机械设计基础总结

合集下载

机械设计基础复习总结

机械设计基础复习总结

自由度计算小结自由度计算公式:F =3n -2Pl -Ph机构自由度=3×活动构件数-(2×低副数+1×高副数)计算步骤:(1)确定活动构件数目(2)确定运动副种类和数目(3)确定特殊结构: 局部自由度、虚约束、复合铰链(4)计算、验证自由度例 计算图所示机构的自由度 (若存在局部自由度、复合铰链、虚约束请标出)。

键联接和花键联接键联接的主要类型有: 平键联接、半圆键联接、楔键联接和切向键联接等。

1.平键联接键工作原理:两侧面是工作面, 靠两侧面挤压传递转矩。

成对使用:承载能力不够时采用, 按 180°布置两个键。

一对平键按1.5 个键计算。

2.半圆键联接工作原理: 两侧面是工作面, 侧面挤压传递转矩。

4、3.楔键联接5、工作原理: 上下表面为工作面, 靠摩擦力传递转矩。

6、切向键联接● 工作原理:键的窄面是工作面, 靠工作面上的挤压力和轴与轮毂间的摩擦力来传递转矩。

● 一个切向键只能传递单向力矩, 双向力矩时, 需要采用两个切向键, 两键的夹角为 。

● 花键联接是有外花键和内花键组成。

花键联接可用于静联接或动联接。

按齿形不同可以分为矩形花键和渐开线花键两类, 两种花键均已标准化。

矩形花键定心方式为小径定心, 特点是定心精度高, 定心稳定性好。

渐开线花键定心方式为齿形定心, 具有自动定心作用, 有利于各齿间的均匀承载。

螺纹联接1.螺栓联接按其受力状况不同, 分为普通螺栓联接和铰制孔用螺栓联接。

2.普通螺栓, 其主要失效形式为螺栓杆和螺纹部分发生断裂(受拉);铰制孔用螺栓联接, 其主要失效形式为螺栓杆和孔壁见压溃或螺栓杆被剪断(受剪)。

3.防松的根本问题是防止螺旋副的相对转动。

(1)摩擦防松 对顶螺母、弹簧垫圈、自锁螺母(2)机械防松 槽型螺母和开口销、圆螺母和带翘垫圈、止动垫圈、串联钢丝4.螺纹联接的预紧目的: 在于增强联接的可靠性和紧密性, 以防止受载后被连接件间出现缝隙或发生相对滑移。

机械设计基础知识点总结

机械设计基础知识点总结

失效:由于某些原因机械零件不能在预定的条件下和规定的期限内正常工作Chapter 3 机械运动设计与分析基础机构组成要素:构件,运动副(转动副,移动副,平面滚滑副)运动链:构件通过运动副连接而成的系统机构:运动链+机架+主动件比例尺=实际长度/图示长度m/mm或mm/mm平面机构的自由度:F=3n-2P5-P4 n:自由度不为0的运动构件个数复合铰链:K-1局部自由度虚约束:轨迹重合两构件在两处以上位置接触或配合机构中对传递运动不起独立作用的对称部分速度瞬心:两个互做平面平行运动的缸体上绝对速度相等的瞬时重合点三心定理法:互做平面平行运动的三个构件共有三个瞬心,这三个瞬心必位于同一直线上构件是机构中的(运动)单元体,零件是机器中的(制造)单元体Chapter 6 平面连杆机构平面连杆机构:由若干个刚性构件通过低副连接而成,且各构件均在相互平行的平面内运动的机构优点:更够实现多种运动形式的转换,也可以实现各种预定的运动规律和代数曲线轨迹,易满足生产工艺中各种动作要求,由于是低副机构,构件间接触面上的比压小,易润滑,磨损轻,机构中运动副的元素形状简单,制造方便缺点:只能近似的实现给定的运动要求,且设计方法比较复杂。

机构中做平面复杂运动和往复运动的构件产生的惯性力难以平衡,高速时会引起较大的振动和动载荷,常用于速度较低的场合铰链四杆机构具有曲柄的条件:1.最短杆长度+最长杆长度≤其余两杆长度之和2.连架杆和机架中必有一个是最短杆若满足1:取最短杆相邻杆为机架——曲柄摇杆机构取最短杆为机架——双曲柄机构取与最短杆相对的杆为机架——双摇杆机构若不满足1:只能有双摇杆机构极位夹角θ行程速比系数KK越大,急回特征越明显压力角α:从动件受力点的力方向与受力点速度方向之间所夹的锐角压力角越小,机构的传力效果越好传动角γ:压力角的余角以曲柄为主动件的曲柄摇杆机构,其最小传动角必在曲柄转至与机架共线位置时出现死点位置:传动角γ为0 (从动件会卡死,自锁或正反转运动不确定)措施:1.利用惯性 2.互相辅助 3.外加力平面连杆机构的运动设计1.给定连杆位置:中垂线法2.机构急回特性Chapter 7 凸轮机构基本构件:凸轮,从动件,机架优点:结构简单,紧凑,运动可靠,只要恰当的设计凸轮轮廓曲线,可使从动件实现各种预期的运动规律缺点:凸轮与从动件之间为点或线接触,接触应力大,易于磨损,故多用于传力不大的场合从动件:尖端从动件,滚子从动件,平底从动件,曲面从动件锁合装置:1.力锁合 2.形锁合(锁合:保持从动件与凸轮之间接触的方式)理论廓线:尖端点/滚子中心/平底上一点在凸轮平面上描出的轨迹实际廓线:与从动件工作面直接接触的凸轮轮廓基圆:以凸轮轴心为圆心,理论廓线的最小向径为半径所做的圆。

机械设计基础心得体会共6篇

机械设计基础心得体会共6篇

机械设计基础心得体会篇一机械设计基础是机械工程专业中非常重要的课程,对于学习机械设计和提高设计能力有着重要的影响。

在学习机械设计基础的过程中,我获得了一些宝贵的经验和体会。

首先,机械设计基础需要掌握的知识点非常多。

在学习这门课程时,我们需要掌握各种机械元件的构造特点、基本工作原理和使用要求,以及机械设计的基本方法和步骤。

此外,还需要了解机械设计涉及的一些基本的力学知识,如静力学、动力学等等。

机械设计基础是机械工程专业的基石,对于后续的学习和研究都有着非常重要的作用。

其次,机械设计基础注重实践动手能力的培养。

在课程中,我们经常需要进行一些机械元件的手工制作和装配实验,这些实验能够锻炼我们的实际操作能力和动手能力。

通过实际动手操作,我们能够更加深入地理解机械元件的构造和工作原理,从而更好地运用到设计中。

同时,实验过程中还能够培养我们的团队合作和沟通能力,因为我们往往需要和同学合作完成实验任务。

此外,机械设计基础强调设计思维和创新能力的培养。

在课程中,我们不仅需要学习机械元件的基本知识,还需要用所学知识解决一些综合性的设计问题。

这些设计问题往往需要我们进行创新思考和合理的方案选择,从而提高我们的设计思维和创新能力。

而且,机械设计基础也要求我们进行一些设计项目,并且需要我们编制设计报告和进行设计方案的评审和演示,这些都对我们的表达能力和沟通能力有一定的要求。

此外,机械设计基础还加强了对工程伦理和知识产权的培养。

在课程中,我们要求严守学术规范和学术道德,不得抄袭和剽窃他人的作品。

同时,在设计时我们也要考虑到知识产权的问题,尊重他人的知识产权,遵守相关的法规和规定。

这些伦理和知识产权的培养对于我们的职业素养和社会责任感的形成具有重要的意义。

最后,机械设计基础需要进行大量的练习和实践。

在学习这门课程时,我们需要进行大量的练习题和设计项目,以加强对所学知识的理解和应用能力。

同时,我们还需要进行一些实践操作和装配实验,加强自己的动手能力和实际操作能力。

机械设计基础总结

机械设计基础总结

机械设计基础总结第一章平面机构的自由度和速度分析1.1 构件——独立的运动单元零件——独立的制造单元运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。

机构——由两个或两个以上构件通过活动联接形成的构件系统。

机器——由零件组成的执行机械运动的装置。

机器和机构统称为机械。

构件是由一个或多个零件组成的。

机构与机器的区别:机构只是一个构件系统,而机器除构件系统之外还包含电气,液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。

1.2运动副——接触组成的仍能产生某些相对运动的联接。

运动副元素——直接接触的部分(点、线、面)运动副的分类:1)按引入的约束数分有:I级副(F=5)、II级副(F=4)、III级副(F=3)、IV级副(F=2)、V级副(F=1)。

2)按相对运动范围分有:平面运动副——平面运动空间运动副——空间运动平面机构——全部由平面运动副组成的机构。

空间机构——至少含有一个空间运动副的机构3)按运动副元素分有:高副()——点、线接触,应力高;低副()——面接触,应力低1.3机构:具有确定运动的运动链称为机构机构的组成:机构=机架+原动件+从动件保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。

24y原动件<自由度数目:不具有确定的相对运动。

原动件>自由度数目:机构中最弱的构件将损坏。

1.5局部自由度:构件局部运动所产生的自由度。

出现在加装滚子的场合,计算时应去掉Fp。

复合铰链——两个以上的构件在同一处以转动副相联。

m个构件, 有m-1转动副虚约束对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

出现场合:1两构件联接前后,联接点的轨迹重合,2.两构件构成多个移动副,且导路平行。

3.两构件构成多个转动副,且同轴。

4运动时,两构件上的两点距离始终不变。

5.对运动不起作用的对称部分。

如多个行星轮。

6.两构件构成高副,两处接触,且法线重合。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》课程重点总结绪论机器是执行机械运动的装置,用来变换或传递能量、物料、信息。

原动机:将其他形式能量转换为机械能的机器。

工作机:利用机械能去变换或传递能量、物料、信息的机器。

机器主要由动力部分、传动部分、执行部分、控制部分四个基本部分组成,它的主体部分是由机构组成。

机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统。

机构与机器的区别:机构只是一个构件系统,而机器除构件系统外,还含电器、液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量、物料、信息的功能。

零件是制造的单元,构件是运动的单元,一部机器可包含一个或若干个机构,同一个机构可以组成不同的机器。

机械零件可以分为通用零件和专用零件。

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法。

第一章平面机构的自由度和速度分析1.平面机构:所有构件都在相互平行的平面内运动的机构;构件相对参考系的独立运动称为自由度;所以一个作平面运动的自由机构具有三个自由度。

2.运动副:两构件直接接触并能产生一定相对运动的连接。

两构件通过面接触组成的运动副称为低副;平面机构中的低副有移动副和转动副;两构件通过点或线接触组成的运动副称为高副;3.绘制平面机构运动简图;P84.机构自由度计算公式:F=3n-2P l-P H 机构的自由度也是机构相对机架具有的独立运动的数目。

原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;机构具有确定的运动的条件是:机构自由度F > 0,且F等于原动件数5.计算平面机构自由度的注意事项:(1)复合铰链:两个以上构件同时在一处用转动副相连接(图1-13)(2)局部自由度:一种与输出构件运动无关的的自由度,如凸轮滚子(3)虚约束:重复而对机构不起限制作用的约束P13(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束。

机械设计基础课程设计小结(三篇)

机械设计基础课程设计小结(三篇)

机械设计基础课程设计小结(三篇)【一】经过两周的奋战我们的课程设计终于完成了,在这次课程设计中我学到得不仅是专业的知识,还有的是如何进行团队的合作,因为任何一个作品都不可能由单独某一个人来完成,它必然是团队成员的细致分工完成某一小部分,然后在将所有的部分紧密的结合起来,并认真调试它们之间的运动关系之后形成一个完美的作品。

在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。

在这种相互协调合作的过程中,口角的斗争在所难免,关键是我们如何的处理遇到的分歧,而不是一味的计较和埋怨.这不仅仅是在类似于这样的协调当中,生活中的很多事情都需要我们有这样的处理能力,面对分歧大家要消除误解,相互理解,增进了解,达到谅解..也许很多问题没有想象中的那么复杂,关键还是看我们的心态,那种处理和解决分歧的心态,因为我们的出发点都是一致的。

经过这次课程设计我们学到了很多课本上没有的东西,它对我们今后的生活和工作都有很大的帮助,所以,这次的课程设计不仅仅有汗水和艰辛,更的是苦后的甘甜。

【二】经过紧张而辛苦的四周的课程设计结束了,看着自己的设计。

即高兴又担忧,高兴的是自己的设计终于完成啦,担忧的是自己的设计存在很多的不足。

课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.千里之行始于足下,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.机械设计设计小结机械课程设计设计小结这次的课程设计对于我来说有着深刻的意义,这种意义不光是自己能够独立完成了设计任务,更重要的是在这段时间内使自己深刻感受到设计工作的那份艰难。

而这份艰难又体现在设计内容与过程中为了精益求精所付出的艰辛,和背负恶劣的天气所付出的决心与毅力!开始的时候感觉设计对我们这些刚刚入门的人来说,无非就是按照条条框框依葫芦画瓢的过程,有的时候感觉挺无聊的,反正按照步骤一定可以完成设计任务。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。

它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。

下面我将为大家总结这门课程的重点内容。

一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。

根据接触形式的不同,运动副分为低副和高副。

低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。

2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。

绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。

3、平面机构的自由度计算自由度是指机构具有独立运动的数目。

平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。

机构具有确定运动的条件是自由度等于原动件的数目。

二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。

其类型取决于各杆的长度关系和机架的选择。

2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。

3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。

急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。

三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。

2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。

不同的运动规律适用于不同的工作场合。

3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选⽤材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常⽤润滑剂的性能习题2-1 摩擦可分哪⼏类?各有何特点?2-2 润滑剂的作⽤是什麽?常⽤润滑剂有⼏类?第3章平⾯机构的结构分析复习重点1、机构及运动副的概念2、⾃由度计算平⾯机构:各运动构件均在同⼀平⾯内或相互平⾏平⾯内运动的机构,称为平⾯机构。

3.1 运动副及其分类运动副:构件间的可动联接。

(既保持直接接触,⼜能产⽣⼀定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平⾯运动副分为低副和⾼副两类。

3.2 平⾯机构⾃由度的计算⼀个作平⾯运动的⾃由构件具有三个⾃由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个⾃由度。

当⽤P L个低副和P H个⾼副连接组成机构后,每个低副引⼊两个约束,每个⾼副引⼊⼀个约束,共引⼊2P L+P H个约束,因此整个机构相对机架的⾃由度数,即机构的⾃由度为F=3n-2P L-P H (1-1)下⾯举例说明此式的应⽤。

例1-1 试计算下图所⽰颚式破碎机机构的⾃由度。

解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有⾼副,P H=0。

因此,由式(1-1)得该机构⾃由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平⾯机构⾃由度的注意事项应⽤式(1-1)计算平⾯机构⾃由度时,还必须注意以下⼀些特殊情况。

1. 复合铰链2. 局部⾃由度3. 虚约束例3-2 试计算图3-9所⽰⼤筛机构的⾃由度。

解机构中的滚⼦有⼀个局部⾃由度。

顶杆与机架在E和E′组成两个导路平⾏的移动副,其中之⼀为虚约束。

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结
《机械设计基础》
第1章 机械设计概论
复习重点
1.机械零件常见的失效形式
2.机械设计中,主要的设计准则
习题
1-1机械零件常见的失效形式有哪些?
1—2在机械设计中,主要的设计准则有哪些?
1-3在机械设计中,选用材料的依据是什么?
第2章 润滑与密封概述
复习重点
1。摩擦的四种状态
2。常用润滑剂的性能
习题
2—1摩擦可分哪几类?各有何特点?
松边拉力=F3+F2(F2--—离心拉力F2=qv2;F3-—-张紧力或悬垂拉力)
紧边拉力=F3+F2+F1(F1--—有效工作拉力,F1=1000P/V KW)
注意与带的区别:⑴初拉力F3没有再变大或变小,∵链板之间可以相对转动,∴不像带有伸长收缩的明显改变.
⑵没有弯曲应力σb∵链包在链轮上,链板可以自由转动,∴不受弯曲应力.
销轴与外链板、套筒与内链板为过盈配合。
另外:内、外链板之间留有一定间隙,以便润滑油渗入到铰链的摩擦面间.
内、外链板均制成“∞”型。(从减轻重量和等强度两方面考虑)
链的排数:一般不超过4排.
连结数通常取偶数(∵接头方便,无过渡链节)
②链条的参数与标记:参数已标准化,分A、B系列。表11—1给出了A系列的一些参数。
3、标准渐开线直齿圆柱齿轮的基本参数和几何尺寸计算
4。齿轮传动的失效形式
5.齿轮传动中的受力分析(齿轮的转向及轮齿旋向分析)
11.1齿轮机构的类型
齿轮机构的类型很多,按两齿轮轴线间的相互位置、齿向和啮合情况不同,齿轮机构可分为以下几种基本类型,如表11—1所示。
表11-1齿轮机构的类型
齿轮机构
平行轴传动
外啮合齿轮

机械设计基础课程总结

机械设计基础课程总结

机械设计基础课程总结机械设计基础是一门涉及机械原理、机械零件设计以及机械系统设计等多个方面的重要课程。

通过这门课程的学习,我对机械设计领域有了更深入的了解和认识。

在课程的开始阶段,我们学习了机械原理的相关知识。

这部分内容包括了机构的组成、运动副的类型、平面机构的自由度计算等。

其中,机构的组成是基础中的基础,我们了解到了各种常见的构件,如连杆、凸轮、齿轮等,以及它们在机构中的作用。

而运动副的类型,如转动副、移动副、高副等,决定了机构的运动方式和自由度。

在计算平面机构的自由度时,需要准确判断活动构件的数量、运动副的类型以及是否存在虚约束和局部自由度,这需要我们具备细致的观察力和严谨的逻辑思维。

接着,我们深入学习了机械零件的设计。

齿轮传动是其中的重点之一。

齿轮的设计需要考虑很多因素,如模数、齿数、压力角、齿宽等。

模数和齿数决定了齿轮的尺寸和传动比,压力角影响着齿轮的承载能力和传动效率,而齿宽则需要在保证强度的前提下,尽量减小以减轻重量和节省材料。

轴的设计也是关键内容,轴的类型有转轴、传动轴和心轴,其设计需要考虑轴的受力情况、轴径的计算、轴的结构设计以及轴的强度和刚度校核。

此外,还有带传动、链传动、螺纹连接、键连接等零件的设计,每种零件都有其独特的特点和设计要求。

在机械系统设计方面,我们学习了如何将各种机械零件组合成一个完整的机械系统,以实现特定的功能。

这需要综合考虑各个零件的性能、相互之间的配合以及整个系统的稳定性和可靠性。

例如,在设计一个简单的减速器时,需要合理选择齿轮的参数、轴的结构、轴承的类型以及箱体的形状和尺寸等,以确保减速器能够平稳、高效地工作。

在学习过程中,我深刻体会到了理论与实践相结合的重要性。

课程中安排的实验和课程设计环节,让我有机会将所学的理论知识应用到实际的设计中。

通过实验,我们能够直观地观察到机构的运动情况,验证理论计算的结果,加深对机械原理的理解。

而课程设计则是对我们综合设计能力的一次考验,从方案的选择、参数的计算到图纸的绘制,每一个环节都需要我们认真对待,严谨细致地完成。

机械设计基础总结76404

机械设计基础总结76404

盛年不重来,一日难再晨。

及时宜自勉,岁月不待人。

机械设计基础总结第一章平面机构的自由度和速度分析1.1 构件——独立的运动单元零件——独立的制造单元运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。

机构——由两个或两个以上构件通过活动联接形成的构件系统。

机器——由零件组成的执行机械运动的装置。

机器和机构统称为机械。

构件是由一个或多个零件组成的。

机构与机器的区别:机构只是一个构件系统,而机器除构件系统之外还包含电气,液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。

1.2运动副——接触组成的仍能产生某些相对运动的联接。

运动副元素——直接接触的部分(点、线、面)运动副的分类:1)按引入的约束数分有:I级副(F=5)、II级副(F=4)、III级副(F=3)、IV级副(F=2)、V级副(F=1)。

2)按相对运动范围分有:平面运动副——平面运动空间运动副——空间运动平面机构——全部由平面运动副组成的机构。

空间机构——至少含有一个空间运动副的机构3)按运动副元素分有:高副()——点、线接触,应力高;低副()——面接触,应力低1.3机构:具有确定运动的运动链称为机构机构的组成:机构=机架+原动件+从动件保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。

24y原动件<自由度数目:不具有确定的相对运动。

原动件>自由度数目:机构中最弱的构件将损坏。

1.5局部自由度:构件局部运动所产生的自由度。

出现在加装滚子的场合,计算时应去掉Fp。

复合铰链——两个以上的构件在同一处以转动副相联。

m个构件, 有m-1转动副虚约束对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

出现场合:1两构件联接前后,联接点的轨迹重合,2.两构件构成多个移动副,且导路平行。

3.两构件构成多个转动副,且同轴。

4运动时,两构件上的两点距离始终不变。

5.对运动不起作用的对称部分。

机械设计基础知识点总结

机械设计基础知识点总结

《机械设计基础》知识点总结1. 构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干)) 机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械2. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要) 3. 运动副(两构件组成运动副):1)高副(两构件点或线接触)2)低副(两构件面接触组成),例如转动副、移动副4. 自由度(F)=原动件数目,自由度计算公式:为高副数目)(为低副数目)(为活动构件数目)(H H L L P P P P n n F --=23 求解自由度时需要考虑以下问题:1)复合铰链2)局部自由度3)虚约束5. 杆长条件:最短杆+最长杆≤其它两杆之和(满足杆长条件则机构中存在整转副)I ) 满足杆长条件,若最短杆为机架,则为双曲柄机构II ) 满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆机构 III ) 满足杆长条件,若最短杆为机架的对边,则为双摇杆机构 IV ) 不满足杆长条件,则为双摇杆机构6. 急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复式输送机急回特性可用行程速度变化系数(或称行程速比系数)K 表示11180180180//21211221+-︒=⇒-︒+︒=====K K t t t t K θθθϕϕψψωω 为极位夹角(连杆与曲柄两次共线时,两线之间的夹角)7. 压力角:作用力F 方向与作用点绝对速度方向的夹角α8. 从动件压力角α=90°(传动角γ=0°)时产生死点,可用飞轮或者构件本身惯性消除 9. 凸轮机构的分类及其特点:I )按凸轮形状分:盘形、移动、圆柱凸轮(端面) II )按推杆形状分:1)尖顶—-构造简单,易磨损,用于仪表机构(只用于受力不大的低速机构)2)滚子--磨损小,应用广3)平底—-受力好,润滑好,用于高速转动,效率高,但是无法进入凹面 III )按推杆运动分:直动(对心、偏置)、摆动 IV)按保持接触方式分:力封闭(重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回凸轮)10. 凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的方向之间所夹的锐角α(凸轮给从动件的力的方向沿接触点的法线方向)压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)11. 凸轮给从动件的力F 可以如图分解为沿从动件的有用分力F ’分力F''(F''=F ’tan α) 12. 凸轮机构的自锁现象:在α角增大的同时,F ’’增大,使导路摩擦力大于有用分力F',系统无法运动,当压力角超过许用值【α】即发生自锁,【α】在摆动凸轮机构中建议35°—45°,机构中建议30°,【α】在回程凸轮机构中建议70°—80°13. 凸轮机构的运动规律与冲击的关系:I )多项式运动规律:1运动规律——刚性冲击2)等加等减速(二次多项式)运动规律—-柔性冲击3)五次多项式运动规律-—无冲击(适用于高速凸轮机构) II)三角函数运动规律:1)余弦加速度(简谐)运动规律——柔性冲击2)正弦加速度(摆线)运动规律——无冲击 III )改进型运动规律:将集中运动规律组合,以改善运动特性 14. 凸轮滚子机构半径的确定:为滚子半径、为理论轮廓的曲率半径、为工作轮廓的曲率半径T a r ρρI )轮廓内凹时:T a r +=ρρ II )轮廓外凸时:T a r -=ρρ(当0=-=T a r ρρ时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使T r >min ρ) 注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题 15. 齿轮啮合基本定律:设P 为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线21O O 交点),12122112b b r r P O P O i ===ωω(传动比需要恒定,即需要PO PO 12为常数) 16. 齿轮渐开线(口诀):弧长等于发生线,基圆切线是法线,曲线形状随基圆,基圆内无渐开线啮合线:两啮合齿轮基圆的内公切线啮合角:节圆公切线与啮合线之间的夹角α'(即节圆的压力角) 17. 齿轮的基本参数:(弧长)弧长)齿槽宽齿厚、——齿根圆、——齿顶圆kk f f a a e s d r d r ( 基圆上的弧长)法向齿距(周节)齿距(周节):(b n k k k p p e s p =+= f a h h 高度)齿根高(分度圆到齿根高度)齿顶高(分度圆到齿顶分度圆:人为规定(标准齿轮中分度圆与节圆重合),分度圆参数用r 、d 、e 、s 、p=e+s 表示(无下标)B h h h f a )齿宽(轮齿轴向的厚度全齿高+= 轮齿的齿数为zmzr mz d p m p zp d zp d m 21,,///====⇒==有故定义只能取某些简单的值,,人为规定:分度圆的周长模数ππππ齿轮各项参数的计算公式:mz d =)短齿制正常齿齿顶高系数.80,1(****===a a a a a h h h m h h).3025.0()(*****==+=c c c m c h h a f 短齿制正常齿顶隙系数 m c h h h h a f a )2(**+=+=m h z h d d a a a )2(2*+=+=m c h z h d d a f f )22(2**--=-=18. 分度圆压力角α=arcos (/r)(为基圆半径,r 为分度圆半径) 所以ααcos cos mz d d b == 所以ααπαππcos cos cos p m zmz zd p p bb n =====19. 齿轮重合度:表示同时参加啮合的轮齿的对数,用(≥1才能连续传动)表示,越大,轮齿平均受力越小,传动越平稳 20. m c c c e s *21,00==-为标准值即顶隙即理论上齿侧间隙为标准安装时的中心距2121r r r c r a f a +⇒=++=21. 渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出m c *,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出m c *,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)22. 最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度下降):对于α=20°和=1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm 称为变位量,x 称为变为系数,并规定远离轮坯中心时x 为正值,称为正变位,反之为负值,称为负变位) 23. 轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合)一对定轴齿轮的传动比公式:abb a b a ab z z n n i ===ωω 对于(定轴)齿轮系,设输入轴的角速度为,输出轴的角速度为,所有主动轮齿数的乘积所有从动轮齿数的乘积==m m i ωω11 齿轮系中齿轮转向判断(用箭头表示):两齿轮外啮合时,箭头方向相反,同时指向或者背离啮合点,即头头相对或者尾尾相对;两齿轮内啮合时,箭头方向相同 蜗轮蜗杆判断涡轮的转动方向:判断蜗杆的螺纹是左旋还是右旋,左旋用左手,右旋用右手,用手顺着蜗杆的旋转方向把握蜗杆,拇指指向即为涡轮的旋转方向周转轮系(包括只需要一个原动件的行星轮系和需要两个原动件的差动轮系)的传动比:所有主动轮齿数的乘积至转化轮系从所有从动轮齿数的乘积至转化轮系从)(K G K G n n n n n n iH H K H H G H K H G H GK±=--==注:不能忘记减去行星架的转速,此外,判断G 与K 两轮的转向是否相同,如果转向相同,则最后的结果符号取“+”,如果转向相反,则结果的符号取“—"复合轮系的传动比计算,关键在于找出周转轮系,剩下的均为定轴轮系,计算时要先名明确传递的路线是从哪一个轮传向下一个轮24. (周期性)速度波动:当外力作用(周期性)变化时,机械主轴的角速度也作(周期性的)变化,机械的这种(有规律的、周期性的)速度变化称为(周期性)速度波动(在一个整周期中,驱动力所做的输入功和阻力所作的输出功是相等的,这是周期性速度波动的重要特征)25. 调节周期性速度波动的常用方法是在机械中加上一个转动惯量很大的回转件——飞轮(选择飞轮的优势在于不仅可以避免机械运转速度发生过大的波动,而且可以选择功率较小的原动机)对于非周期性的速度波动,我们可以采用调速器进行调节(机械式离心调速器,结构简单,成本低廉,但是它的体积庞大,灵敏度低,近代机器多采用电子调速装置) 26.飞轮转动惯量的选择:δω2m axmA J =注:1) δωωω22min 2max min max max )(21m J J E E A =-=-=(m ax A 为最大功亏,即飞轮的动能极限差值,m ax A 的确定方法可以参照书本99页) 2)2minmax ωωω+=m (为主轴转动角速度的算数平均值)3)mωωωδminmax -=(为不均匀系数)27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。

机械设计基础知识点总结详解

机械设计基础知识点总结详解

适用标准机械设计根基知识点详解绪论、机器的特色:〔1〕它是人为的实物组合;〔2〕各实物间拥有确立的相对运动;〔3〕能取代或减少人类的劳动去达成有效的机械功或变换机械能。

第一章平面机构的自由度和速度剖析要求:握机构的自由度计算公式,理解的根基上掌握机构确立性运动的条件,娴熟掌握机构速度瞬心数的求法。

、根本观点运动副:凡两个构件直接接触而又能产生必定相对运动的联接称为运动副。

低副:两构件经过面接触构成的运动副称为低副。

高副:两构件经过点或线接触构成的运动副称为高副。

复合铰链:两个以上的构件同时在一处用展转副相联构成的展转副。

局部自由度:机构中常出现的一种与输出构件运动没关的自由度,称为局部自由度或剩余自由度。

虚拘束:对机构运动不起限制作用的重复拘束称为虚拘束或称悲观拘束。

瞬心:任一刚体相对另一刚体作平面运动时,其相对运动可看作是绕某一重合点的转动,该重合点称为刹时展转中心或速度瞬心,简称瞬心。

假如两个刚体都是运动的,那么其瞬心称为相对速度瞬心;假如两个刚体之一是静止的,那么其瞬心文档适用标准称为绝对速度瞬心。

、平面机构自由度计算作平面运动的自由构件拥有三个自由度,每个低副引入两个拘束,即便构件失掉两个自由度;每个高副引入一个拘束,使构件失掉一个自由度。

计算平面机构自由度的公式:F=3n-2PL-PH机构要拥有确立的运动,那么机构自由度数一定与机构的原动件数量相等。

即,机构拥有确立运动的条件是F>0,且F等于原动件个数。

、复合铰链、局部自由度和虚拘束(a)K个构件汇交而成的复合铰链应拥有(K-1)个展转副。

局部自由度固然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变为转动摩擦,减少磨损,所以实质机械中常有局部自由度出现。

虚拘束对机构运动虽不起作用,可是能够增添构件的刚性和使构件受力均衡,所以实质机械中虚拘束随地可见。

、速度瞬心假如一个机构由K个构件构成,那么瞬心数量为N=K(K-1)/2瞬心地点的确定:双重合点相对速度方向,那么该两相对速度向量垂线的交点即是两构件的瞬心。

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳1.材料力学(1)杨氏模量:是材料弹性变形与应力的比值,反映材料的刚度。

(2)应力应变关系:弹性应力应变关系是描述材料在弹性范围内,应变与应力之间的关系。

(3)塑性应变:指材料在一定应力下发生塑性变形的应变。

(4)蠕变:指材料在长时间作用下,温度较高的条件下发生的塑性变形。

(5)疲劳:指在循环应力作用下,材料会发生很小的变形或破裂的现象。

(6)冲击:指材料在突然受到较大应力作用时发生的短暂的变形或破坏。

2.制图和标志(1)有关制图:包括机械零件的投影方法、剖视图、断面图等内容。

(2)机械标志:包括尺寸标注、公差标注等。

3.运动学(1)运动分析:机械运动的分析与描述,包括速度、加速度等。

(2)运动关系:包括直线运动、转动运动的关系,如位移、速度、加速度的计算与关系。

4.动力学(1)动力学分析:机械系统的力学分析方法,包括受力分析、运动方程的建立等。

(2)牛顿定律:牛顿的三大运动定律,描述了物体运动与受力之间的关系。

5.机械设计与结构(1)机械设计:包括机械元件的设计、机械系统的设计等。

(2)机构设计:描述机械元件之间的相对运动关系的设计。

(3)结构设计:机械元件的外形设计、支撑方式、安装方式等。

6.机械零件与加工工艺(1)机械零件:包括轴、轴套、齿轮、联轴器等。

(2)零件加工工艺:包括车削、铣削、磨削、冲压等。

7.机械传动与控制(1)机械传动:包括齿轮传动、带传动、链传动等。

(2)机械控制:包括摇杆、凸轮、连杆机构等。

8.液压与气动传动(1)液压传动:液体作为传动介质的传动方式,包括液压缸、液压马达等。

(2)气动传动:气体作为传动介质的传动方式,包括气缸、气动阀等。

9.机械制造工艺(1)机械制造:包括铸造、锻造、焊接、热处理等。

(2)数控加工:数控机床的操作、编程与加工工艺。

以上是机械设计的一些基础知识点的总结和归纳,对于机械设计师来说,掌握这些知识点是非常重要的基础。

关于机械设计基础知识总结

关于机械设计基础知识总结

关于机械设计基础知识总结第一章绪论1、机械的组成:完整的机械系统由原动机、传动装置、工作机、和控制系统四大基本组成部分2、机械结构组成层次:零件→构件→机构→机器3、机械零件:加工的单元体4、机械构件:运动的单元体5、机械机构:具有确定相对运动的构件组合体第二章机械设计概论1、机械设计的基本要求:使用功能、工艺性、经济性、其他2、机械设计的一般程序:齿轮的基本参数:模数:是齿轮的一个基本参数,用m来表示。

模数反映了齿轮的轮齿及各部分尺寸的大小,模数越大,其齿距、齿厚、齿高和分度圆直径都将相应增大。

为减少标准刀具数量,模数已经标准化。

齿数:在齿轮的整圆周上轮齿的总数,用z来表示,齿数z 应为整数。

分度圆压力角:α=arccos(rb/ r),分度圆上压力角为标准值:α=20°(3)齿轮各部分名称:见下图3渐开线直齿圆柱齿轮啮合传动:(1)正确啮合条件:两轮的模数和压力角必须分别相等,即(2)渐开线直齿圆柱齿轮的标准安装:两轮的分度圆相切作纯滚动,分度圆与节圆相重合,标准中心距。

(3)齿轮连续传动的条件:重合度ε大于1。

重合度越大,表示同时啮合的轮齿对数越多。

4 齿轮加工的基本原理(1) 加工方法:成形法和范成法(2) 轮齿的根切现象:用范成法加工渐开线齿轮过程中,有时刀具齿顶会把被加工齿轮根部的渐开线齿廓切去一部分,这种现象称为根切。

(3) 改变根切的办法:设计齿轮的齿数大于不根切的最小齿数17;设计成变位齿轮。

5 齿轮的失效形式和齿轮材料(1)齿轮的失效形式:轮齿折断、齿面点蚀、齿面胶合、齿面磨损和齿面塑性变形。

(2)齿轮材料:锻钢、铸钢以及铸铁。

6 斜齿圆柱齿轮传动(1)啮合特点及基本参数:斜齿轮的法面模数参数为标准值。

(2)斜齿轮传动正确啮合的条件:第七章蜗杆传动1 蜗杆传动的基本参数:模数m和压力角α2 正确啮合条件;——蜗杆的导程角β2——蜗杆螺旋角3 蜗杆传动的失效形式:齿面胶合、点蚀、磨损、轮齿的折断。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》重点总结一、机械设计基础概述机械设计基础是机械工程专业的一门重要课程,它涵盖了机械设计的基本概念、原理和方法。

本课程的主要目标是培养学生具备机械系统设计、分析和优化的能力,为后续的机械设计课程和实际工程设计打下坚实的基础。

二、机械设计基础重点内容1、机械设计基础知识:包括机械零件的分类、材料选择、制造工艺、性能要求等方面的知识。

2、常用机构和零部件:如齿轮机构、链传动、带传动、蜗轮蜗杆传动、滚动轴承、轴系零部件等。

这些机构和零部件的结构特点、工作原理、性能参数以及选型、设计和计算方法等是学习的重点。

3、机械传动系统设计:学生需要掌握机械传动系统的基本组成、类型和设计方法,包括齿轮传动系统设计、带传动系统设计、链传动系统设计等。

4、机械强度分析:学生需要了解机械零件的强度计算方法,包括弯曲强度、剪切强度、挤压强度、接触强度等。

同时,还需要掌握疲劳强度计算和校核的方法。

5、机械动力学分析:学生需要了解机械系统的动力学特性,包括惯性力、动载荷、振动等,掌握动力学分析和计算的方法。

6、机械系统的可靠性设计:学生需要了解可靠性设计的基本概念和方法,掌握可靠性分析和计算的技巧。

7、机械系统的维护与保养:学生需要了解机械系统的维护和保养知识,包括润滑、清洁、检查等日常保养和定期保养的方法。

三、学习方法建议1、掌握基本概念:对于机械设计基础这门课程,掌握基本概念是至关重要的。

学生需要在学习过程中对每个概念进行深入理解,并能够熟练运用。

2、理论实际:学习机械设计基础不能仅仅停留在理论层面,还需要结合实际工程问题进行学习和实践。

学生可以通过参加课程设计、实验等方式将理论知识应用到实践中去。

3、培养分析和解决问题的能力:在学习过程中,学生需要培养分析和解决问题的能力。

对于遇到的问题,学生应该学会从多个角度进行分析,并能够提出有效的解决方案。

4、注重归纳总结:机械设计基础知识点繁多,学生需要经常进行归纳总结,找出知识点之间的和规律,形成自己的知识体系。

机械设计基础知识总结通用3篇

机械设计基础知识总结通用3篇

机械设计基础知识总结通用3篇1、简洁机器组成:原动机局部、执行局部、传动局部三局部组成。

2、运动副:使构件直接接触又能保持肯定形式的相对运动的连接称为运动副。

高副:凡为点接触或线接触的运动副称为高副。

低副:凡为面接触的运动副称为低副。

3、局部自由度:对整个机构运动无关的自由度称为局部自由度。

自由度:构件的独立运动称为自由度。

平面机构运动简图:说明机构各构件间相对运动关系的简洁图形称为机构运动简图。

4 一般螺纹牙型角为α=60°梯形螺纹牙型角为α=30°矩形螺纹的牙型是正方形。

传递效率最高的螺纹牙型是矩形螺纹(正方形)。

自锁性最好的是三角螺纹牙型。

5 常用的防松方法有哪几种?(1)摩擦防松(2)机械防松(3)不行拆防松。

6 平键如何传递转矩?平键是靠键与键槽侧面的挤压传递转矩。

7 单圆头键用于薄壁构造、空心轴及一些径向尺寸受限制的场合。

8 零件的轴向移动采纳导向平键或滑键。

9 联轴器与离合器有何共同点、不同点?联轴器与离合器共同点:联轴器和离合器是机械传动中常用部件。

它们主要用来连接轴与轴,或轴与其他回转零件以传递运动和转矩。

不同点:在机器工作时,联轴器始终把两轴连接在一起,只有在机器停顿运行时,通过拆卸的方法才能使两轴分别;而离合器在机器工作时随时可将两轴连接和分别。

10 有补偿作用的联轴器属于挠性联轴器类型。

11 挠性联轴器有哪些形式?解:挠性联轴器分为无弹性元件的挠性联轴器和有弹性元件的联轴器。

无弹性元件的挠性联轴器有以下几种(1)十字滑块联轴器(2)齿式联轴器(3)万向联轴器(4)链条联轴器有弹性元件的挠性联轴器又分为(5)弹性套柱销联轴器(6)弹性柱销联轴器(7)轮胎式联轴器12 离合器分牙嵌式离合器和摩擦式两大类。

13 钢卷尺里面的弹簧采纳的是螺旋弹簧。

汽车减震采纳的是板弹簧。

14 铰链四杆机构有哪些根本形式?各有何特点?解:铰链四杆机构有三种根本形式(1)曲柄摇杆机构(2)双摇杆机构(3)双曲柄机构。

机械设计基础知识总结

机械设计基础知识总结

机械设计基础知识总结1机械零件常用材料:普通碳素结构钢优质碳素结构钢、合金结构钢、铸钢、铸铁.2常用的热处理方法:退火、正火、淬火、回火、调质、化学热处理、增强机构的刚度、保证机械运转性能.9螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹.10自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角.11螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动.12螺旋副的效率:η=有效功/输入功=tanλ/tan一般螺旋升角不宜大于40°。

在d2和P一定的情况下,锁着螺纹线数n的增加,λ将增大,传动效率也相应增大。

因此,要提高传动效率,可采用多线螺旋传动.13螺旋机构的类型及应用:①变回转运动为直线运动,传力螺旋、传导螺旋、调整螺旋②变直线运动为回转运动.14螺旋机构的特点:具有大的减速比;具有大的里的增益;反行程可以自锁;传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大124齿廓啮合基本定律:作平面啮合的一对齿廓,它们的瞬时接触点的公法线,必于两齿轮的连心线交于相应的节点C,该节点将齿轮的连心线所分的两个线段的与齿轮的角速成反比。

25根切:①产生原因:用齿条型刀具加工齿轮时。

若被加工齿轮的齿数过少,道具的齿顶线就会超过轮坯的啮合极限点,这时会出现刀刃把齿轮根部的渐开线齿廓切去一部分的现象,即根切;②后果:使得齿轮根部被削弱,齿轮的抗弯能力降低,重合度减小;③解决方法:正变位齿.26正变位齿轮优点:可以加工出齿数小于Zmin而不发生根切的齿轮,使齿轮传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,从而提高一对齿轮传动的总体强度.27齿轮的失效形式:齿轮折断、齿面点蚀、齿面胶合、齿面磨损;开式齿轮主要失效形式为齿轮磨损和轮齿折断;闭式齿轮主要是齿面点蚀和轮齿折断;蜗杆传动的失效形式为轮齿的胶合、点蚀和磨损.28齿轮设计准则:对于一般使用的齿轮传动,通常只按保证齿面接触疲劳强度及保证齿根弯曲疲劳强度进行计算.29参数选择:①齿数:保持分度圆直径不变,增加齿数能增大重合度,改善传动的平稳性,节省制造费用,故在满足齿根弯曲疲劳强度的条件下,齿数多一些好;闭式z=20~40开式z=17~20;②齿宽系数:大齿轮齿宽b2=b;小齿轮b1=b2+mm;③齿数比:直齿u≤5;斜齿u≤6~7;开式齿轮或手动齿轮u可取到8~12.30直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适合于高速传动.31轮系的功用:获得大的传动比;实现变速、变向传动;实现运动的合成与分解;实现结构紧凑的大功率传动.32带传动优缺点:①优点:具有良好的弹性,能缓冲吸振,尤其是V带没有接头,传动较平稳,噪声小;过载时带在带轮上打滑,可以防止其他器件损坏;结构简单,制造和维护方便,成本低;适用于中心距较大的传动;②缺点:工作中有弹性滑动,使传动效率降低,不能准确的保持主动轴和从动轴的转速比关系;传动的外廓尺寸较大;由于需要张紧,使轴上受力较大;带传动可能因摩擦起电,产生火花,故不能用于易燃易爆的场合.33.影响带传动承载能力的因素:初拉力Fo包角a摩擦系数f带的单位长度质量q速度带传动的主要失效形式:打滑和疲劳破坏;设计准则:在不打滑的前提下,具有一定的疲劳强度和寿命。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点总结机械设计是指根据物体的用途和需求,利用力学、材料学等相关知识,设计出能够满足要求的机械产品或设备。

下面将从机械设计的基本原理、机械零件的设计、机械动力传动等方面进行总结。

1.机械设计基本原理(1)静力学基本原理:包括平衡状态、力的作用点、力的合成与分解、力的分布等。

(2)运动学基本原理:包括平面运动与空间运动、速度与加速度、几何运动与连续运动等。

(3)动力学基本原理:包括质点的运动方程、惯性力、作用力与反作用力、能量守恒定律、动量守恒定律等。

2.机械零件的设计(1)轴的设计:根据承载工况、传动功率和转速等要求确定轴的材料、直径和长度等。

(2)联接件的设计:包括轴承、齿轮、键、销、螺纹等。

设计时要考虑力的传递效果、零件的寿命和可维修性等。

(3)阀门的设计:根据流体的特性和工作条件,选择适当的阀门类型和材料,以确保流体的控制效果。

(4)弹簧的设计:根据所受载荷、工作环境和弹簧材料等因素,确定弹簧的直径、圈数、螺距和螺纹等参数。

(5)联轴器的设计:根据传动功率、转速和工作环境等要求,选择适当的联轴器类型和材料,以确保传动效果和可靠性。

3.机械动力传动(1)带传动:包括平带传动、V带传动、齿轮带传动等。

设计时要考虑传动效率、速比、中心距等因素。

(2)齿轮传动:根据传动功率、转速比和工作环境等要求,选择适当的齿轮类型和材料,以确保传动效果和可靠性。

常见的齿轮有直齿轮、斜齿轮、蜗杆等。

(3)链传动:包括链条传动、滚子链传动等。

设计时要考虑链条选择、链轮选择和传动效果等因素。

(4)轴承:包括滚动轴承和滑动轴承。

设计时要考虑承载能力、摩擦和磨损等因素。

4.机械工程材料(1)常用金属材料:如钢、铝、铜等。

要根据机械设计的要求,选择合适的材料进行设计。

(2)非金属材料:如塑料、橡胶、陶瓷等。

要根据工作条件和使用要求选择合适的材料。

(3)复合材料:是由两个或多个不同材料按一定比例组合而成。

设计时要考虑材料的强度、重量和成本等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础总结第一章平面机构的自由度和速度分析1.1 构件——独立的运动单元零件——独立的制造单元运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。

机构——由两个或两个以上构件通过活动联接形成的构件系统。

机器——由零件组成的执行机械运动的装置。

机器和机构统称为机械。

构件是由一个或多个零件组成的。

机构与机器的区别:机构只是一个构件系统,而机器除构件系统之外还包含电气,液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。

1.2运动副——接触组成的仍能产生某些相对运动的联接。

运动副元素——直接接触的部分(点、线、面)运动副的分类:1)按引入的约束数分有:I级副(F=5)、II级副(F=4)、III级副(F=3)、IV级副(F=2)、V级副(F=1)。

2)按相对运动范围分有:平面运动副——平面运动空间运动副——空间运动平面机构——全部由平面运动副组成的机构。

空间机构——至少含有一个空间运动副的机构3)按运动副元素分有:高副(P H)——点、线接触,应力高;低副(P L)——面接触,应力低1.3机构:具有确定运动的运动链称为机构机构的组成:机构=机架+原动件+从动件保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。

24y原动件<自由度数目:不具有确定的相对运动。

原动件>自由度数目:机构中最弱的构件将损坏。

1.5局部自由度:构件局部运动所产生的自由度。

出现在加装滚子的场合,计算时应去掉Fp。

复合铰链——两个以上的构件在同一处以转动副相联。

m个构件, 有m-1转动副虚约束对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

出现场合:1两构件联接前后,联接点的轨迹重合,2.两构件构成多个移动副,且导路平行。

3.两构件构成多个转动副,且同轴。

4运动时,两构件上的两点距离始终不变。

5.对运动不起作用的对称部分。

如多个行星轮。

6.两构件构成高副,两处接触,且法线重合。

1.6机构运动简图——用以说明机构中各构件之间的相对运动关系的简单图形。

作用——1.表示机构的结构和运动情况。

2.作为运动分析和动力分析的依据。

步骤:1)运转机械,搞清楚运动副的性质、数目和构件数目;2)测量各运动副之间的尺寸,选投影面(运动平面),绘制示意图。

3)按比例绘制运动简图。

简图比例尺:μl =实际尺寸m / 图上长度mm4)检验机构是否满足运动确定的条件。

1.7 F=3n-(2Pl +Ph )1.8速度瞬心两个作平面运动构件上速度相同的一对重合点,在某一瞬时两构件相对于该点作相对转动,该点称瞬时速度中心。

求法?若机构中有n个构件,则∵每两个构件就有一个瞬心∴根据排列组合有N=n(n-1)/2求法:1)直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。

2)三心定律:三个彼此作平面运动的构件共有三个瞬心,且它们位于同一条直线上。

此法特别适用于两构件不直接相联的场合。

第二章平面连杆机构2.1何谓平面连杆机构?它有何特点?能够实现哪些运动转换?平面连杆机构是有若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面低副机构。

①采用低副。

面接触、承载大、便于润滑、不易磨损形状简单、易加工、容易获得较高的制造精度。

②改变杆的相对长度,从动件运动规律不同。

③连杆曲线丰富。

可满足不同要求。

若组成转动副的两构件能作整周相对运动,则称该转动副为整转副,否则称为摆动副。

2.2铰链四杆机构的基本形式,特性,生产中有何作用?哪些特性对工作不利?如何消除其影响?曲柄摇杆机构、双曲柄机构和双摇杆机构1)曲柄摇杆机构特征:曲柄+摇杆作用:将曲柄的整周回转转变为摇杆的往复摆动。

如雷达天线。

2)双曲柄机构特征:两个曲柄作用:将等速回转转变为等速或变速回转。

3)双摇杆机构特征:两个摇杆对工作不利的特性:极位,死点位置:施加外力,利用构件自身惯性可以解决。

运动不确定性:当四个铰链中心处于同一直线上将出现运动不确定性。

可以在主,从动曲柄上错开一定角度再安装一组平行四边形机构来消除运动不确定状态。

2.3四杆机构的演化形式有哪些?他们是通过什么途径演化而来的?在工程上有哪些实际应用?(1)改变构件的形状和运动尺寸曲柄摇杆机构,曲柄滑块机构,偏心曲柄滑块机构,对心曲柄滑块机构,双滑块机构,正弦机构。

(2)改变运动副的尺寸偏心轮机构(3)选不同的构件为机架曲柄滑块机构导杆机构2.4在铰链四杆机构中,转动副成为周转副的条件是什么?1最短杆与最长杆长度之和小于或等于其余两杆长度之和。

2整转副是由最短杆与其临边组成2.5铰链四杆机构的形式和尺寸之间关系如何?曲柄存在的条件:曲柄存在的条件1. 最长杆与最短杆的长度之和应≤其他两杆长度之和称为杆长条件。

2.连架杆或机架之一为最短杆。

2.6四杆机构的极位和死点有何异同在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于两个极限位置,简称极位。

摇杆为主动件,且连杆与曲柄两次共线时,有:γ=0此时机构不能运动. 称此位置为:“死点”死点要求是摇杆为主动件曲柄为从动件时的极位才是死点2.7何谓行程速比系数K ?它描述了机构的什么特性?它与极位夹角有何关系?当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到C1D ,所花时间为t2 ,平均速度为V2 ,那么有:显然t1>t2 v2>v1,摇杆的这种特性较急回运动。

称K 为行程速比系数,特性:K 值越大,急回性质越明显。

于极位夹角的关系式:且θ越大,K 值越大,急回性质越明显2.8存在急回特性的装置?什么情况下没有急回特性?具有急回特性的四杆机构除曲柄摇杆机构外,还有偏置曲柄滑块机构和摆动导杆机构等。

ωθ/)180(2-︒=t当 =0°,k=1时,无急回特性.2.9曲柄摇杆机构中,当以曲柄为原动件时,是否存在死点?不存在。

2.10曲柄摇杆机构、双摇杆机构、双摇杆机构、曲柄滑块机构和摆动导杆机构等各在什么条件下会出现死点?机构在死点位置会出现什么后果?可采取哪些措施解决?摇杆为主动件的曲柄摇杆机构,当曲柄与连杆两次共线时,忽略连杆质量的情况下,连杆是二力杆,因此连杆对曲柄的作用力通过曲柄铰链中心A,给曲柄的驱动力矩为0,机构就会出现卡死或运动不确定的现象。

死点通常有害,应设法消除。

消除方法有:②对从动曲柄施加附加力矩。

②利用构件自身或飞轮的惯性。

③多组相同机构错开一定角度布置。

2.11机构的压力角和传动角对传动性能的影响?设计四杆机构时,对传动角有何要求?压力角:从动件驱动力F与力作用点绝对速度之间所夹锐角。

传动角(γ)=90度-压力角(α)γ↑F’→对传动有利。

又可用γ的大小来表示机构传动力性能的好坏,设计时要求: γmin≥50°2.12曲柄摇杆机构都得最大和最小传动角出现在什么位置?当摇杆主动时,其传动角又如何?在曲柄摇杆机构中,若以曲柄为原动件时,最小传动角出现在曲柄与机架的两个共线位置之一处。

2.13导杆机构的传动角是多少?摆动导杆机构的传动角始终等于90°。

2.14曲柄滑块机构的最大和最小传动角出现在什么位置?当滑块主动时,其传动角又如何?第三章凸轮机构3.1凸轮机构有哪些类型?特点如何?1)按凸轮形状分:盘形、移动、圆柱凸轮( 端面) 。

2)按推杆形状分:尖顶、滚子、平底从动件。

3)按推杆运动分:直动(对心、偏置)、摆动4)按保持接触方式分:力封闭(重力、弹簧等)几何形状封闭(凹槽,等宽,等径,主回凸轮)特点:尖顶——构造简单、易磨损、用于仪表机构;滚子——磨损小,应用广;平底——受力好、润滑好,用于高速传动。

3.2凸轮机构从动件常用运动规律有哪几种?有何特点?适用于哪些场合?一、多项式运动规律1.等速运动(一次多项式)运动规律。

刚性冲击2.等加等减速(二次多项式)运动规律:位移曲线为一抛物线。

加、减速各占一半。

柔性冲击3.五次多项式运动规律:无冲击,适用于高速凸轮二、三角函数运动规律1.余弦加速度(简谐)运动规律:在起始和终止处理论上a2为有限值,产生柔性冲击。

2.正弦加速度(摆线)运动规律:无冲击三、改进型运动规律:将几种运动规律组合,以改善运动特性。

正弦改进等速3.3何谓刚性冲击和柔性冲击?它们出现在哪几种常用运动规律中?(网上找的)等加速和等减速运动的推杆在运动的起讫处加速度数值较大变化以及中部加速度方向发生反向而对凸轮产生柔性冲击;余弦加速度运动的推杆在起讫处也由于其加速度数值的较大变化而对凸轮产生柔性冲击。

这些是PPT上的,和书上的有些不一样3.5理论轮廓曲线,实际轮廓曲线?作图时是否可以不画理论轮廓曲线直接画实际轮廓曲线?实际轮廓是只凸轮的实际外形,滚子的中心走过的轨迹才是理论的轮廓曲线不能(P47)3.6 设计凸轮轮廓曲线时,采用了反转法,其理论依据是什么。

给整个凸轮机构施以-ω1时,不影响各构件之间的相对运动,此时,凸轮将静止,而从动件尖顶复合运动的轨迹即凸轮的轮廓曲线。

3.7压力角,对工作的影响?为什么回程压力角可以选得大些?(1)作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角称为压力角。

(2)驱动从件的有用分力F’一定时,压力角ɑ越大,则有害分力F’’越大,机构的效率越低。

当ɑ增大到一定程度,以致F’’在导路中所引起的摩擦阻力大于有用分力F’时,无论凸轮加给从动件的作用力多大,从动件都不能动,这种现象称为自锁。

为了保证凸轮机构正常工作并具有一定的传动效率,必须对压力角加以限制。

(3)常见的依靠外力使从动件与凸轮维持接触的凸轮机构,其从动件是在弹簧或重力作用下返回的,回程不会出现自锁。

因此,对于这类凸轮机构,通常只需要校核推程压力角。

3.8将对心从动件改为偏置后,对凸轮压力角有何影响?用偏置法可减小推程压力角,但同时增大了回程压力角,故偏距 e 不能太大。

第四章齿轮机构4.1渐开线形成:―条直线在圆上作纯滚动时,直线上任一点的轨迹特性:①AB = BK;(见书P55页及PPT)②渐开线上任意点的法线切于基圆纯滚动时,B为瞬心,速度沿t-t线,是渐开线的切线,故BK为法线③B点为曲率中心,BK为曲率半径。

渐开线起始点A处曲率半径为0。

④渐开线的形状取决于基圆的大小⑤基圆之内无渐开线4.3齿廓在基圆上的压力角和曲率半径如何?在无穷远处的压力角和曲率半径又如何?(P55)压力角αk,基圆半径rb,k点离轮心的距离rb=rk cosαk―条直线在圆上作纯滚动时,直线上任一点的轨迹叫渐开线。

直线与基圆的交点是曲率中心,任意点到曲率中心的距离是曲率半径。

(齿轮在无穷远处的压力角和曲率半径未找到。

)4.4当基圆半径无限大时,渐开线的形状,压力角和曲率半径如何?渐开线形状取决于基圆,当基圆半径无限大时,渐开线变成直线,压力角为零度,曲率半径无限大。

相关文档
最新文档