初二数学下册各章思维导图
八年级各章知识结构图
知识结构图
第二十五章概率初步
知识结构图
第二十六章二次函数
知识结构图
第二十七章相似
知识结构图
第二十八章锐角三角函数
知识结构图
第二十九章投影与视图
知识结构图
第一章有理数
知识结构图
第二章整式的加减
知识结构图
知识结构图
第四章图形的认识初步
知识结构图
第五章相交线与平行线
知识结构图
第六章平面直角坐标系
知识结构图
第七章三角形
知识结构图
第八章二元一次方程组
知识结构图
第九章不等式与不等式组
知识结构图
第十章数据的收集、描述与整理
知识结构图
第十一章全等三角形
知识结构图
第十二章轴对称
知识结构图
等十三章实数
知识构图
第十四章一次函数
知识结构图
第十五章整式的乘除与因式分解
知识结构图
第十六章分式
知识结构图
第十七章反比例函数
知识结构图
第十八章勾股定理
知识结构图
第十九章四边形
知识结构图
第二十章数据的分析
知识结构图
第二十一章二次根式
知识结构图
第二十二章一元二次方程
知识结构图
第二十三章旋转
知识结构图
八年级数学思维导图
八年级数学思维导图第十一章三角形本章介绍了三角形的概念及其相关性质。
三角形由三条边和三个顶点组成,可以用边、顶点或内角表示。
三角形的三边满足两边之和大于第三边的条件,同时有高、中线、角平分线等与三角形相关的线段。
三角形的内角和定理表明,三角形三个内角的和等于180°。
外角是指三角形内角的补角,三角形外角的性质也在本章中介绍。
此外,本章还涉及到多边形的相关概念及其内角和外角和的计算公式。
第十二章全等三角形本章介绍了全等三角形的概念及其相关性质。
全等三角形的对应边和对应角分别相等,有SSS、SAS、ASA、AAS等多种全等三角形的判定方法。
此外,本章还介绍了利用全等三角形解决实际问题的方法。
第十三章轴对称本章介绍了轴对称的概念及其性质。
轴对称是指平面上的一条直线,将图形沿着这条直线对称后,两边完全重合。
轴对称具有对称性和可逆性,轴对称的图形可以分为对称图形和非对称图形。
第十四章整式的乘法与因式分解本章介绍了整式的乘法与因式分解的方法。
整式是指只包含有理数、变量和加减乘幂运算的代数式,整式的乘法可以利用分配律和结合律进行展开。
因式分解是将一个整式分解为多个整式的乘积的过程,可以使用提公因式法、配方法、分组分解法等多种方法。
第十五章分式本章介绍了分式的概念及其相关性质。
分式是指形如a/b的表达式,其中a和b都是整式,b不为0.分式的化简、约分、通分、加减乘除等运算方法都在本章中介绍。
第十六章二次根式本章介绍了二次根式的概念及其相关性质。
二次根式是指形如√a的表达式,其中a是非负实数。
最简二次根式是指被开方数不含分母,分母中不含二次根式,并且被开方数中不含开得尽方的因数或因式的二次根式。
本章介绍了二次根式的乘法、除法、加减和混合运算的方法,以及二次根式的性质。
八下数学第二章思维导图人教版
八下数学第二章思维导图人教版《八下数学》是学生日常学习、生活中涉及到的最广泛的问题,它是由全国人民共同创造、共同发展起来。
《八下数学》教材分为八章,第一章为基本概念与性质,第二章为数学方法及应用,第三章为算术几何。
这几章是八年级数学的基础知识和重要知识点,也是学好数学的重点所在。
“八下数学”作为国内最早应用于小学课本教学的一门学科,从初中进入高中后,对此章节内容有所侧重和改变。
所以“八下数学”中部分知识涉及范围较广。
本节课内容共分为四个板块:概念与性质、空间与几何、计算应用和解题技巧三个方面。
通过对概念与性质、空间与几何、计算应用三个方面内容的分析和总结,掌握了该部分内容中重要的知识点及运用公式解决问题的能力。
一、概念与性质本单元主要包括两个重要的知识点:概念:两个概念相互关联,互相影响。
两个概念相互区别,共同构成一个新事物及其概念。
性质:概念的发展和完善是一个动态的过程。
认识新事物是认识事物与不一样事物之间区别的开始,它是认识事物发展和完善所必须具备的一种态度。
通过本单元内容的学习,可以将此部分内容形成一条逻辑清晰、完整可行的知识脉络。
1、两个概念相互关联,互相影响,是两个概念相互区别的基础。
(1)含义:表示一件事物的不同方面的属性,而这一属性是在具体事物的某个方面或某些方面具有某种属性。
(2)关系:一个事物或一组关系可以表示成多个概念。
(3)关系:在相互关联的基础上形成的概念。
(4)关系:两个不一样的概念必须互相学习或者影响彼此才能被创造和应用。
(5)区别:事物具有相对独立性和相对统一性;事物具有绝对性和相对独立性;事物具有相对统一性;事物具有绝对性和相对统一性;事物具有相对统一性。
(6)解释:两个事物或要素之间相互关系或区别是认识新事物及其自身关系和相互关系及产生一系列新概念所必须具备的前提条件。
也是知识理解与记忆中极其重要的内容之一。
通过此部分内容学习可以使学生了解事物之间相互区别的基础知识,从而加深学生对这部分内容的理解与记忆。
八年级(初二)下册 数学 思维导图+重点知识梳理
思维导图+重点知识梳理二次根式加、减、乘、除运算二次根式性质最简二次根式2 = 0 a a a ≥()()()()==-⎧⎪⎨⎪⎩200<a a a a a a ≥ ⋅⋅ = 0 0 a b a b a b (≥, ≥)()00>,bba b a a ≥= 0 0a a ≥≥()【例题展示】 已知a ,b 为等腰三角形的两条边长,且a,b 满足 ,求此三角形的周长.3264b a a =-+-+解:由题意得∴a =3,∴b =4.当a 为腰长时,三角形的周长为3+3+4=10;当b 为腰长时,三角形的周长为4+4+3=11.30260a a -⎧⎨-⎩≥,≥,【例题展示】 化简:(1)16;2(2)(5)-;解:2164 4.==22(2)(5)5 5.-==210;-2(3.14).-π()22111101010=10.----2(3.14) 3.14= 3.14.---πππ ,而3.14<π,要注意a 的正负性.注意2a a =32327+63---();06(2)20163+312.2--()-63336=--+解:(1)原式33.=-(2)原式333=--3 2.=-【例题展示】计算:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳勾股定理 直角三角形边长的数量关系 勾股定理的逆定理 直角三角形的判定 互逆定理勾股定理【例题展示】 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?AB AB A 'B '解:油罐的展开图如图,则AB '为梯子的最短距离.∵AA '=2×3×2=12, A 'B '=5,∴AB '=13. 即梯子最短需13米.【例题展示】 如图,南北方向PQ 以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知在PQ 上B 处巡逻的103号艇注意其动向,经检测,AC =10海里,BC =8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?东北P AB C Q D分析:根据勾股定理的逆定可得△ABC 是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD ,然后再利用勾股定理便可求CD .解:∵AC =10,AB =6,BC =8,∴AC 2=AB 2+BC 2,即△ABC 是直角三角形.设PQ 与AC 相交于点D ,根据三角形面积公式有 BC·AB= AC·BD ,即6×8=10BD ,解得BD=在Rt △BCD 中,2222248 6.4().5CD BC BD ⎛⎫=-=-= ⎪⎝⎭海里又∵该船只的速度为12.8海里/时,6.4÷12.8=0.5(小时)=30(分钟),∴需要30分钟进入我领海,即最早晚上10时58分进入我领海.东北P A B C QD 24.512125种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等平行四边形、矩形、菱形、正方形之间的关系平行四边形【例题展示】如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD边的取值范围.解:由题意得OA=OC=12,OB=OD=9,CD=AB=16,∴△OCD的周长为12+9+16=37.在△ACD中,24-16<AD<24+16,∴8<AD<40;在△ABD中,18-16<AD<18+16,∴2<AD<34;在△AOD中,12-9<AD<12+9,∴3<AD<21.综上所述,AD的取值范围应是8<AD<21.【例题展示】 如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE , CD=BE , AC=BC ,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.【例题展示】 如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.F∵BC=CB,∴△EBC≌△FCB,∴CE=BF,∴CD=2CE .【例题展示】 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,即∠DAC= ∠BAC.又∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE= ∠CAM,∴∠DAE=∠DAC+∠CAE = (∠BAC+∠CAM)=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.1 212 12【例题展示】 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.()22226810cm. AC AB BC∴=+=+=某些运动变化 的现实问题 函数建立函数模型定义自变量取值范围 表示法 一次函数 y =kx +b (k ≠0)应用图象:一条直线性质:k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小数形结合一次函数与方程(组)、 不等式之间的关系一次函数【例题展示】小明所在学校与家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图,能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系图象D的是( )【例题展示】 已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的解析式.解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2.又∵直线过点(0,2),∴2=-2×0+b,∴b=2,∴直线l的解析式为y=-2x+2.【例题展示】小明将父母给的零用钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内钱数y (元)与存钱月数 x (月)之间的关系如图所示,根据下图回答下列问题:(1)求出y 关于x 的函数解析式.(2)根据关系式计算,小明经过几个月才能存够200元?4080120y /元x /月12345o解: (1)设函数解析式为y =kx +b ,由图可知图象过(0,40),(4,120),∴这个函数的解析式为y =20x +40.(2)当y =200时,20x +40=200, 解得x =8,∴小明经过8个月才能存够200元.解得20,40,k b =⎧⎨=⎩∴{040,4120,k b k b ⨯+=+=4080120y /元x /月12345o数据的集中趋势数据的波动程度 方差用样本平均数估计总体平均数 用样本方差估计总体方差平均数 中位数 众 数 用样本估计总体数据的分析 数据收集—数据整理—数据描述—数据分析 【例题展示】 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数.解:∵10,10,x,8的中位数与平均数相等∴ (10+x)÷2= (10+10+x+8)÷4∴x=8(10+x)÷2=9∴这组数据的中位数是9.【例题展示】.五个数1,3,a,5,8的平均数是4,则a3 5.6=_____,这五个数的方差_____.。
八年级下册数学第九章思维导图(青岛版)
八年级下册数学第九章思维导图(青岛版)一、函数1、概念:函数是将某种规律性的关系表示成y=f(x)的形式,它由2个量x 和y 组成,其中x 叫做函数的自变量,y 叫做函数的因变量,y 则完全取决于x 的值。
2、函数图像:给定一个函数y=f(x),可以在x-y 平面内画出它的图形,称为函数图像。
3、函数的导数:函数的导数描述了函数的变化率,它是一个微分的概念,用来解释函数的变化内容;它是函数的一阶导数,即当函数的自变量变化一小段时,函数的因变量变化的量级。
4、函数的定义域:即函数的自变量的取值范围,是指函数的自变量只允许取这个范围内的数值。
二、一元二次函数1、一元二次函数的定义:一元二次函数是一种特殊的函数,它可以由一个量y 和一个量x 组成,并且满足y=a*x^2+b*x+c 的条件。
2、一元二次函数的特点:一元二次函数的特点是图像呈现的形状有开口的抛物线、闭口的抛物线、U 型、C 型等。
3、一元二次函数的性质:一元二次函数具有一定的性质,比如函数只有一个极值点,或两个相等的极值点;函数图像中一定存在一个顶点,以及函数的导数大小与极值点有关等。
4、一元二次函数的作用:一元二次函数在日常生活中有着重要的作用,它可以用来描述各种规律性的现象,如各种趋势、变化规律等等。
三、不等式1、不等式的定义:不等式是一种数学概念,是由不等号两端的两个量及它们之间的运算组成的,其中被称为未知数的量位于不等号的左边。
2、不等式的分类:不等式可以分为一元不等式和二元不等式,其中一元不等式由一个未知数组成,而二元不等式由两个未知数组成。
3、不等式的性质:不等式具有“小于”、“大于”及“等于”等性质,用以表示两个数之间的大小关系;此外,可以根据不同情况,将不等式针对一定条件进行分组讨论,以便更好地理解及求解它。
4、不等式的应用:不等式可以用来描述物体的变化规律,如力学中的牛顿运动定律;在概率统计中,不等式可以表示概率的取值范围;又如简单力学问题中,不等式可以给出物体加速度大小的范围等等。
导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合
第三章 图形的平移与旋转
第四章 因式分解 第五章 分式与分式方程
第六章 平行四边形
任它本身;负数的绝对值是它的相反数;0 的绝对值是 0。(反之,若 5 绝对值
性质 |a|=a,则 a≥0;若|a|=-a,则 a≤0。)
互为相反数的两个数的绝对值相等。
两个负数比较大小,绝对值大的反而小。
如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互
性质 负数。
一般地,形如 的代数式叫做二次根式,a 叫做被开方数。
二次根 一般地,被开方数不含分母,也不含能开得尽方的因数或因式的二次根式叫最简二次根式。
11
式
·
( , ),
(,)
第三章 位置与坐标
序号 1
知识点 确定位置
第三章 位置与坐标
内容 在平面内,确定一个物体的位置一般需要 2 个数据。 在平面内,两条互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条 数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平 的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,x 轴和 y 轴统称为坐标轴,它们的 公共原点 O 称为直角坐标系的原点。建立了平面直角坐标系,平面内的点就可以用一组有 序实数对(a,b)来表示了。 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一 象限,其它三部分按逆时针方向依次叫做第二、三、四象限。坐标轴上的点不在任何一个 象限内。
性质 一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算数 定义 一般地,如果一个正数 x 的平方等于 a, ,那么这个正数 x 就叫做 a 的算数平方根。 9
平方根 性质 一个正数的算数平方根是正数;0 的算数平方根是 0;负数没有算数平方根。
初中数学各章节知识图解思维导图ppt课件
对邻
垂
顶补
直
角角
画法
同位角相等
角的度量 图形认识初步
借助角研究平面内两条直 线的位置关系
相交线
关系
相交线.平行线
断定
条件
内错角相等 同旁内角互补
平行线
平行公理.推论
性质
同位角相等 内错角相等
直线.射线.线段
同旁内角互补
多姿多彩的图形
立体图形
平面图形
图形认识初 步 相交线
平行线
命题
分类 构造
识别 展开图
对应线段 平行且相等
动
运用
利用平移制作图 案
平移过程 对应点坐标 的变化规律
(x,y〕平移后 〔x±a,y±b)
右加左减
上加下减
图案设计
用平移.轴对称和旋转的组合设计图 案
关于中心对称
两图形全等
关于原点对称
旋转1800后与 另一图形 重合
用坐标表示 旋转
对称点的坐标符号 相反
到角两边距离相等的 点
解法 运用
传播问题 行程问题 效率问题
与y轴交点位置 c>0.在正
开口方上向a<. 0.向a下>0.向对称轴在y轴的位半 在轴 负半c=轴0.在原点 置 左同右异
c<0.
解析
二次函数 与 一元二
次方程
定义
面积问题
y=ax2+bx+c (a.b.c为常数a≠0)
y axh2 k yaxx1xx2
(a 0)
性质
ac bd
对应角相等, 周长的比=相似比 方
对应边成比例, 面积的比=相似比的平
正方形
旋转 不变性 轴对称性
外心:是三边垂直平 分线的交
八年级下册数学第七章思维导图。
第十一章三角形
有关概念三角形的定义
凸多边形
正多边形
多边形的内角和 n 边形的内角和等于(n-2)x 180° 多边形的外角和 n 边形的外角和等于360°
第十二章 全等三角形
全等三角形的对应边相等
SSS,SAS,ASA,AAS 直角三角形HL只适用于直角三角形
第十三章轴对称
第十四章整式的乘法与因式分解
第十五章分式
第十六章二次根式
二次根式
定义:式子(a ≥0)叫做二次根式
(a ≥0)是一个非负数
(a ≥0)
运算二次根式的乘法二次根式的除法
二次根式的混合运算二次根式的加减
二次根式加减是,可以先将二次根式化成最简二次根式,再合并同类二次根式
满足下列两个特点的二次根式,叫最简二次根式.
(1)被开方数不含分母,分母
中不含二次根式;
(2)被开方数中不含开得尽方
的因数或因式.
最简二次根式
性质
(a ≥0,b ≥0)(a ≥0,b >0)
(a ≥0,b >0)
第十七章勾股定理
第十八章平行四边形
第十九章一次函数
第二十章数据的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学下册各章思维导图
第十六章 二次根式
初二数学下册各章思维导图
第十七章 勾股定理
初二数学下册各章思维导图
初二数学下册各章思维导图
初二数学下
第十八章 平行四边形
初二数学下册各章思维导图
第十九章 一次函数
初二数学下册各章思维导图
第十九章 一次函数
初二数学下册各章思维导图
第二十章 数据的分析
初二数学下册各章思维导图
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!