八年级上学期期末考试试卷真题

合集下载

八年级上册期末考试试卷精选及答案

八年级上册期末考试试卷精选及答案

八年级上册期末考试试卷精选及答案一、选择题1.若解关于x 的方程1222x m x x -=+--时产生增根,那么m 的值为( ) A .1 B .2 C .0 D .-12.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC3.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +- 4.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A.12B.112C.2 D.35.关于x的分式方程22x mx+-=3的解是正数,则负整数m的个数为()A.3 B.4 C.5 D.66.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°7.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A.②③B.③④C.②③④D.①②③④8.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 9.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E10.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形 二、填空题 11.若|21(3)0x x y ++-=,则22x y +=_______.12.如图,在等边ABC 中,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .13.如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =1cm 2,则S △BEF =_____cm 2.14.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.15.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示,若DE=4,则DF=___.16.如图所示的方格中,∠1+∠2+∠3=_____度.17.分解因式:a2b-4b3=______.18.如果x2+mx+6=(x﹣2)(x﹣n),那么m+n的值为_____.19.在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为_____.20.如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤图中的等腰三角形有5个.其中正确的结论是___.(填序号)三、解答题21.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.22.如图,在四边形ABCD 中,//AD BC ,ABC ∠的平分线交CD 于点E ,交AD 的延长线于点F ,DEF F ∠=∠.(1)写出3对由条件//AD BC 直接推出的相等或互补的角;___________、_____________、_______________.(2)3∠与F ∠相等吗?为什么?(3)证明://DC AB .请在下面括号内,填上推理的根据,完成下面的证明://AD BC ,2F ∴∠=∠.(①_________);3F∠=∠(已证), 23∴∠=∠,(②__________); 又12∠=∠(③___________),13∠∠∴=,//DC AB ∴(④_____________).23.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .24.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.25.已知m =a 2b ,n =2a 2+3ab .(1)当a =﹣3,b =﹣2,分别求m ,n 的值.(2)若m =12,n =18,求123a b+的值. 26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .28.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式31(1)(1)x x x ++-表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x -1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设31(1)(1)x x x ++-11A B x x =++- 则有31(1)(1)x x x ++-(1)(1)()(1)(1)(1)(1)(1)(1)A x B x A B x B A x x x x x x -+++-=+=+-+-+- 故此31A B B A +=⎧⎨-=⎩ 解得12A B =⎧⎨=⎩所以31(1)(1)x x x ++-=1211x x ++- 问题解决:(1)设1(1)1x A B x x x x -=+++,求A 、B . (2)直接写出方程111(1)(1)(2)2x x x x x x x --+=++++ 的解. 29.如图,//AB CD ,点E 在直线CD 上,射线EF 经过点,B BG ,平分ABE ∠交CD 于点G .(1)求证:BGE GBE ∠=∠;(2)若70∠︒=DEF ,求FBG ∠的度数.30.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)+、2(m n)-、mn 这三个代数式之间的等量关系:______;()4根据()3题中的等量关系,若m n 12+=,mn 25=,求图②中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】关于x 的方程1222x m x x -=+--有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得: 12(2)x m x -=+-, 整理得30x m -+=,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2.B解析:B 【解析】【分析】证△ABC≌△ADC,得出∠B=∠D=30°,∠BAC=∠DAC=12∠BAD=25°,根据三角形内角和定理求出即可.【详解】解:在ABC和△ADC中,AB ADCB CDAC AC=⎧⎪=⎨⎪=⎩(已知)(已知),所以△ABC≌△ADC,(SSS)所以∠BCA=∠DCA.(全等三角形的对应角相等)因为∠B=30°,∠BAC=25°,所以∠BCA=180°﹣∠B﹣∠BAC=125°,所以∠BCD=360°﹣2∠BCA=110°.故可得:@代表SSS;◎代表∠DCA;★代表对应角;※代表110°,故选:B.【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.3.A解析:A【解析】【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c)c=ac+bc-c2,故选项B、D正确,或“L”型钢材的截面的面积为:bc+(a-c)c=bc+ac-c2,故选项C正确,选项A错误,故选:A.【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.4.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.5.B解析:B【解析】【分析】首先解分式方程2=32x mx+-,然后根据方程的解为正数,可得x>0,据此求出满足条件的负整数m的值为多少即可.【详解】解:2=32x mx+-,2x+m=3(x﹣2),2x﹣3x=﹣m﹣6,﹣x=﹣m﹣6,x=m+6,∵关于x的分式方程2=32x mx+-的解是正数,∴m+6>0,解得m>﹣6,∴满足条件的负整数m的值为﹣5,﹣4,﹣3,﹣2,﹣1,当m=﹣4时,解得x=2,不符合题意;∴满足条件的负整数m的值为﹣5,﹣3,﹣2,﹣1共4个.故选:B.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.6.D解析:D【解析】【分析】根据SAS 即可证明△ABD ≌△ACE ,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,∵AB AC BAD CAE AD AE ∠∠=⎧⎪=⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD =CE ,故A 正确;∵△ABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∴∠ABD +∠DBC =45°.∵△BAD ≌△CAE ,∴∠ABD =∠ACE ,∴∠ACE +∠DBC =45°,故B 正确.∵∠ABD +∠DBC =45°,∴∠ACE +∠DBC =45°,∴∠DBC +∠DCB =∠DBC +∠ACE +∠ACB =90°,则BD ⊥CE ,故C 正确.∵∠BAC =∠DAE =90°,∴∠BAE +∠DAC =360°﹣90°﹣90°=180°,故D 错误.故选D .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.C解析:C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.8.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x |=2,则x =±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B .【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.9.C解析:C【解析】【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .10.B解析:B【解析】【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.二、填空题11.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 12.12【解析】【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D,AE=A′解析:12【解析】【分析】由题意得AE=A′E ,AD=A′D ,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D ,AE=A′E .则阴影部分图形的周长等于BC+BD+CE+A′D+A′E ,=BC+BD+CE+AD+AE ,=BC+AB+AC,=12cm.故答案为:12.【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.13.【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从解析:1 4【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从而完成解答.【详解】∵由于D、E、F分别为BC、AD、CE的中点∴△ABE、△DBE、△DCE、△AEC的面积相等S△BEC=12S△ABC=12S△BEF=12S△BEC=12×12=14故答案为:14.【点睛】本题考察了三角形中线的知识;求解的关键是熟练掌握三角形中线的性质,从而完成求解.14.2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x根,则第三边是()根,根据三角形解析:2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.15.8【解析】【分析】根据角平分线求出,在的中易求和的长,同理在求出的长,即可得出答案.【详解】,OC 是∠AOB 的平分线在中,在中,故答案为:8.【点睛】本题考查角平分线的解析:8【解析】【分析】根据角平分线求出30EOD FOD ∠=∠=︒,在30的Rt EOD 中易求OD 和OE 的长,同理在Rt EOF 求出EF 的长,即可得出答案.【详解】60AOB ∠=︒,OC 是∠AOB 的平分线30EOD FOD ∴∠=∠=︒在Rt EOD 中,30,4EOD DE ∠=︒= 228,43OD OE OD ED ∴==-=在Rt EOF 中,6043EOF OE ∠=︒=, 30,83EFO OF ∴∠=︒=2212EF OF OE ∴=-=1248DF EF DE ∴=-=-=故答案为:8.【点睛】本题考查角平分线的定义、含30的直角三角形的解法,掌握30直角三角形的特征是解题关键.16.135【解析】由题意得,在与中, ∵AB=DE, ∠ABC=∠ADE,BC=AD, , ,,又∵△DEF 是等腰直角三角形, ,.解析:135【解析】由题意得,在与中, ∵AB =DE ,∠ABC =∠ADE ,BC =AD ,()ABC ADE SAS ∴∆≅∆ ,,, 又∵△DEF 是等腰直角三角形, ,.17.b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a解析:b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a-2b).故答案为:b(a+2b)(a-2b).【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣解析:-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣(2+n),2n=6,∴n=3,m=﹣5,∴m+n=﹣5+3=﹣2.故答案为﹣2.【点睛】本题考查了因式分解的十字相乘法,我们可以直接套用公式()()()2x p q x pq x p x q+++=++即可求解. 19.117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=解析:117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.【点睛】本题考查了全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.20.①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,解析:①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,进而得出BD是∠ABC的角平分线,可得△BCD也是等腰三角形,BE=CE,ΔBCD是等腰三角形,ΔAMD为直角三角形,故这两个三角形不可能全等,由角的度数即可得图中的等腰三角形.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°又∵CE平分∠ACB,∴∠DCE=∠BCE=36°又∵AB的中垂线MN交AC于点D,交AB于点M,∴∠AMD=∠BMD=90°,AD=BD,∴∠ABD=∠BAD=36°,∠ADB=108°,又∵∠ADB=∠ACB+∠DBC=108°∴∠DBC=36°∠ABD=∠DBC,∴BD是∠ABC的角平分线,故①结论正确.∠BDC=72°=∠ACB,∴ΔBCD是等腰三角形,故②结论正确.∵∠DBC=∠ECB=36°∴△BEC为等腰三角形,∴BE=CE又∵∠BDC=∠CED=72°∴△DCE为等腰三角形,∴CD=CE∴BE=CD故③结论正确.∵ΔBCD是等腰三角形,ΔAMD为直角三角形∴这两个三角形不可能全等,故④结论错误.图中△ABC、△ADB、△BCD、△BEC、△DCE都为等腰三角形,故⑤结论正确.故本题正确的结论是①②③⑤.【点睛】此题主要考查等腰三角形的性质,熟练掌握,再利用等角转换,即可解题.三、解答题21.(1)见解析(2)17【解析】【分析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.【详解】(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27﹣10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.(1)2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒ (2)相等,理由见解析(3)见解析【解析】【分析】(1)根据平行线的性质解答;(2)根据对顶角的性质解答;(3)根据平行线的性质及等量代换,平行线的判定定理解答.【详解】(1)∵//AD BC ,∴2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒;故答案为:2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒; (2)3∠与F ∠相等.理由如下:DEF F ∠=∠,3DEF ∠=∠,3F ∴∠=∠.(3)//AD BC ,2F ∴∠=∠.(①两直线平行,内错角相等);3F∠=∠(已证), 23∴∠=∠,(②等量代换); 又12∠=∠(③角平分线的定义),13∠∠∴=,//DC AB ∴(④内错角相等,两直线平行).故答案为:①两直线平行,内错角相等;②等量代换;③角平分线的定义;④内错角相等,两直线平行.【点睛】此题考查平行线的性质定理及判定定理,角平分线的性质定理,等量代换的推理依据,熟练掌握平行线的判定及性质定理是解题的关键.23.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB ′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°. 故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)65°;(2)见解析【解析】【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A =∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.25.(1)m 的值是﹣18,n 的值是36;(2)12【解析】【分析】(1)直接将a 、b 值代入,利用有理数的混合运算法则即可求得m 、n 值;(2)先由m 、n 值得出12=a 2b ,18=2a 2+3ab ,进而变形用a 表示出3ab 、2a+3b ,再通分化简代数式,代入值即可求解.【详解】解:(1)∵m=a2b,n=2a2+3ab,a=﹣3,b=﹣2,∴m=(﹣3)2×(﹣2)=9×(﹣2)=﹣18,n=2×(﹣3)2+3×(﹣3)×(﹣2)=2×9+18=18+18=36,即m的值是﹣18,n的值是36;(2)∵m=12,n=18,m=a2b,n=2a2+3ab,∴12=a2b,18=2a2+3ab,∴36a =3ab,18a=2a+3b,∴123a b+=32 3b aab+=18 36 a a=12.【点睛】本题考查代数式的求值、有理数的混合运算、分式的化简求值,熟练掌握求代数式的值的方法,第(2)中能用a表示出3ab、2a+3b是解答的关键.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC,∠ACD=∠D,再由∠ACD=∠B可得∠D=∠B,然后可利用AAS证明△ABC≌△CDE,进而得到CB=DE;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC∥DE,∴∠ACB=∠DEC,∠ACD=∠D,∵∠ACD=∠B.∴∠D=∠B,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.28.(1)A=1,B=-2;(2)23 x=【解析】【分析】(1)根据题目所给方法进行求解即可;(2)根据题目所给方法先对等号左边各式进行变形化简,最后再解分式方程即可.【详解】解:(1)∵1(1)xx x-=+(1)1(1)(1)A B A x Bxx x x x x x++=++++()(1)A B x Ax x++=+,∴11A BA+=-⎧⎨=⎩,解得12 AB=⎧⎨=-⎩;(2)设1(1)(2)12x A B x x x x -=+++++, 则有1(2)(1)()2(1)(2)12(1)(2)(1)(2)x A B A x B x A B x A B x x x x x x x x -++++++=+==++++++++, ∴121A B A B +=-⎧⎨+=⎩,解得23A B =⎧⎨=-⎩, ∴123(1)(2)12x x x x x -=-++++, 由(1)知,112(1)1x x x x x -=-++, ∴原方程可化为13122x x x -=++, 解得23x =, 经检验,23x =是原方程的解. 【点睛】本题为关于分式及分式方程的创新题,此类型题重点在于理解题目所给的做题方法,并按照题目所给示例进行解答.29.(1)见解析;(2)145°【解析】【分析】(1)根据//AB CD ,可得ABG BGE ∠=∠,根据BG 平分ABE ∠,可得ABG GBE ∠=∠,进而可得BGE GBE ∠=∠;(2)根据//AB CD ,可得70ABE DEF ∠=∠=︒,根据平角定义可得180110ABF ABE ∠=︒-∠=︒,根据BG 平分ABE ∠,可得1352ABG ABE ∠=∠=︒,进而可得FBG ∠的度数.【详解】解:(1)证明://AB CD ,ABG BGE ∴∠=∠, BG 平分ABE ∠,ABG GBE ∴∠=∠,BGE GBE ∴∠=∠;(2)//AB CD ,70ABE DEF ∴∠=∠=︒,180110ABF ABE ∴∠=︒-∠=︒, BG 平分ABE ∠,1352ABG ABE ∴∠=∠=︒, 11035145FBG ABF ABG ∴∠=∠+∠=︒+︒=︒.答:FBG ∠的度数为145︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积; ()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +- 故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。

八年级数学上册期末测试卷及答案【真题】

八年级数学上册期末测试卷及答案【真题】

八年级数学上册期末测试卷及答案【真题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.化简x 1x -,正确的是( ) A .x - B .xC .﹣x -D .﹣x 5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.下列图形中,是轴对称图形的是( )A .B .C .D .8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.6.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,再求值:已知1322x=+,求()221-4412x x xx x+-+--的值3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、A6、A7、B8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、223、13k <<.4、(﹣5,4).5、40°6、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩.2、1-3、则不等式组的解集是﹣1<x ≤3,不等式组的解集在数轴上表示见解析.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)1,20 km/h ;(2)95. 6、甲、乙两个工厂每天分别能加工40件、60件新产品。

【3套】八年级上册数学期末考试试题(答案)

【3套】八年级上册数学期末考试试题(答案)

八年级上册数学期末考试试题(答案)一、填空题:(每小题3分,共30分)1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.2.当x时,分式有意义.3.分解因式:4m2﹣16n2=.4.计算:﹣=.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE =.6.x+=3,则x2+=.7.当x时,分式的值为正.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+112.下列图形中,是轴对称图形的是()A.B.C.D.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣114.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.515.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变16.下列二次根式中最简二次根式是()A.B.C.D.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣618.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.20.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)22.(5分)解方程:=+23.(5分)先化简,再求值:,其中x=.24.(7分)△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.25.(7分)已知=3,求的值.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.参考答案一、填空题1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.3.分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE = 6 .【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.6.x+=3,则x2+=7 .【分析】直接利用完全平方公式将已知变形,进而求出答案.解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.7.当x>且x≠0 时,分式的值为正.【分析】同号为正,异号为负.分母≠0.解:分式的值为正,即>0,解得x>,因为分母不为0,所以x≠0.故当x>且x≠0时,分式的值为正.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是8 .【分析】连接AD,求出△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=S△ABC,于是得到结论解:连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴四边形AFDE的面积=S△ABD=S△ABC,∵BC=8,∴AD=BC=4,∴四边形AFDE的面积=S△ABD=S△ABC=××8×4=8,故答案为:8.【点评】本题主要考查了全等三角形的判定和等腰三角形的判定.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073 个三角形.【分析】根据题目中的图形,可以发现三角形个数的变化规律,从而可以解答本题.解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的三角形个数的变化规律,利用数形结合的思想解答.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.12.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.14.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.15.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.16.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.18.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.【分析】根据等边三角形性质得出AC=AB,∠BAC=∠B=60°,证△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.证明:∵△ABC 是等边三角形, ∴AC =AB ,∠BAC =∠B =60°, 在△ABE 和△CAD 中∴△ABE ≌△CAD (SAS ), ∴∠BAE =∠ACD ,∴∠AFD =∠CAE +∠ACD =∠CAE +∠BAE =∠BAC =60°, ∵AG ⊥CD , ∴∠AGF =90°, ∴∠FAG =30°,∴sin30°==,即=.【点评】本题考查了全等三角形的性质和判定等边三角形性质,特殊角的三角函数值,含30度角的直角三角形性质的应用,主要考查学生的推理能力.20.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个【分析】如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°,只要证明△PEM ≌△PON 即可推出△PMN 是等边三角形,由此即可得结论解:如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)【分析】(1)根据平方差和完全平方公式计算即可;(2)根据二次根式的加减法的法则计算即可.解:(1)4(x+y)(x﹣y)﹣(2x﹣y)2=4(x2﹣y2)﹣(4x2﹣4xy+y2)=4x2﹣4y2﹣4x2+4xy ﹣y2=4xy﹣5y2;(2)(+)﹣(﹣)=2+﹣+=3+.【点评】本题考查了二次根式的加减法,完全平方公式,平方差公式,熟记法则和乘法公式是解题的关键,22.(5分)解方程: =+【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:3x =2x ﹣4+6, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(5分)先化简,再求值:,其中x =.【分析】根据分式的运算法则即可求出答案.解:由于x ==﹣2原式=×﹣=﹣== =【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 24.(7分)△ABC 在平面直角坐标系中的位置如图.A 、B 、C 三点在格点上. (1)作出△AB C 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标 (3,﹣2) ; (2)在y 轴上找点D ,使得AD +BD 最小,作出点D 并写出点D 的坐标 (0,2) .【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴的对称的A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)确定出点B关于y轴的对称点B′,根据轴对称确定最短路线问题连接AB′,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可.解:(1)△A1B1C1如图所示,C1(3,﹣2);(2)点D如图所示,OD=2,所以,点D的坐标为(0,2).故答案为:(3,﹣2);(0,2).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(7分)已知=3,求的值.【分析】由题意可知:b﹣a=3ab,然后整体代入原式即可求出答案.解:由题意可知:b﹣a=3ab,∴a﹣b=﹣3ab∴原式===【点评】本题考查分式的值,解题的关键是由题意得出a﹣b=﹣3ab,本题属于基础题型.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.【分析】利用非负数的性质求出a,b,c的值,代入已知等式求出x2+2x的值,原式变形后代入计算即可求出值.解:∵(2﹣a)2++|c+8|=0,∴a=2,b=4,c=﹣8,代入ax2+bx+c=0得:2x2+4x﹣8=0,即x2+2x﹣4=0,∴x2+2x=4,则3x2+6x+1=3(x2+2x)+1=12+1=13.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48﹣2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:﹣=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作=(48﹣2y)天,根据题意得:0.4y+0.25(48﹣2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式.28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.【分析】(1)在CD上截取CF=AE,连接EF.运用“AAS”证明△ECF≌△EDB得AE=BD,从而得证;(2)在BC的延长线上截取CF=AE,连接EF.同理可得AE、AC和CD的数量关系;(3)同(2)的探究过程可得AE、AC和CD的数量关系.(1)证明:在CD上截取CF=AE,连接EF.∵△ABC是等边三角形,∴∠ABC=60°,AB=BC.∴BF=BE,△BEF为等边三角形.∴∠EBD=∠EFC=120°.又∵ED=EC,∴∠D=∠ECF.∴△EDB≌△ECF(AAS)∴CF=BD.∴AE=BD.∵CD=BC+BD,BC=AC,∴AE+AC=C D;(2)解:在BC的延长线上截取CF=AE,连接EF.同(1)的证明过程可得AE=BD.∵CD=BC﹣BD,BC=AC,∴AC﹣AE=CD;(3)解:AE﹣AC=CD.(在BC的延长线上截取CF=AE,连接EF.证明过程类似(2)).【点评】此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力.八年级上册数学期末考试试题及答案一、单选题(本题共12小题,每题只有一个正确选项,每小题3分,共36分)1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.计算232a b -()的结果是( ) A . 636a b - B . 638a b - C . 638a b D .53 8a b - 3.在平面直角坐标系中,点P (3,﹣2)关于y 轴的对称点在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 4.一个三角形的两边长为3和7,第三边长为偶数,则第三边为( ) A . 6 B . 6或8 C . 4 D . 4或6 5.下列从左到右的变形,属于分解因式的是( )A . 2(3)(3)9a a a +--=B . 25(1)5x x x x +-=--C . 2 (1)a a a a =++D . 32x y x x y =⋅⋅ 6.如图,点A 在DE 上,AC =CE ,∠1=∠2=∠3,则DE 的长等于( ) A . DC B . BC C . AB D . AE +AC7.若分式2424x x --的值为零,则x 等于( )A. 0B. 2C. 2或-2D. -28.如图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A . 2abB . 2()a b +C . 2()a b -D . 22 a b - 9.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( )A . 80°B . 100°C . 140°D . 160°10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1 和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是( ) A . 2∠A =∠1-∠2 B . 3∠A =2(∠1-∠2) C . 3∠A =2∠1-∠2 D . ∠A =∠1-∠2第8题图第9题图第10题图第6题图11.如图,在△ABC 中,∠A =20°,∠ABC 与∠ACB 的角平分线交于D 1, ∠ABD 1与∠ACD 1的角平分线交于点D 2,依此类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A . 24°B . 25°C . 30°D . 36° 12.如图,点E 是BC 的中点,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,下列结论:①∠AED =90°②∠ADE =∠CDE ③DE =BE ④AD =AB +CD ,四个结论中成立的是( ) A . ①②④ B . ①②③ C . ②④ D . ①②③④二、填空题(本题共8小题,每小题3分,共24分) 13.(1)若要使分式34x+有意义,则x 的取值范围是________ (2)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1=______(3)如图,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)(4)化简22244x xx x --+的结果是________(5)已知关于x 的分式方程112a x -=+无实数解,则a =________ (6)如图,AB=AC ,DB=DC ,若∠ABC 为60°,BE =3cm ,则AB =________cm .(7)如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =2,则S △OFE =________ (8)如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =45°, 当∠A =________时,△AOP 为等腰三角形.第12题图第11题图第13(7)题图 第13(6)题图 第13(3)题图第13(2)题图第13(8)题图三、解答题(共60分)14.(本题共3小题,每小题4分,共12分)(1)因式分解:244xyz xyz xy -+- (2)因式分解:229()()m n m n +--(3)解方程:2133x x x x-+=--15.(本小题6分)化简求值 已知113x y +=,求222x xy y x xy y-+-+的值16.(本小题9分)如图,(1)在网格中画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)写出△ABC 关于x 轴对称的△A 2B 2C 2的各顶点坐标;(3)在y 轴上确定一点P ,使△PAB 周长最短.(只需作图,保留作图痕迹)第16题图17.(本小题9分)已知等边三角形ABC ,延长BA 至E ,延长BC 至D ,使得AE =BD ,求证:EC =ED18.(本小题12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?B第17题图19.(本小题12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP 于点D,交直线BC于点Q.第19题图(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?________(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=________时,存在AQ=2BD,说明理由.2017—2018学年度上学期期末学业水平质量调研试题八年级数学参考答案2018.01说明:本答案仅供参考,阅卷时以小组统一答案为准13(1)x ≠﹣4 (2)60° (3)答案不唯一,如AB=AC 或∠B =∠C 或∠BED =∠CFD 或∠AED =∠AFD (4)2xx - (5) 1 (6) 6 (7) 4 (8) 45°或67.5°或90° 三、解答题14.(1)因式分解244xyz xyz xy -+-22(44)(2)xy z z xy z =--+=--……………4分(2)22()9m n m n +--() =223()m n m n +--⎡⎤⎣⎦() =33()()m n m n m n m n ⎡⎤⎡⎤⎣⎦+⎦+---⎣+()()=()422m n m n ++()……………4分(3)解:两边乘(3)x -得到(2)3x x x --=-, 23x x x -+=-,1x =-, 检验:当1x =-时,(3)0x -≠,故1x =-是分式方程的根……………4分 15.解:11222()653,3,3,52()232x y x xy y x y xy xy xy xy x y xy x y xy x xy y x y xy xy xy xy+-++--+==+=====-++-- ……………6分16.(1)解:如图所示:……………3分(2)解:A 2(﹣3,﹣2),B 2(﹣4,3),C 2(﹣1,1)……………6分(3)解:连结AB 1或BA 1交y 轴于点P ,则点P 即为所求……………9分17.证明:延长BD 到F ,使BF=BE ,连接EF .则BF-BC =BE-BA . 即CF=AE ;又AE=BD . 故CF=BD , DF=BC . ∵∠B =60°.∴△BEF 为等边三角形,BE=EF ;∠B =∠F =60°.∴△EBC ≌△EFD (SAS),EC=ED .……………9分 18.(1)解:设第一批购进书包的单价是x 元.则:2000630034x x ⨯=+ 解得:x =80.经检验:x =80是原方程的根.答:第一批购进书包的单价是80元 ……………7分 (2)解:20006300120801208437008084⨯+⨯=(﹣)(﹣)(元).答:商店共盈利3700元……………12分19.(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ ……………5分(2)成立……………7分(3)22.5°……………9分当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°……………12分人教版八年级(上)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题3分,共48分)1.下列图形中,不是轴对称图形的是()2.下列根式中是最简二次根式的是()A. B. C. D.3.下列各数中,没有平方根的是()A. B. C. D.4.下列运算结果正确的是()A. B. C. D.5.若代数式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.解分式方程,去分母得()A.B.C.D.7.已知等腰三角形的两边x,y满足,则等腰三角形的周长为()A.16 B.12 C.20 D.20或168.下列二次根式中,与可以合并的根式是()A. B. C. D.9.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°10.如图是一个以O为对称中心的中心对称图形,若∠A=30°,∠C=90°,OC=1,则AB的长为()A.2 B.4 C. D.11.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.1012.已知,,则的值为()A.10 B.8 C.6 D.413.如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A.100° B.160° C.80° D.20°14.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C’处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.1015.如图,△ABC的顶点A,B,C在连长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.16.如图,△ABC的面积为10,BP是∠ABC的平分线,AP⊥BP于P,则△PBC 的面积为()A.4 B.5 C.6 D.7二、填空(每小题3分,共12分)17.化简:的结果为 .18.已知的平方根是,则m= .19.若,则代数式的值是 .20.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.三、(共12分)21.(1)化简,再求值:,其中.(2)计算:.四、(本题8分)22.如图,在△ABC中,AB=AC=8cm.(1)作AB的垂直平分线,交AC于点M,交AB于点N;(尺规作图,保留作图痕迹)(2)在(1)的条件下,连接MB,若△MBC的周长是14cm,求BC的长.五、(本题8分)23.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买的笔记本比打折前多10本.(1)请利用分工方程求出每本笔记本原来的标价;(2)恰逢文具店周年庆典,每本笔记本可以按原价打8折,这样该校最多可购入多少笔记本?六、(8分)24.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.七、(12分)25.先阅读,再解答由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:,请完成下列问题:(1)的有理化因式是;(2)化去式子分母中的根号:, .(3)(填或)(4)利用你发现的规律计算下列式子的值:八、(12分)26.已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:①当t为几秒时,AP平分∠CAB;②当t为几秒时,△ACP是等腰三角形(直接写答案).。

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:① ;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论BD BE2是()A.①②③B.①②④C.②③④D.①②③④9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.因式分解:24x -=__________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、A6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、x1≥.3、(x+2)(x-2)4、x=25、(-2,0)6、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、-33a+,;12-.3、0.4、略5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。

初二上期末考试题及答案

初二上期末考试题及答案

初二上期末考试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是三角形D. 地球是正方形答案:B2. 以下哪个不是中国的传统节日?A. 春节B. 圣诞节C. 端午节D. 中秋节答案:B3. 以下哪个选项是正确的数学表达式?A. 2 + 3 = 5B. 3 × 4 = 12C. 6 ÷ 2 = 3D. 8 - 4 = 10答案:C4. 以下哪个选项是正确的物理现象?A. 声音可以在真空中传播B. 光可以在真空中传播C. 声音可以在空气中传播D. 光不能在空气中传播答案:B5. 下列哪个选项是正确的化学元素符号?A. 金 - AuB. 银 - AgC. 铜 - CuD. 铁 - Fe答案:A6. 以下哪个选项是正确的历史事件?A. 秦始皇统一六国B. 秦始皇统一八国C. 秦始皇统一九州D. 秦始皇统一十国答案:A7. 以下哪个选项是正确的地理现象?A. 地球自转的方向是自东向西B. 地球自转的方向是自西向东C. 地球公转的方向是自东向西D. 地球公转的方向是自西向东答案:B8. 以下哪个选项是正确的生物分类?A. 人类属于植物界B. 人类属于动物界C. 人类属于真菌界D. 人类属于细菌界答案:B9. 以下哪个选项是正确的英语语法?A. I am go to school.B. I go to school.C. I am going to school.D. I go to the school.答案:C10. 以下哪个选项是正确的计算机术语?A. 计算机病毒是一种生物病毒B. 计算机病毒是一种恶意软件C. 计算机病毒是一种良性软件D. 计算机病毒是一种操作系统答案:B二、填空题(每题2分,共20分)1. 地球的自转周期是________小时。

答案:242. 中国的首都是________。

答案:北京3. 圆的面积公式是________。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

初中八年级数学上册期末考试卷及答案【完美版】

初中八年级数学上册期末考试卷及答案【完美版】

初中八年级数学上册期末考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -5的相反数是()A. B. C. 5 D. -52. 计算: (a-b)(a+b)(a2+b2)(a4-b4)的结果是( )A. a8+2a4b4+b8B. a8-2a4b4+b8C. a8+b8D. a8-b83.解分式方程时, 去分母变形正确的是()A. B.C. D.4.《孙子算经》中有一道题, 原文是: “今有木, 不知长短.引绳度之, 余绳四足五寸;屈绳量之, 不足一尺.木长几何?”意思是: 用一根绳子去量一根长木, 绳子还剩余尺.将绳子对折再量长木, 长木还剩余尺, 问木长多少尺, 现设绳长尺, 木长尺, 则可列二元一次方程组为()A. B. C. D.5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务, 为了迎接雨季的到来, 实际工作时每天的工作效率比原计划提高了25%, 结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米, 则下面所列方程中正确的是()A. B.C. D.6.欧几里得的《原本》记载, 形如的方程的图解法是: 画, 使, , , 再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长7.如图, 某小区计划在一块长为32m, 宽为20m的矩形空地上修建三条同样宽的道路, 剩余的空地上种植草坪, 使草坪的面积为570m2.若设道路的宽为xm, 则下面所列方程正确的是()A. (32﹣2x)(20﹣x)=570B. 32x+2×20x=32×20﹣570C. (32﹣x)(20﹣x)=32×20﹣570D. 32x+2×20x﹣2x2=5708.如图, △ABC中, AB⊥BC, BE⊥AC, ∠1=∠2, AD=AB, 则下列结论不正确的是()A. BF=DFB. ∠1=∠EFDC. BF>EFD. FD∥BC9.如图, 在△ABC和△DEF中, ∠B=∠DEF, AB=DE, 若添加下列一个条件后, 仍然不能证明△ABC≌△DEF, 则这个条件是()A. ∠A=∠DB. BC=EFC. ∠ACB=∠FD. AC=DF10.如图, 点P是边长为1的菱形ABCD对角线AC上的一个动点, 点M, N分别是AB, BC边上的中点, 则MP+PN的最小值是()A. B. 1 C. D. 2二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若, 则二次根式化简的结果为________.2. 将命题“同角的余角相等”, 改写成“如果…, 那么…”的形式_____.3. 若一个正数的两个平方根分别是a+3和2﹣2a, 则这个正数的立方根是________.4. 如图, 在△ABC中, AD⊥BC于D, BE⊥AC于E, AD与BE相交于点F, 若BF =AC, 则∠ABC=________度.5. 如图, 菱形ABCD中, ∠B=60°, AB=3, 四边形ACEF是正方形, 则EF的长为__________.6.如图, 已知正方形ABCD的边长为5, 点E、F分别在AD、DC上, AE=DF=2, BE与AF相交于点G, 点H为BF的中点, 连接GH, 则GH的长为_______.三、解答题(本大题共6小题, 共72分)1. 解不等式(1)7252x x-+≥(2)111 32x x-+-<2. (1)已知x=, y=, 试求代数式2x2-5xy+2y2的值.(2)先化简, 再求值:, 其中x=, y=.3. 已知关于x的方程x2 -(m+1)x+2(m-1)=0,(1)求证: 无论m取何值时, 方程总有实数根;(2)若等腰三角形腰长为4, 另两边恰好是此方程的根, 求此三角形的另外两条边长.4. 如图, 在四边形中, , , 对角线, 交于点, 平分, 过点作交的延长线于点, 连接.(1)求证: 四边形是菱形;(2)若, , 求的长.5. 已知和位置如图所示, , , .(1)试说明: ;(2)试说明:.6. 某学校为改善办学条件, 计划采购A.B两种型号的空调, 已知采购3台A型空调和2台B型空调, 需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A.B两种型号空调共30台, 且A型空调的台数不少于B 型空调的一半, 两种型号空调的采购总费用不超过217000元, 该校共有哪几种采购方案?(3)在(2)的条件下, 采用哪一种采购方案可使总费用最低, 最低费用是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.B3.D4.B5.C6.B7、A8、B9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.-2、如果两个角是同一个角的余角, 那么这两个角相等3.44.455.36.三、解答题(本大题共6小题, 共72分)1.(1);(2)2、(1)42, (2)3. 略 4和24.(1)略;(2)2.5、(1)略;(2)略.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案, 方案一:采购A型空调10台, B型空调20台, 方案二:采购A型空调11台, B型空调19台, 案三:采购A型空调12台, B型空调18台;(3)采购A型空调10台, B型空调20台可使总费用最低, 最低费用是210000元.。

八年级数学(上册)期末试卷及答案(真题)

八年级数学(上册)期末试卷及答案(真题)

八年级数学(上册)期末试卷及答案(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、13k <<.4、72°5、706、20三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-33a +,;12-.3、(1)102b -≤≤;(2)24、(1)略;(2).5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。

7. 下列函数中,其图像是抛物线的是__________。

8. 下列图形中,属于中心对称图形的是__________。

9. 下列关于圆的命题中,错误的是__________。

10. 下列关于角的命题中,错误的是__________。

三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。

12. 解不等式:3x 2 < 2x + 5。

13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

14. 解圆的方程:x² + y² 6x 8y + 9 = 0。

四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。

16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。

八年级上册期末考试卷及答案【含答案】

八年级上册期末考试卷及答案【含答案】

八年级上册期末考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种物质在空气中不支持燃烧?A. 氧气B. 二氧化碳C. 氮气D. 氢气2. 八进制数110转换为十进制数是?A. 72B. 74C. 76D. 783. 在光合作用中,植物释放出的气体是?A. 二氧化碳B. 氧气C. 氮气D. 氢气4. 下列哪个不是我国的四大发明?A. 指南针B. 火药C. 印刷术D. 电视5. 地球公转的方向是?A. 自西向东B. 自东向西C. 自南向北D. 自北向南二、判断题(每题1分,共5分)1. 鸟类是哺乳动物。

()2. 长江是我国最长的河流。

()3. 光的传播速度在真空中是最慢的。

()4. 地球是太阳系中唯一有生命存在的星球。

()5. 人类最早使用的金属是铜。

()三、填空题(每题1分,共5分)1. 地球上的淡水主要分布在______、______和______。

2. 人体最大的消化腺是______。

3. 我国的国旗是______。

4. 八进制数111转换为十进制数是______。

5. 氢气和氧气在点燃的条件下______。

四、简答题(每题2分,共10分)1. 请简述光合作用的过程。

2. 请简述血液循环的过程。

3. 请简述牛顿三大定律。

4. 请简述我国的历史朝代顺序。

5. 请简述欧姆定律。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

3. 一个数加上5等于10,求这个数。

4. 一辆汽车以60公里/小时的速度行驶,行驶了2小时,求这辆汽车行驶的路程。

5. 一个正方形的边长是6厘米,求这个正方形的周长。

六、分析题(每题5分,共10分)1. 请分析影响植物生长的因素。

2. 请分析影响化学反应速率的因素。

七、实践操作题(每题5分,共10分)1. 请设计一个实验,验证植物的光合作用。

2. 请设计一个实验,验证影响化学反应速率的因素。

初二上册数学期末考试题及答案

初二上册数学期末考试题及答案

初二上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √8D. √(-1)2. 一个数的平方根是它本身的数是?A. 0B. 1C. -1D. 23. 以下哪个选项是正比例函数?A. y = 2x + 3B. y = 3xC. y = x^2D. y = 1/x4. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 315. 一个数的立方根是它本身的数是?B. 1C. -1D. 86. 一个数的倒数是它本身的数是?A. 1B. -1C. 0D. 27. 一个直角三角形的两个直角边分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 88. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = x + 19. 一个数的平方是它本身的数是?A. 0B. 1C. -1D. 210. 一个等边三角形的边长为5,那么这个三角形的周长是多少?B. 15C. 20D. 25二、填空题(每题3分,共30分)1. 一个数的平方根是它本身的数有______和______。

2. 一个数的立方根是它本身的数有______、______和______。

3. 一个数的倒数是它本身的数有______和______。

4. 一个等腰三角形的底边长为8,腰长为5,那么这个三角形的周长是______。

5. 一个直角三角形的两个直角边分别是5和12,那么这个三角形的斜边长是______。

6. 一个数的平方是它本身的数有______和______。

7. 一个等边三角形的边长为6,那么这个三角形的周长是______。

8. 一个数的立方是它本身的数有______、______和______。

9. 一个直角三角形的两个直角边分别是6和8,那么这个三角形的斜边长是______。

初二上册期末考试试卷及答案

初二上册期末考试试卷及答案

初二上册期末考试试卷及答案一、选择题(共20分)1、下列不属于中国的四大发明之一的是()。

A、造纸术B、印刷术C、指南针D、火药2、阅读下面的诗句,找出其中的典故()。

微山湖畔菊花开,天A、缺兵少将的故事B、屈原放逐的故事C、梁祝的故事D、白蛇传的故事3、黄河流域是我国的()文明发祥地之一。

A、华夏B、中华C、少数民族D、西域4、下列可代表北京传统文化的是()。

A、元宵节B、清明节C、端午节D、中秋节5、《论语》是()的书。

A、老子B、孔子C、墨子D、庄子二、填空题(共30分)1、我国的国旗是红色旗帜,旗面上绣着()黄色的大星星。

2、人们能够看到的最深的星座是()座。

3、黄河的源头位于()。

4、玄奘法师是唐朝时期的()。

5、《聊斋志异》是我国()小说的代表作。

三、解答题(共50分)1、简述唐三彩的特点和用途。

(10分)唐三彩是唐代的一种陶器,最初仅用于皇室的仪式和礼仪用品,后来在民间普及。

其特点是色彩斑斓、形态生动、线条优美,主要用于盛装食物、饮料等日常生活器皿,也可以用于装饰和供奉。

2、阐述改革开放政策对中国经济的影响。

(15分)改革开放政策的实施,使中国经济迎来了高速发展的新时期。

在政策的推动下,国内外资本大量进入,国有企业逐步转制、股份制改革,私营企业的兴起,都极大地推动了中国经济的发展。

同时,国家也鼓励和支持科技创新和高技术产业的发展,加速了技术升级和工业化进程。

今天,中国已经成为全球第二大经济体,对世界经济的稳定和发展有着重要的贡献。

3、回答“绿水青山就是金山银山”这一名言的含义。

(25分)该名言的含义是,保护生态环境和自然资源就是最大的财富。

在环保节能逐渐成为全球主流趋势的今天,绿色发展已经成为各国发展的必经之路。

过度开采和污染环境不仅会危害人们的健康,也会带来沉重的经济损失。

相反,注重生态环保和资源可持续利用,可以让人们享有更美好的生活,也可以为全球的可持续发展创造更加广阔的前景。

八年级数学(上册)期末试卷(附参考答案)

八年级数学(上册)期末试卷(附参考答案)

八年级数学(上册)期末试卷(附参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( ) A .-6B .6C .16-D .162.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1B .2C .8D .115.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( )A .-1B .1C .2D .37.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行) B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补) D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等) 10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.因式分解:2218x -=__________.3.33x x -=-,则x 的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .6.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:a3a2++÷22a6a9a-4++-a1a3++,其中50+-113⎛⎫⎪⎝⎭2(-1).3.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、C5、B6、A7、B8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、72、2(x+3)(x﹣3).3、3x≤4、x>3.56、1500三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-33a+,;12-.3、m>﹣24、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为32或2或﹣12.5、(1)略(2)略6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

2022年初中八年级数学上册期末考试卷(完美版)

2022年初中八年级数学上册期末考试卷(完美版)

2022年初中八年级数学上册期末考试卷(完美版)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若=﹣a , 则a的取值范围是()A. ﹣3≤a≤0B. a≤0C. a<0D. a≥﹣32. 已知多项式2x2+bx+c分解因式为2(x-3)(x+1), 则b, c的值为().A. b=3, c=-1B. b=-6, c=2C. b=-6, c=-4D. b=-4, c=-63. 下列长度的三条线段, 能组成三角形的是()A. 4cm, 5cm, 9cmB. 8cm, 8cm, 15cmC. 5cm, 5cm, 10cmD. 6cm, 7cm, 14cm 4.如果, 那么代数式的值为()A. -3B. -1C. 1D. 35. 方程组的解为()A. B. C. D.6. 菱形不具备的性质是()A. 四条边都相等B. 对角线一定相等C. 是轴对称图形D. 是中心对称图形7. 如图, 矩形纸片ABCD中, 已知AD =8, 折叠纸片使AB边与对角线AC重合, 点B落在点F处, 折痕为AE, 且EF=3, 则AB的长为()A. 3B. 4C. 5D. 68. 如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 808.如图, 在矩形AOBC中, A(–2, 0), B(0, 1).若正比例函数y=kx的图象经过点C, 则k的值为()A. –B.C. –2D. 210.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD二、填空题(本大题共6小题, 每小题3分, 共18分)1. 分解因式: __________.2.若二次根式有意义, 则x的取值范围是▲.3. 因式分解: a3﹣2a2b+ab2=________.4.如图为6个边长相等的正方形的组合图形, 则∠1+∠2+∠3=_________5. 如图: 在△ABC中, AB=13, BC=12, 点D, E分别是AB, BC的中点, 连接DE, CD, 如果DE=2.5, 那么△ACD的周长是________.6. 如图, 在Rt△ABC中, ∠ACB=90°, AC=5cm, BC=12cm, 将△ABC绕点B顺时针旋转60°, 得到△BDE, 连接DC交AB于点F, 则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)211x x-=+(2)2216124xx x--=+-2. 先化简, 再求值: , 其中.3. 已知关于x的一元二次方程.(1)求证: 该一元二次方程总有两个实数根;(2)若为方程的两个根, 且, 判断动点所形成的数图象是否经过点, 并说明理由.4. 如图, ∠BAD=∠CAE=90°, AB=AD, AE=AC, AF⊥CB, 垂足为F.(1)求证: △ABC≌△ADE;(2)求∠FAE的度数;(3)求证: CD=2BF+DE.5. 如图, 矩形的顶点, 分别在菱形的边, 上, 顶点、在菱形的对角线上.(1)求证: ;(2)若为中点, , 求菱形的周长.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、D3、B4、D5、D6、B7、D8、C9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、()()33a a +-2、x 1≥.3.a (a ﹣b )2.4.135°5、186.42.三、解答题(本大题共6小题, 共72分)1.(1)x=1;(2)方程无解2. , .3、(1)见解析;(2)经过, 理由见解析4.(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5.(1)略;(2)8.6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。

八年级(上学期)期末数学试卷及答案解析

八年级(上学期)期末数学试卷及答案解析

八年级(上学期)期末数学试卷及答案解析(时间90分钟,满分100分)一、选择题(本大题共10小题,共30.0分)1.在-1.4141,,π,,,3.14这些数中,无理数的个数为()A. 2B. 3C. 4D. 52.下列方程组中是二元一次方程组的是()A. B.C. D.3.点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (-3,-2)C. (3,-2)D. (2,-3)4.下列各组数,能够作为直角三角形的三边长的是()A. 4,6,8B. ,,C. 5,12,14D. 2,2,25.下列四个命题中,假命题有()(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A. 1个B. 2个C. 3个D. 4个6.在“百善孝为先”朗诵比赛中,晓晴根据七位评委所给的某位参赛选手的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差7.菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=()A. B. C. D.8.如图,在△ABC中,DE∥AC,,DE=3,则AC的长为A. 3B. 4C. 6D. 99.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A. 10B. 16C. 18D. 2010.下列四个选项中,函数y=ax+a与y=ax2(a≠0)的图象表示正确的是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.已知|a-2|+(b+3)2=0,则b a=______.12.反比例函数与在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.13.在平面直角坐标系中,将点P(-1,2)向下平移2个单位长度,再向左平移1个单位长度得到点Q,则点Q的坐标为______.14.如图,在△ABC中,∠B=40°,∠C=60°,AD是△ABC的高,AE是△ABC的角平分线,则∠EAD的度数是______.15.如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为____.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为______ .三、解答题(本大题共8小题,共52.0分)17.按要求解答(1)解方程:2(x-2)2=8;(2)计算:.18.解方程组:.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点的坐标分别是A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,C1的坐标.20.如图,把△ABC先向上平移4个单位长度,再向右平移2个单位长度,得到△A'B'C'.(1)在图中画出△A'B'C';(2)求△ABC的面积.21.某中学八年级的篮球队有10名队员.在“二分球”罚篮投球训练中,这10名员各投篮50次的进球情况如下表:进球数423226201918人数112123针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数;(2)求这支球队投篮命中率______;(3)若队员小亮“二分球”的投篮命中率为55%,请你分析一下小亮在这支球队中的投篮水平.22.如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点.求证:(1)BM∥GH;(2)BM⊥CF.23.甲从学校A出发到相距14km的E地办事,到达距学校2km的B地时发现未带所需证件,打电话给在学校的乙,乙随即出发在C处追上甲后立即返回.当乙回到学校时,甲到达距E还有3km的D地.求学校到C地的距离.24.△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).(1)如图1,当点C与点O重合时,求直线BD的解析式;(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB的正切值.答案和解析1.【答案】B【解析】解:=2,故在-1.4141,,π,,,3.14这些数中,无理数有:,π,,共3个.故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:A、当a不是常数时,此方程组是三元二次方程组,故A错误;B、符合二元一次方程组的定义,故B正确;C、是分式方程组,故C错误;D、是三元一次方程组,故D错误.故选:B.分别根据二元一次方程组的定义对四个选项进行逐一分析即可.本题考查的是二元一次方程组的定义,二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.3.【答案】C【解析】解:点M(3,2)关于x轴对称的点的坐标为(3,-2).故选C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.【答案】D【解析】解:A、42+62≠82,不能构成直角三角形,故此选项不符合题意;B、()2+()2≠()2,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、(2)2+(2)2=(2)2,能构成直角三角形,故此选项符合题意.故选:D.欲判断是否是直角三角形的三边长,只需验证两小边的平方和是否等于最长边的平方即可.此题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.5.【答案】A【解析】解:(1)两条平行线被第三条直线所截,内错角相等,原命题是假命题.(2)如果∠1和∠2是对顶角,那么∠1=∠2,是真命题.(3)一个锐角的余角一定小于这个锐角的补角,是真命题.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补,是真命题;故选:A.根据平行线的性质、对顶角、补角进行判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.【答案】B【解析】解:去掉一个最高分和一个最低分对中位数没有影响,故选:B.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.7.【答案】A【解析】解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,∴OB=,∴FB=,∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF==,∵点P为FD的中点,∴PB=DF=.故选:A.连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、PF的长,进而可得PB的长.本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.8.【答案】D【解析】解:∵DE∥AC∴△BED∽△BCA故选D.9.【答案】A【解析】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP 的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5.∴△ABC的面积为=×4×5=10.故选A.本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.解决本题应首先看清横轴和纵轴表示的量.10.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C、D错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】9【解析】解:∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0,解得a=2,b=-3.∴b a=(-3)2=9.故答案为:9.先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.本题考查了非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.12.【答案】1【解析】试题分析:由于AB∥x轴,可知AB两点的纵坐标相等,于是可设A点坐标是(a,c),B点坐标是(b,c),于是可得=,即b=a,进而可求AB,据图可知△AOB的高是c,再利用面积公式可求其面积.由于AB∥x轴,设A点坐标是(a,c),B点坐标是(b,c),那么=,即b=a,∴AB=|a-b|=a,∵c=,∴S△AOB=AB•c=×a×=1,故答案是:1.13.【答案】(-2,0)【解析】解:平移后点Q的坐标为(-1-1,2-2),即(-2,0),故答案为:(-2,0).根据平移规律:横坐标右移加,左移减;纵坐标上移加,下移减即可得.此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.14.【答案】10【解析】解:∵∠B=40°,∠C=60°,∴∠BAC=180°-60°-40°=80°,∵AE为∠BAC角平分线,∴∠BAE=80°÷2=40°,∵AD为△ABC的高,∴∠ADB=90°,∴∠DAC=90°-∠C=90°-60°=30°,∴∠EAD=∠EAC-∠DAC=40°-30°=10°,即∠EAD的度数是10°,故答案为:10.首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△DAC中,求出∠DAC的度数,即可求出∠EAD的度数是多少.此题主要考查了三角形的内角和定理,三角形高、中线的定义,解答此题的关键是明确:三角形的内角和是180°.15.【答案】(3,)【解析】解:作AC⊥OB于C,如图所示:∵点B的坐标为(4,0),∴OB=4,∵∠OAB=90°,AB=2,∴OA==2,∵△OAB的面积=OB•AC=OA•AB,∴AC===,∴OC==3,∴A(3,);故答案为:(3,).作AC⊥OB于C,由勾股定理求出OA=2,由△OAB的面积求出AC==,再由勾股定理求出OC即可.本题主要考查了坐标与图形性质,直角三角形的性质,三角形面积,勾股定理,熟练掌握勾股定理是解答此题的关键.16.【答案】(7,4)【解析】解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).直接利用位似图形的性质得出对应点坐标乘以2得出A、B两点坐标,再求中点即可.此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.17.【答案】解:(1)方程整理得:(x-2)2=4,开方得:x-2=2或x-2=-2,解得:x=4或x=0;(2)原式=9-3+2+2-=10-.【解析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.【答案】解一:①+②×3,得5 x=10,解得x=2.把x=2代入②得y=-1.∴原方程组的解是;解二:由②得:x=3+y③,把③代入①得 2(3+y)+3y=1,解得y=-1.把y=-1代入③得x=2.∴原方程组的解是.【解析】解一:①+②×3得到一个关于x的一元一次方程,求出x,把x的值代入②求出y即可;解二:由②得x=3+y③,把③代入①得到一个关于y的一元一次方程,求出y,把y的值代入③求出x即可.本题考查了解二元一次方程组,明确基本思想是消元,基本方法是代入法与加减法.是基础知识,需熟练掌握.19.【答案】解:(1)△ABC的面积为×3×5=;(2)如图所示,△A1B1C1即为所求;(3)由图知,A1(1,5),C1(4,3).【解析】(1)直接利用三角形的面积公式求解即可;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(3)结合图形可得答案.本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.20.【答案】解:(1)如图所示.(2).【解析】(1)利用点平移的坐标规律写出点A′、B′、C′的坐标,然后描点即可;(2)利用三角形面积公式求解.本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.【答案】解:(1)23.8,19.5;(2)47.6%;(3)若队员小亮投篮命中率为55%,小亮在这支球队中的投篮水平处于中上水平.【解析】解:(1)平均数为:=23.8;把这些数从小到大排列,则中位数是:=19.5;故答案为:23.8,19.5;(2)这支球队投篮命中率是:×100%=47.6%,故答案为:47.6%;(3)见答案.【分析】(1)进球数的平均数=进球总数÷人数,10个数据中位数应是第5个和第6个数的平均数;(2)根据投篮命中率=进球总数÷投球总数×100%解答即可;(3)根据投篮命中率和中位数进行解答即可.本题主要考查了平均数的求法以及中位数的求法,用到的知识点是:中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数=总数÷个数.要学会用适当的统计量分析问题.22.【答案】证明:(1)∵正方形ABCD,∴∠A=∠EBH=90°,AD=BC,∵E是AB的中点,∴AE=BE,∵∠AED=∠BEH,∴△AED≌△BEH,∴AD=BH,∴BC=BH,即点B为CH的中点,又点M为CG的中点,∴BM为△CGH的中位线,∴BM∥GH.(2)∵四边形ABCD为正方形,∴AB=AD=CD,∠A=∠ADC=90°,又∵点E、F分别是边AB、AD的中点,∴AE=AB,DF=AD,∴AE=DF,∴△AED≌△DFC,∴∠ADE=∠DCF,∵∠ADE+∠CDE=90°,∴∠DCF+∠CDE=90°,∴∠CGH=90°,∵BM∥GH,∴∠CMB=∠CGH=90°,∴BM⊥CF.【解析】(1)根据正方形的性质得到∠A与∠EBH都为直角,边AD与BC的相等,再根据已知的点E为AB 的中点得到AE=BE,另加一对对顶角的相等,根据“ASA”证得三角形ADE与三角形BHE全等,根据全等三角形的对应边相等可得BH=AD,等量代换可得BH=BC,从而得到点B为CH的中点,再由已知的点M 为CG的中点,可得BM为三角形CGH的中位线,根据中位线定理即可得到BM与GH的平行;(2)根据正方形的性质得到正方形的四条边相等,∠A与∠DAC都为直角,又点E、F分别是边AB、AD的中点,可得AE=DF,根据“SAS”证得三角形AED与三角形DFC全等,根据全等三角形的对应角相等可得∠ADE与∠DCF的相等,又∠ADE+∠CDE=90°,根据等量代换可得∠DCF+∠CDE=90°,从而得到∠CGH为90°,最后由第一问得到的平行,根据两直线平行,同位角相等即可得到∠CMB为90°,即BM⊥CF.此题考查了正方形的性质,全等三角形的判定与性质以及平行线的判定与性质.是一道把三角形的知识与四边形知识综合在一起的一道证明题,是历年中考必考的题型,要求学生熟练掌握有关知识,结合图形,勇于探索,锻炼了学生发散思维能力.23.【答案】解:设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据题意得:x+(x-2)+3=14,解得:x=6.5.答:学校到C地的距离为6.5km.【解析】设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据A到E地的距离为14km,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【答案】解:(1)∵A(4,0),∴OA=4,∴等边三角形ABC的高就为2,∴B(2,-2).设直线BD的解析式为y=kx+b,由题意,得,解得:,∴直线BD的解析式为:y=x-;(2)作BE⊥x轴于E,∴∠AEB=90°.∵以AB为半径的⊙S与y轴相切于点C,∴BC⊥y轴.∴∠OCB=90°∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACO=30°,∴AC=2OA.∵A(4,0),∴OA=4,∴AC=8,∴由勾股定理得:OC=4.作BE⊥x轴于E,∴AE=4,∴OE=8,∴B(8,-4);(3)如图3,以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.∵△ABC是等边三角形,∴AC=BC=AB,∠ABC=∠ACB=∠BAC=60°,∴∠OEA=∠ABC=30°,∴AE=2OA.∵A(4,0),∴OA=4,∴AE=8.在Rt△AOE中,由勾股定理,得OE=4.∵C(0,),∴OC=2,在Rt△AOC中,由勾股定理,得AC=2.∵CE=OE-OC=4=2.∵BF⊥CE,∴CF=CE=,∴OF=2+=3.在Rt△CFB中,由勾股定理,得BF2=BC2-CF2,=28-3=25,∴BF=5,∴B(5,-3).过点B作BQ⊥x轴于点Q,∴BQ=3,OQ=5,∵D(10,0),∴DQ=5,∴tan∠ODB==.【解析】(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式;(2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论;(3)以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.根据等边三角形的性质圆心角与圆周角之间的关系及勾股定理就可以点B的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论.本题考查了等边三角形的性质的运用,勾股定理的运用,待定系数法求一次函数的解析式的运用,圆周角与圆心角的关系定理的运用,切线的性质的运用及直角三角形的性质的运用,解答时灵活运用勾股定理求线段的值是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期期末考试试卷
一、选择题
1. 下列线段长能构成三角形的是()
A . 3、4、8
B . 2、3、6
C . 5、6、11
D . 5、6、10
2. 如图所示的五角星是轴对称图形,它的对称轴共有()
A . 1条
B . 3条
C . 5条
D . 无数条
3. 在平面直角坐标系中,点P关于x轴的对称点在
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
4. 一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()
A . 75°
B . 60°
C . 45°
D . 40°
5. 计算(-2b)3的结果是()
A .
B .
C .
D .
6. 下列多项式能用完全平方公式进行因式分解的是()
A . a2﹣1
B . a2+4
C . a2+2a+1
D . a2﹣4a﹣4
7. 如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()
A . 5°
B . 8°
C . 10°
D . 15°
8. 如图,要测量河两岸相对的两点、的距离,先在
的垂线上取两点、,使,再作的垂线,使、、在一条直线上,可以说明,得,因此测得
的长就是的长,判定的理由是()
A .
B .
C .
D .
9. 化简的结果是()
A .
B .
C .
D .
10. 某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为
A .
B .
C .
D .
二、填空题
11. 计算:________.
12. 八边形的外角和等于________°.
13. 分解因式:x2-2x+1=________.
14. 要使分式有意义,则x应满足条件________.
15. 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是________.
16. 如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为________.
17. 如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为________cm时,线段CQ+PQ 的和为最小.
三、综合题
18. 计算:
19. 先化简,再求值:,其中a=2019.
20. 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.
21. 如图,在Rt△ABC中,∠C=90°,∠A=30°.
(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.
22. 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC的顶点A,C的坐标分别为,.
(1)请作出△ABC关于y轴对称的△A1B1C1;
(2)△A1B1C1的面积是________.
23. 山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
24. 已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD 于Q.
(1)求证:BE=AD;
(2)求∠BPQ的度数;
(3)若PQ=3,PE=1,求AD的长.
25. 如图,已知△A BC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?。

相关文档
最新文档