ln 12a,又当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→-∞,故要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0,得0<a<12或作图象知要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0.设g(x)=0的两个不同实根为x 1,x 2(x 1<x 2), 当x<x 1时,g(x)<0,此时f′(x)<0; 当x 1<x<x 2时,g(x)>0,此时f′(x)>0; 当x>x 2时,g(x)<0,此时f′(x)<0.故x 1为f(x)的极小值点,x 2为f(x)的极大值点,0<a<12符合要求.综上所述,a 的取值范围为(0,0.5). 6.解:, ,令,,, 令则, 当,即时, 令则;令则.此时函数在上单调递减;在上单调递增.当,即时, 令,则; 令则, 此时函数在上单调递减; 在和上单调递增. 由知,若有两个极值点, 则且,又,是的两个根,则, ,令,则, 令,则,令,则,所以在上单调递减;在上单调递增.,,,得证.7.8.解析:9.解:(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).10.(1);(2);(3)证明见解析.11.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以 由=0得①若,即时,在上,有,故函数单调递增所以 ②若,即时, 在上,有,故函数在上单调递减, 在上,有.故函数在上单调递增, 所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故12.解:(1)f(x)=ax 2+1(a >0),则f ′(x)=2ax ,k 1=2a ,g(x)=x 3+bx ,则g ′(x)=3x 2+b ,k 2=3+b , 由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b ,∴a+1=1+b ,即a=b ,代入①式,可得:a=3,b=3. (2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x 3+3x 2﹣9x+1则h ′(x)=3x 2+6x ﹣9, 令h'(x)=0,解得:x 1=﹣3,x 2=1;∴k ≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k ,2]上的最大值为h(﹣3)=28﹣3<k <2时,函数h(x)在区间[k ,2]上的最大值小于28 所以k 的取值范围是(﹣∞,﹣3] 13.解:(1)f′(x)=1-ax2(x≠0),由已知及导数的几何意义得f′(2)=3,则a=-8.由切点P(2,f(2))在直线y=3x +1上可得-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x -8x+9.(2)由(1)知f′(x)=1-ax2(x≠0).当a≤0时,显然f′(x)>0,这时f(x)在(-∞,0),(0,+∞)上是增函数. 当a>0时,令f′(x)=0,解得x=±a ,当x 变化时,f′(x),f(x)的变化情况如下表:所以当a>0时,f(x)在(-∞,-a),(a ,+∞)上是增函数, 在(-a ,0),(0,a)上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于 ⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.15.。

2020高考—函数(解答+答案)

2020高考—函数(解答+答案)
递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.
(ii)若0<2a+1<2,即 1 a 1 ,则当x∈(0,2a+1)∪(2,+∞)时,g'(x)<0;当x∈(2a+1,
2
2
2)时,g'(x)>0.所以g(x)在(0,2a+1),(2,+∞)单调递减,在(2a+1,2)单调递增.由于g(0)=1,
(1)若 f x x2 2x,g x x2 2x,D (, ) ,求 h(x)的表达式;
(2)若 f (x) x2 x 1,g(x) k ln x,h(x) kx k, D (0, ) ,求 k 的取值范围; (3)若
f (x) x4 2x2,g(x) 4x2 8 ,h(x) 4 t3 t x 3t4 2t2 (0 t 2),
(ii)若a> 1 ,则f(lna)<0. e
由于f(–2)=e–2>0,所以f(x)在(–∞,lna)存在唯一零点.
由(1)知,当x>2时,ex–x–2>0,所以当x>4且x>2ln(2a)时,
f
(x)
x
e2
x
e2
a(x
2)
eln(2a) ( x
2)
a(x
2)
2a
0

2
故f(x)在(lna,+∞)存在唯一零点,从而f(x)在(–∞,+∞)有两个零点.
(1,+∞)单调递减.从而当 x=1 时,h(x)取得最大值,最大值为 h(1)=−1−c.
故当且仅当−1−c≤0,即 c≥−1 时,f(x)≤2x+c.

2020年全国各地高考数学试卷分类汇编—函数(含解析)

2020年全国各地高考数学试卷分类汇编—函数(含解析)

2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.。

高中数学经典题型50道(另附详细答案)(2020年10月整理).pdf

高中数学经典题型50道(另附详细答案)(2020年10月整理).pdf

3). 因此 kPA
=
53 8−3
=
3 ,故炮击的方位角北偏东 30 。
说明:本题的关键是确定 P 点的位置,另外还要求学生掌握方位角的
基本概念。
4. 河上有抛物线型拱桥,当水面距拱顶 5 米时,水面宽度为 8 米,
3
一小船宽 4 米,高 2 米,载货后船露出水面的部分高 0.75 米,问 水面上涨到与抛物线拱顶距多少时,小船开始不能通行? 解:建立平面直角坐标系,设拱桥型抛物线方程为 x2 = −2 py ( p 0) 。 将 B(4,-5)代入得 P=1.6 x2 = −3.2 y 船两侧与抛物线接触时不能通过 则 A(2,yA),由 22=-3.2 yA 得 yA = - 1.25 因为船露出水面的部分高 0.75 米 所以 h=︱yA︱+0.75=2 米 答:水面上涨到与抛物线拱顶距 2 米时,小船开始不能通行 [思维点拔] 注意点与曲线的关系的正确应用和用建立抛物线方程 解决实际问题的技巧。.
设曲线段 C 的方程为 y 2 = 2 px( p 0)(xA x xB , y 0) ,其中 xA , xB 为
A、B 的横坐标,p = MN ,所以 M (− p ,0), N( p ,0) ,由 AM = 17, AN = 3,
2
2
得 (xA
+
p)2 2
+
2 pxA
= 17
(1)
4
(x A
3. A,B,C 是我方三个炮兵阵地,A 在 B 正东 6 Km ,C 在 B 正北偏西
30 ,相距 4 Km ,P 为敌炮阵地,某时刻 A 处发现敌炮阵地的某种
信号,由于 B,C 两地比 A 距 P 地远,因此 4 s 后,B,C 才同时发

2020年高考数学(理)大题分解专题06 函数与导数

2020年高考数学(理)大题分解专题06  函数与导数

当 x ( 2 1,+) 时, F (x) 0 , F (x) 单调递减. a
因此 F (x) F ( 2 1) 2 ln 2 2 a ln a a 2 ln a .
a
a
2
2
令函数 g(a) a 2 ln a ,其中 1 a 2 ,
又因为 f (0) 1,所以曲线 y f (x) 在点 (0, f (0)) 处的切线方程为 y 1.
【肢解
2】(2)求函数
f
x 在区间
0,
π 2
上的最大值和最小值.
(2)设 h(x) ex (cos x sin x) 1 ,则 h(x) ex (cos x sin x sin x cos x) 2ex sin x .
【解析】(1) f (x) 3x2 2ax 3x(x 2 a) , 3
当 a 0 , f (x) 0 ,函数递增区间是 (, ) ,
当 a 0 ,递增区间是 (, 2 a), (0, ) , 3
当 a 0 ,递增区间是 (, 0), ( 2a , ) . 3
关注微信公众号《免费下载站》获取更多资料
大题肢解一
专题 06 函数与导数
函数的最值
(2020 安徽省十四校联盟高三段考)已知函数 f x ex cos x x .
(1)求曲线 y f x 在点 0, f 0 处的切线方程;
(2)求函数
f
x 在区间
0,
π 2
1 m
1 e
所以
m
的取值范围是

1
e
e
,1
.
变式训练一

高考数学基本初等函数经典题型

高考数学基本初等函数经典题型
16.
(1) ;(2)奇函数.
【分析】
(1)根据分母不能为零,由 求解.
(2)直接利用函数奇偶性的定义判断.
【详解】(1)因为函数
所以 ,即 ,
解得 ,
所以函数 的定义域是 ;
(2)由(1)知定义域关于原点对称,
又 ,
所以函数 是奇函数.
17.
(1)-1、4为 的不动点;(2) ;(3) .
【分析】
h(0)=f(0)+f(1)=1+ ,h(2)=f(2)+f(﹣1)= + ,若h(0)=h(2),则a=1,故③是假命题;
∵g(x)=f(x)﹣1是奇函数,∴F(x)=|f(x)﹣1|是偶函数,
当x>0时,F(x)=|f(x)﹣1|=1﹣ 在(0,+∞)上是增函数,故F(x)>F(0)=0,故函数有唯一一个零点0,故④是真命题.
解得: 或
所以 、 为 的不动点.
(2)因为 恒有两个不动点
即 恒有两个不等实根
整理为: 恒成立
即对于任意 , 恒成立
令 ,则
,解得:
(3)

【点睛】本题考查函数问题中新定义问题,关键是能够充分理解不动点的定义,从而构造方程.在求解参数范围过程中,要根据不同的函数模型,利用二次函数、对号函数求解对应模型的最值,对于学生转化与化归的思想要求较高.
对于B选项,函数定义域为 , ,故函数不是奇函数,故B选项错误;
对于C选项,函数定义域为 , ,故函数是奇函数,但函数在 和 上单调递增,在定义域内不具有单调性,故C选项错误;
对于D选项,函数的定义域为 ,定义域不关于原点对称,故不具有奇偶性,故D选项错误.
故选:A.
6.
(1) ;(1)1.

高考2020数学经典题型有哪些

高考2020数学经典题型有哪些

⾼考2020数学经典题型有哪些 ⾼考数学全国卷⼀共考22道题,选择题12道,填空题4道,解答题5道,选做题1道。

接下来是⼩编为⼤家整理的⾼考2020数学经典题型,希望⼤家喜欢! ⾼考2020数学经典题型⼀ 1.函数与导数:2—3个⼩题,1个⼤题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的⼏何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为⼯具解决函数、⽅程、不等式等的应⽤问题。

2.三⾓函数与平⾯向量:⼩题⼀般主要考查三⾓函数的图像与性质、利⽤诱导公式与和差⾓公式、倍⾓公式、正余弦定理求值化简、平⾯向量的基本性质与运算.⼤题主要以正、余弦定理为知识框架,以三⾓形为依托进⾏考查(注意在实际问题中的考查)或向量与三⾓结合考查三⾓函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查. 3.数列:2个⼩题或1个⼤题,⼩题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(⽐)数列通项公式、求和公式,错位相减求和、简单递推为主. 4.解析⼏何:2⼩1⼤,⼩题⼀般主要以考查直线、圆及圆锥曲线的性质为主,⼀般结合定义,借助于图形可容易求解,⼤题⼀般以直线与圆锥曲线位置关系为命题背景,并结合函数、⽅程、数列、不等式、导数、平⾯向量等知识,考查求轨迹⽅程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对⼆次曲线之间结合的考查,⽐如椭圆与抛物线,椭圆与圆等. 5.⽴体⼏何:2⼩1⼤,⼩题必考三视图,⼀般侧重于线与线、线与⾯、⾯与⾯的位置的关系以及空间⼏何体中的空间⾓、距离、⾯积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平⾏、垂直、夹⾓、距离等为考查⽬标. ⼏何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计:2⼩1⼤,⼩题⼀般主要考查频率分布直⽅图、茎叶图、样本的数字特征、独⽴性检验、⼏何概型和古典概型、抽样(特别是分层抽样)、排列组合、⼆项式定理第⼏个重要的分布.解答题考查点⽐较固定,⼀般考查离散型随机变量的分布列、期望和⽅差.仍然侧重于考查与现实⽣活联系紧密的应⽤题,体现数学的应⽤性. 7.不等式:⼩题⼀般考查不等式的基本性质及解法(⼀般与其他知识联系,⽐如集合、分段函数等)、基本不等式性质应⽤、线性规划;解答题⼀般以其他知识(⽐如数列、解析⼏何及函数等)为主要背景,不等式为⼯具进⾏综合考查,⼀般较难。

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考复习】2020年高考数学(理数)函数与导数 大题1.已知函数f(x)=ln xx +a (a∈R),曲线y=f(x)在点(1,f(x))处的切线与直线x +y +1=0垂直.(1)试比较2 0172 018与2 0182 017的大小,并说明理由;(2)若函数g(x)=f(x)-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.2.已知函数f(x)=kx-ln x-1(k>0).(1)若函数f(x)有且只有一个零点,求实数k 的值;(2)证明:当n∈N *时,1+12+13+ (1)>ln(n +1).3.已知函数f(x)=ax-ln x ,F(x)=e x+ax ,其中x>0,a<0.(1)若f(x)和F(x)在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a∈⎝⎛⎦⎥⎤-∞,-1e 2,且函数g(x)=xe ax-1-2ax +f(x)的最小值为M ,求M 的最小值.4.已知函数f(x)=ln x +tx-s(s ,t∈R).(1)讨论f(x)的单调性及最值;(2)当t=2时,若函数f(x)恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4.5.已知函数f(x)=(2+x +ax 2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a.6.已知函数f(x)=ln x +2ax +1(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,求证:f(x)≤x +12.7.已知函数f(x)=ln x-a(x +1),a∈R 的图象在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x 0>1,当x∈(1,x 0)时,恒有f(x)-x 22+2x +12>k(x-1)成立,求k 的取值范围.8.已知函数f(x)=xe x-a 3x 2-a 2x ,a≤e,其中e 为自然对数的底数.(1)当a=0,x>0时,证明:f(x)≥ex 2; (2)讨论函数f(x)极值点的个数.9.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:⎝ ⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).10.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a=2时,求函数f(x)的单调区间;(2) 若方程f(-x)+f(x)=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m-n|≥1,使得f(m)=f(n),求证:1≤ae -1≤e.答案解析1.解:(1) 20172 018>2 0182 017.理由如下:依题意得,f′(x)=x +ax-ln x +2,因为函数f(x)在x=1处有意义,所以a≠-1.所以f′(1)=1+a +2=11+a, 又由过点(1,f(1))的切线与直线x +y +1=0垂直可得,f′(1)=1,即11+a=1,解得a=0.此时f(x)=ln x x ,f′(x)=1-ln xx2, 令f′(x)>0,即1-ln x>0,解得0<x<e ; 令f′(x)<0,即1-ln x<0,解得x>e.所以f(x)的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f(2 017)>f(2 018),即ln 2 0172 017>ln 2 0182 018,则2 018ln 2 017>2 017ln 2 018,所以2 0172 018>2 0182 017.(2)证明:不妨设x 1>x 2>0,因为g(x 1)=g(x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0.可得ln x 1+ln x 2=k(x 1+x 2),ln x 1-ln x 2=k(x 1-x 2),要证x 1x 2>e 2,即证ln x 1+ln x 2>2,也就是k(x 1+x 2)>2,因为k=ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>1-x 2x 1+x 2,令x 1x 2=t ,则t>1,即证ln t>-t +1.令h(t)=ln t--t +1(t>1).由h′(t)=1t -4+2=-2+2>0得函数h(t)在(1,+∞)上是增函数,所以h(t)>h(1)=0,即ln t>-t +1.所以x 1x 2>e 2. 2.解:(1) f(x)=kx-ln x-1,f′(x)=k-1x =kx -1x(x>0,k>0),当x=1k 时,f′(x)=0;当0<x<1k 时,f′(x)<0;当x>1k时,f′(x)>0.∴f(x)在⎝ ⎛⎭⎪⎫0,1k 上单调递减,在⎝ ⎛⎭⎪⎫1k ,+∞上单调递增, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1k =ln k , ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1.(2)证明:由(1)知x-ln x-1≥0,即x-1≥ln x,当且仅当x=1时取等号,∵n∈N *,令x=n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).3.解:(1)由题意得f′(x)=a-1x =ax -1x,F′(x)=e x+a ,x>0,∵a<0,∴f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减, 当-1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意, 当a<-1时,由F′(x)>0,得x>ln(-a),由F′(x)<0,得0<x<ln(-a), ∴F(x)的单调递减区间为(0,ln(-a)),单调递增区间为(ln(-a),+∞). ∵f(x)和F(x)在区间(0,ln 3)上具有相同的单调性, ∴ln(-a)≥ln 3,解得a≤-3, 综上,a 的取值范围是(-∞,-3].(2)g′(x)=e ax-1+axe ax-1-a-1x =(ax +1)⎝⎛⎭⎪⎫e ax -1-1x ,由e ax-1-1x =0,解得a=1-ln x x ,设p(x)=1-ln x x ,则p′(x)=ln x -2x 2, 当x>e 2时,p′(x)>0,当0<x<e 2时,p′(x)<0,从而p(x)在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p(x)min =p(e 2)=-1e2,当a≤-1e 2时,a≤1-ln x x ,即e ax-1-1x≤0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,ax +1>0,g′(x)≤0,g(x)单调递减, 当x∈⎝ ⎛⎭⎪⎫-1a ,+∞时,ax +1<0,g′(x)≥0,g(x)单调递增,∴g(x)min =g ⎝ ⎛⎭⎪⎫-1a =M , 设t=-1a ∈(0,e 2],M=h(t)=t e2-ln t +1(0<t≤e 2),则h′(t)=1e 2-1t ≤0,h(t)在(0,e 2]上单调递减,∴h(t)≥h(e 2)=0,即M≥0, ∴M 的最小值为0. 4.解:(1)f′(x)=x -tx2(x>0),当t≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,f(x)无最值; 当t>0时,由f′(x)<0,得x<t ,由f′(x)>0,得x>t , f(x)在(0,t)上单调递减,在(t ,+∞)上单调递增,故f(x)在x=t 处取得最小值,最小值为f(t)=ln t +1-s ,无最大值. (2)∵f(x)恰有两个零点x 1,x 2(0<x 1<x 2),∴f(x 1)=ln x 1+2x 1-s=0,f(x 2)=ln x 2+2x 2-s=0,得s=2x 1+ln x 1=2x 2+ln x 2,∴2-x 1x 1x 2=ln x 2x 1,设t=x 2x 1>1,则ln t=-tx 1,x 1=-tln t,故x 1+x 2=x 1(t +1)=2-tln t ,∴x 1+x 2-4=2⎝ ⎛⎭⎪⎫t 2-1t -2ln t ln t,记函数h(t)=t 2-1t-2ln t ,∵h′(t)=-2t2>0,∴h(t)在(1,+∞)上单调递增, ∵t>1,∴h(t)>h(1)=0,又t=x 2x 1>1,ln t>0,故x 1+x 2>4成立.5.解:(1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x ,f′(x)=ln(1+x)-x1+x. 设函数g(x)=ln(1+x)-x 1+x ,则g′(x)=x+2. 当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 且仅当x=0时,g(x)=0,从而f′(x)≥0,且仅当x=0时,f′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=2+x +ax 2=ln(1+x)-2x2+x +ax2.由于当|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,2+x +ax 2>0, 故h(x)与f(x)符号相同. 又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点.h′(x)=11+x -+x +ax 2-++x +ax 22=x 22x 2+4ax +6a ++2+x +2.若6a +1>0,则当0<x<-6a +14a, 且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)>0, 故x=0不是h(x)的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x∈(x 1,0),且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)<0,所以x=0不是h(x)的极大值点.若6a +1=0,则h′(x)=x 3-+2-6x -2,则当x∈(-1,0)时,h′(x)>0; 当x∈(0,1)时,h′(x)<0. 所以x=0是h(x)的极大值点, 从而x=0是f(x)的极大值点.综上,a=-16.6.解:(1)f(x)的定义域为(0,+∞),f′(x)=x 2+-+1+2.考虑y=x 2+2(1-a)x +1,x>0.①当Δ≤0,即0≤a≤2时,f′(x)≥0,f(x)在(0,+∞)上单调递增. ②当Δ>0,即a>2或a<0时,由x 2+2(1-a)x +1=0,得x=a-1±a 2-2a.若a<0,则f′(x)>0恒成立,此时f(x)在(0,+∞)上单调递增;若a>2,则a-1+a 2-2a>a-1-a 2-2a>0,由f′(x)>0,得0<x<a-1-a 2-2a 或x>a-1+a 2-2a ,则f(x)在(0,a-1-a 2-2a)和(a-1+a 2-2a ,+∞)上单调递增.由f′(x)<0,得a-1-a 2-2a<x<a-1+a 2-2a ,则f(x)在(a-1-a 2-2a ,a-1+a 2-2a)上单调递减.综上,当a≤2时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为(0,a-1-a 2-2a),(a-1+a 2-2a ,+∞),单调递减区间为(a-1-a 2-2a ,a-1+a 2-2a).(2)证明:当a=1时,f(x)=ln x +2x +1.令g(x)=f(x)-x +12=ln x +2x +1-x +12(x>0), 则g′(x)=1x -2+2-12=2-x -x 3+2=--2+x ++2. 当x>1时,g′(x)<0,当0<x<1时,g′(x)>0,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 即当x=1时,g(x)取得最大值,故g(x)≤g(1)=0,即f(x)≤x +12成立,得证.7.解:(1)由已知可得f(x)的定义域为(0,+∞).∵f′(x)=1x -a ,∴f′(1)=1-a=0,∴a=1,∴f′(x)=1x -1=1-xx,令f′(x)>0得0<x<1,令f′(x)<0得x>1,∴f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f(x)-x 22+2x +12>k(x-1)可化为ln x-x 22+x-12>k(x-1),令g(x)=ln x-x 22+x-12-k(x-1),则g′(x)=1x -x +1-k=-x 2+-+1x,令h(x)=-x 2+(1-k)x +1,则h(x)的对称轴为直线x=1-k 2,①当1-k 2≤1,即k≥-1时,易知h(x)在(1,+∞)上单调递减,∴x∈(1,+∞)时,h(x)<h(1)=1-k , 若k≥1,则h(x)<0,∴g′(x)<0, ∴g(x)在(1,+∞)上单调递减, ∴g(x)<g(1)=0,不符合题意. 若-1≤k<1,则h(1)>0,∴存在x 0>1,使得x∈(1,x 0)时,h(x)>0,即g′(x)>0, ∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.②当1-k 2>1,即k<-1时,易知存在x 0>1,使得h(x)在(1,x 0)上单调递增,∴h(x)>h(1)=1-k>0, ∴g′(x)>0,∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意. 综上,k 的取值范围是(-∞,1). 8.解:(1)证明:依题意,f(x)=xe x ,故原不等式可化为xe x ≥ex 2,因为x>0,所以只要证e x-ex≥0即可,记g(x)=e x-ex(x>0),则g′(x)=e x-e(x>0),当0<x<1时,g′(x)<0,g(x)单调递减; 当x>1时,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=0,即f(x)≥ex 2,原不等式成立.(2)f′(x)=e x -13ax 2-12ax +xe x -23ax -12a=(x +1)e x -ax(x +1)=(x +1)(e x-ax),记h(x)=e x -ax ,h′(x)=e x-a.(ⅰ)当a<0时,h′(x)=e x-a>0,h(x)在R 上单调递增,h(0)=1>0,h 1a =e 1a-1<0,所以存在唯一的x 0∈1a,0,使h(x 0)=0,且当x<x 0时,h(x)<0;当x>x 0,h(x)>0.①当x 0=-1,即a=-1e时,对任意x≠-1,f′(x)>0,此时f(x)在R 上单调递增,无极值点;②若x 0<-1,即-1e<a<0时,此时当x<x 0或x>-1时,f′(x)>0,即f(x)在(-∞,x 0),(-1,+∞)上单调递增;当x 0<x<-1时,f′(x)<0,即f(x)在(x 0,-1)上单调递减, 此时f(x)有一个极大值点x 0和一个极小值点-1.③若-1<x 0<0,即a<-1e时,此时当x<-1或x>x 0时,f′(x)>0,即f(x)在(-∞,-1),(x 0,+∞)上单调递增;当-1<x<x 0时,f′(x)<0,即f(x)在(-1,x 0)上单调递减,此时f(x)有一个极大值点-1和一个极小值点x 0.(ⅱ)当a=0时,f(x)=xe x ,所以f′(x)=(x +1)e x ,显然f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅲ)当0<a<e 时,由(1)可知,对任意x≥0,h(x)=e x -ax>e x -ex≥0,从而h(x)>0,而对任意x<0,h(x)=e x -ax>e x >0,所以对任意x ∈R ,h(x)>0,此时令f′(x)<0,得x<-1,令f′(x)>0,得x>-1,所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅳ)当a=e 时,由(1)可知,对任意x ∈R ,h(x)=e x -ax=e x -ex≥0(当且仅当x=1时,取等号),此时令f′(x)<0,得x<-1,令f′(x)≥0,得x≥-1,所以f(x)在(-∞,-1)上单调递减,在[-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.综上所述,①当a<-1e 或-1e<a<0时,f(x)有两个极值点; ②当a=-1e时,f(x)无极值点; ③当0≤a≤e 时,f(x)有一个极值点.9.解:(1) f ′(x)=1-a x =x -a x(x>0), 当a ≤0时,f ′(x)=1-a x =x -a x>0,所以f(x)在(0,+∞)上是增函数; 当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+1n n <e<1+1nn +1, 两边取对数后,只要证nln1+1n <1<(n +1)ln1+1n ,即只要证1n +1<ln1+1n <1n,令x=1+1n ,则只要证1-1x<lnx<x-1(1<x ≤2). 由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +1x -1(1<x ≤2),则φ′(x)=x -1x 2>0, 所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +1x -1>0,所以1-1x<lnx(1<x ≤2). 综上,原命题得证.10.解:(1) 当a=2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x -2x ,x ≥0. ①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln2]上递减,在[ln2,+∞)上递增.因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln2],单调递增区间是[ln2,+∞).(2) 当x>0时,f(x)=e x -ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a=x 2+x +3x在区间(0,+∞)上有实数解. 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x 2. 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞. 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(3) 当x ∈[0,2]时,f(x)=e x -ax ,有f ′(x)=e x -a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.所以1<a<e 2,此时可得f(x)在[0,lna]上递减,在[lna ,2]上递增.不妨设0≤m<lna<n ≤2,则f(0)≥f(m)>f(lna),且f(lna)<f(n)≤f(2).由m ,n ∈[0,2],n-m ≥1,可得0≤m ≤1≤n ≤2.(12分)因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,即e-1≤a ≤e 2-e ,所以1≤a e -1≤e.。

高考数学经典题型

高考数学经典题型

3 =2
3 -1=2log23-1=3-1=2,
b=f(log25)=2log25-1=4,c=f(2m)=f(0)=20-1=0,所以 c<a<b,故选 C.
[方法点拨] 1.幂式、对数式等数值比较大小问题,利用同底数、同指数或同真数等借助于函数单调性
或图象求解.
2.指数函数与对数函数的图象与性质
-x2-2x,x≤0,
若函数 g(x)=f(x)-m 有 3 个零点,则实数 m 的取值范围是
第 4 页 共 90 页
________. [答案] (0,1)[解析] 函数 f(x)的图象如图所示:
当 0<m<1 时,直线 y=m 与函数 f(x)的图象有三个交点.
10、已知 a、b∈[-1,1],则函数 f(x)=ax+b 在区间(1,2)上存在一个零点的概率为( )
[答案] B[解析] 由 y=2x 为增函数知,2a>2b⇔a>b;由 y=log2x 在(0,+∞)上为增函数知,
log2a>log2b⇔a>b>0,∴a>b⇒/ a>b>0,但 a>b>0⇒a>b,故选 B. 7、已知定义在 R 上的函数 f(x)=2|x-m|-1(m 为实数)为偶函数.记 a=f(log0.53),b=f(log25),c=f(2m),
3
1
cos α- sin α
3
1-cos 2α
2
2
= sin 2 α -

2
2
π
π
2α+ 1
α+
3
1
3
1
sin
6 - , 又 由 于 sin 6 - cos α = sin α + cos α - cos α = sin α - cos α =
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数常考题型及方法题型一:函数求值问题★(1)分段函数求值→“分段归类”例1.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =( )A.4B.14C.-4 D-14例2.若2tan ,0(2)log (),0x x f x x x ≥⎧+=⎨−<⎩,则(2)(2)4f f π+⋅−=( )A .1−B .1C .2D .2−例3.定义在R 上的函数f(x)满足f(x)=⎩⎨⎧>−−−≤−0),2()1(0),4(log 2x x f x f x x ,则f (2017)的值为( )A.-1B. -2C.1D. 2★(2)已知某区间上的解析式求值问题→“利用周期性、奇偶性、对称性向已知区间上进行转化”例4.已知函数()f x 是(,)−∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=)且当[0,2)x ∈时,2()log (1f x x =+),(2008)(2009)f f −+的值为( )A .2−B .1−C .1D .2例5.已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )(A )124 (B )112(C )18 (D )38 例6.设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f −=( )(A )-3 (B )-1 (C )1 (D)3★(3)抽象函数求值问题→“反复赋值法”例7.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A. 0B.21 C. 1 D. 25例8.若函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++−∈则()2010f =_____________.题型二:函数定义域与解析式例1.函数y =的定义域为( )A .(4,1)−−B .(4,1)−C .(1,1)−D .(1,1]− 例2.函数y =的定义域为( )A.(34,1) B(34,∞)C (1,+∞)D. (34,1)∪(1,+∞) 例3.函数2()f x =的定义域为 .例4.求满足下列条件的()f x 的解析式: (1)已知3311()f x x x x +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +−−=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .例5.已知函数()f x 在R 上满足2()2(2)88f x f x x x =−−+−,则曲线()y f x =在点(1,(1))f 处的切线方程是( )(A )21y x =− (B )y x = (C )32y x =− (D )23y x =−+题型四:函数值域与最值关于求函数值域与最值的方法也是多种多样的,常用的方法有:1.利用基本函数求值域(观察法)2.配方法;3.反函数法;4.判别式法;5.换元法;6.函数有界性(中间变量法)7.单调性法;8.不等式法;9.数形结合法;10.导数法等。

例1.函数y =的值域是( )(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4) 例2.函数()()2log 31xf x =+的值域为( )A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 例3.设函数2()2()g x x x R =−∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<−≥=则()f x 的值域是( )(A )9,0(1,)4⎡⎤−⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4−+∞(D )9,0(2,)4⎡⎤−⋃+∞⎢⎥⎣⎦例4.已知0t >,则函数241t t y t−+=的最小值为____________ .例5.已知函数M ,最小值为m ,则mM的值为( )(A)14(B)12(C)22(D)32例6.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3C .510[,]23D .10[3,]3题型五:函数单调性例1.定义在R 上的偶函数()f x 满足:对任意的1212,(,0]()x x x x ∈−∞≠,有2121()(()())0x x f x f x −−>.则当*n N ∈时,有(A)()(1)(1)f n f n f n −<−<+ (B) (1)()(1)f n f n f n −<−<+ (C) (1)()(1)f n f n f n +<−<− (D) (1)(1)()f n f n f n +<−<− 例2.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A.()f x =1xB.()f x =2(1)x − C .()f x =x e D.()ln(1)f x x =+ 例3.给定函数①12y x =,②12log (1)y x =+,③|1|y x =−,④12x y +=,其中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④例4.定义在R 上的偶函数()f x 的部分图像如右图所示,则在()2,0−上,下列函数中与()f x 的单调性不同的是A.21y x =+ B. ||1y x =+C. 321,01,0x x y x x +≥⎧=⎨+<⎩D.,,0x x e x oy e x −⎧≥⎪=⎨<⎪⎩例 5.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x −<1()3f 的x 取值范围是 (A)(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 例6.用min{a,b,c}表示a,b,c 三个数中的最小值设f(x)=min{2x , x+2,10-x} (x ≥0),则f(x)的最大值为A.4B.5 C .6 D.7例7.设函数⎩⎨⎧<+≥+−=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A .),3()1,3(+∞⋃−B .),2()1,3(+∞⋃−C .),3()1,1(+∞⋃−D .)3,1()3,(⋃−−∞例8.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x−−<的解集为( )A .(10)(1)−+∞,, B .(1)(01)−∞−,, C .(1)(1)−∞−+∞,, D .(10)(01)−,, 例9.定义域为R 的函数()f x 满足条件:①12121212[()()]()0,(,,)f x f x x x x x R x x +−−>∈≠;②()()0f x f x +−= ()x R ∈; ③(3)0f −=.则不等式()0x f x ⋅<的解集是( ) A.{}|303x x x −<<>或 B.{}|303x x x <−≤<或 C.{}|33x x x <−>或 D.{}|3003x x x −<<<<或例10.已知函数⎩⎨⎧≥+−<=)0(,4)3()0(,)(x a x a x a x f x .满足对任意的21x x ≠都有0)()(2121<−−x x x f x f成立,则a 的取值范围是( )A. ]41,0( B. )1,0( C. )1,41[ D. )3,0(题型六:函数奇偶性与周期性例1.若1()21x f x a =+−是奇函数,则a =____________.例2.函数3()sin 1()f x x x x R =++∈,若()2f a −=,则()f a 的值为A .3B .0C .-1D .-2例3.设函数f(x)=x(e x+ae -x)(x ∈R)是偶函数,则实数a =__________例4.已知函数)(x f 是),(+∞−∞上的偶函数,若对于0≥x ,都有)x f x f ()2(=+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则)2017()2018(f f +−值为( )A .2−B .1−C .1D .2例5.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f =( )A.13B.2C.132D.213例6.若函数f (x )=3x+3-x与g (x )=3x -3-x的定义域均为R ,则( )A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数例7.已知函数()y f x =的图象与函数22()log (2)g x x x =++的图象关于直线2x =对称,则(3)f =__________. 例8.已知定义在R 上的函数()y f x =满足()()22.f x f x +=−,若方程()0=x f 有且仅有三个根,且x =0为其一个根,则其它两根为___________。

例9.对于定义在R 上的函数()f x ,有下述四个命题:①若()f x 是奇函数,则(1)f x −的图象关于点A (1,0)对称;②若对x ∈R ,有(1)(1)f x f x +=−,则()y f x =的图象关于直线1x =对称; ③若函数(1)f x −的图象关于直线1x =对称,则()f x 为偶函数; ④函数(1)y f x =+与函数(1)y f x =−的图象关于直线1x =对称。

其中正确命题的序号为__________(把你认为正确命题的序号都填上)例10.函数y=22log 2xy x−=+的图像( ) (A ) 关于原点对称 (B )关于主线y x =−对称 (C ) 关于y 轴对称 (D )关于直线y x =对称例11.定义在R 上的偶函数()f x 满足[](1)(),()0f x f x f x +=−且在-1,上是增函数,下列五个关于()f x 的命题中 ①()f x 是周期函数;②()f x 的图象关于1x =对称;③()f x 在[0,1]上是增函数 ④()f x 在[1,2]上是减函数; ⑤(2)(0)f f =正确命题的个数是( ) A .1个 B .2个C .3个D .4个例12.若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅− 是( )(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数例13.函数()f x 的定义域为R ,若(1)f x +与(1)f x −都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数例14.(2008安徽)若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e −=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<题型七:函数图像例1.函数x xx xe e y e e −−+=−的图像大致为( ).例2.设a <b,函数2()()y x a x b =−−的图像可能是( ).例3.函数22xy x =−的图像大致是( )例4.函数|1|||ln −−=x e y x 的图象大致是( )例5.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为yxO(,)P x y (,0)Q xA B C D 例6.函数y =lncos x (-2π<x <)2π的图象是( )题型八:函数性质的综合应用例1. 一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是1(A ) (B ) (C ) (D ) 例2.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=−≠x x a λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f −<−,则( )(A )0<λ (B )0=λ(C )10<<λ (D )1≥λ例 3.设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为( )A .2−B .4−C .8−D .不能确定例 4.设函数()y f x =在(−∞,+∞)内有定义。

相关文档
最新文档