按比例分配解决问题3
比例分配与合作问题的解决与计算
比例分配与合作问题的解决与计算在商业、经济等领域中,合作是一种常见的模式。
不同的合作方之间,往往会遇到比例分配及其他问题,这在合作关系中是非常关键的,因为它关系到各方的权益。
本文将探讨比例分配与合作问题的解决与计算方法,旨在为实际操作提供指导。
一、比例分配问题比例分配是指根据各方的权益比例,将某项利益或成本按比例分配给各个合作方的过程。
比例分配常见于股权分配、利润分成、成本分摊等场景。
解决比例分配问题需要注意以下几个方面:1.明确各方权益比例:在开始合作之前,各方应明确各自的权益比例。
通常,这可以通过协商、合同或者其他法律文件来确定。
权益比例的确定是比例分配问题的基础,直接关系到最终的分配结果。
2.制定比例分配方案:在明确权益比例后,各方需要共同制定比例分配方案。
比例分配方案可根据权益比例以及其他因素来确定。
例如,在利润分成场景下,可以根据销售额、投入资源等综合考量来制定方案。
3.合作关系维护:比例分配问题可能涉及到各方的利益调整和权益变动。
因此,在合作过程中,各方需要积极沟通,及时调整分配方案,确保合作关系的顺利进行。
二、合作问题的解决除了比例分配问题外,合作过程中还可能遇到其他问题,例如资源调配、责任划分等。
解决合作问题需要注意以下几个方面:1.确立合作目标:明确合作的目标是解决合作问题的首要步骤。
各方应共同商讨,确定合作目标,并通过协商确定合作方案。
2.明确合作责任:合作过程中,各方的责任划分是非常重要的。
各方应根据自身的能力和资源,明确合作责任,并在合同或其他法律文件中明确记录。
3.建立沟通渠道:合作关系中,及时有效的沟通是解决合作问题的关键。
各方应建立良好的沟通渠道,及时交流合作进展和遇到的问题,以便及时解决。
三、比例分配与合作问题的计算在解决比例分配与合作问题时,常常需要进行相应的计算。
以下是一些常见的比例分配与合作问题的计算方法:1.利润分成计算:在合作中,利润分成是一个常见的问题。
西师大版六年级数学上册 【创新教案】:2、比和按比例分配 问题解决 第3课时【新版】
2、问题解决第3课时分摊运费问题◆教学内容:教科书第55页例3,按比例分配问题——分摊运费问题。
◆教学提示:本课时的教学内容是在学生已经熟练掌握的按比例分配问题的解法的基础上学习的,实际上是按比例分配问题的拓展与延伸,教材安排了一道例题,是实际生活中常见的分摊运费问题,问题既涉及按比例分配的知识,还涉及分数的知识,综合性比较强。
教材的安排突出了“按所行的路程的比”分配,但是在书写形式上又有所变化,不再先求总份数,而是用分母相加的形式体现总份数。
利用算法多样化,沟通归一问题与按比例分配的联系,帮助学生形成整体认知结构。
◆教学目标:1.知识与技能:学会借助线段图等方法分析较为复杂的现实问题,能考虑现实情况应用不同的策略解决问题,掌握一些策略性的知识。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。
3.情感态度与价值观:培养学生的发散思维能力,形成解决问题的基本策略。
◆重点难点:教学重点:让学生掌握一些解决问题的策略性知识。
教学难点:理解分摊运费问题。
◆教学准备:教具准备:多媒体课件学具准备:直尺、练习本等◆教学过程:(一)新课导入谈话:同学们,你们听说过“合租”这个名词没有?随着社会的进步,人们外出务工的越来越多,他们有时为了节省费用,经常会采取合租的方式解决住房问题。
老师了解到这样一件事:小强家房子出租给小李、小张、小王三个年青人,每月房租是630元,6月份,小李只住到10日就搬走了,小张只住到20日也搬家了,小李和小张离开时都留给小王210元交房租。
到了月底小强的妈妈要去收房租了,如果你是小强,你会建议妈妈怎样收这三个年青人的房租比较合理?这节课我们就来研究此类问题——分摊运费问题。
(板书:分摊运费问题)【设计意图:以现实的、学生熟知的生活中的话题引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情,同时对学生进行了勤俭节约的中华传统美德的教育。
解决问题2——按比例分配优秀教学设计
总分份2+3+6=11
水泥:220X2/11=40
沙子:220X3/11=60
石子:220X6/11=120
通过比与分数的关系来计算,先计算出总份数,再看这几个数分别占总份数的几分之几,最后用分数乘法分别计算出这几个数。
完成55页例3他们如何分摊运费?
教学过程
复习比例的基本性质
教师引入例题2
这道题与前面所做的题有什么区别?
这个问题中你看出要分配的是什么?按照什么来分?
1这种混凝土要按照沙子、石子、水泥所需重量的比去分配,这三种材料的比你是在哪儿找到的?
2找到三种材料的连比后,为了方便计算,你应该先做什么?
3怎样计算沙子、石子、水泥各占混凝土的几分之几?
把路程平均分成三份,甲行了一份付一份钱,乙行了两份路程付两份钱,丙行了三份路程应付三份钱。
把钱一共分成:1+2+3=6
其中甲占90的1/6:90×=15(元);
乙占90的:90×=30(元);
丙占90的:90×=45(元)。
答:甲应分摊15元的运费,乙应分摊30元的运费,丙应分摊45元的运费。
板
书
设
计
解决问题2——按比例分配
教学
反思
东边小学生本课堂教学设计
课题
解决问题2——按比例分配
备课人
教学课时
1
教学内容
教学例2、例3
教学目标
1.使学生了解比在生活中的应用,
2、进一步掌握按比例分配的意义,能合理、灵活地解答按比例分配的问题。
教学
重难点
【教学重点】提高学生运用比的知识解决实际问题的能力。
《按比例分配的方法解决实际问题》PPT课件 西师大版六年级数学
解题思路: 由:长方体的棱长和为72厘米
可得:长+宽+高=72÷4=18(厘米)
根据:长:宽:高=4∶3∶2
求出:长方体的长、宽、高
再求出:长方体的表面积
返回
按比例分配的方法解决实际问题
解答: 长方体长、宽、高的和:72÷4=18(厘米)
长方体的长:18×
=8(厘米)
小组的人数是16,两个小组一共有多少人?
解:设两个小组一共有x人。
5∶8= x ∶16
8 x =80
x =10
答:两个小组一共有10人。
不正确!
错因:列比例时,没有找准对应的数量关系。
返回
按比例分配的方法解决实际问题
分析: 美术小组与文艺小组的人数比是5∶8,文艺小
组有16人,问题是求两个小组的人数,也就是说
=
沙子: × =
石子: × =
水泥: ×
40(吨)
60(吨)
120(吨)
答:需要水泥40吨,沙子60吨,石子120吨。
返回
按比例分配的方法解决实际问题
议一议
怎样解决按比例分配的问题?
把一个数量按照已知的比分成几个部分,应先求
出三几个部分量各占总量的几分之几,再用乘法分
++
长方体的宽:18×
=6(厘米)
++Fra bibliotek长方体的高:18×
=4(厘米)
++
长方体的表面积:
(8×6+8×4+6×4)×2=104×2
=208(平方厘米)
答:长方体的表面积是208立方厘米。
《按比例分配解决问题》优秀教学案例
《按比例分配解决问题》优秀教学案例教学目标:1、联系实际,使学生感知按比例分配的实际意义,初步掌握按比例分配的方法。
2、能运用所学的知识,解决按比例分配的实际问题。
3、培养学生观察、归纳和语言表达能力,发扬尝试、合作、协调精神,促进思维能力的发展。
教学重点:自主探索解决按比例分配实际问题的策略。
教学过程:一、创设情景:孩子们,你们知道合江的特产是什么吗?荔枝,你们买过荔枝吗?你知道今年荔枝多少钱一斤吗?我们所喜欢的喜洋洋和懒洋洋也去买荔枝,喜洋洋拿出60元,懒洋洋拿出80元,一共买了21斤荔枝,他们应该怎样合理分这些荔枝?这道题上告诉我们哪些信息,要求的问题是什么?我们把信息列成这样一个表。
你认为应该怎样才是合理分配?二、尝试探究:1、这个问题就留给大家,孩子们你能解决吗?你们先独立思考,把方法写在本子上,再和小组的同学交流交流。
2、师下来巡视,抽学生上去写。
3、第一种:60+80=140(元),140÷21=6.6(元),60÷6.6=9(斤),80÷6.6=12(斤)。
答:喜洋洋应分9斤,懒洋洋应分12斤。
第二种:60:80=3:4(60:80是什么意思?你是怎么想到的?按什么来分?钱数的比来分。
一个拿得是60元,一个拿得是80元,这样分比较合理。
如果两个都平均分,显然不合理吧!解:设每份是x斤。
3x+4X=217X=21X=3喜洋洋应分的斤数:3×3=9(斤),懒洋洋应分的斤数:4×3=12(斤)。
答:喜洋洋应分9斤,懒洋洋应分12斤。
第三种:60:80=3:4总份数:3+4=7,每份的斤数:21÷7=3,喜洋洋应分的斤数:3×3=9(斤),懒洋洋应分的斤数:4×3=12(斤)。
答:喜洋洋应分9斤,懒洋洋应分12斤。
三、巩固应用:1、我校六年级同学参观科技创新大赛,一共去了96人,男生人数和女生人数的比是13:11,你知道男生和女生各有多少人吗?2、合江除了荔枝外,还有合江窑坝闻名遐迩的梅子酒,据梅子酒说香甜可口,口感非常好。
2023年人教版数学六年级下册用比例解决问题教案(优选3篇)
人教版数学六年级下册用比例解决问题教案(优选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
按比例分配应用题 参考答案
按比例分配应用题参考答案典题探究一.基本知识点:二.解题方法:例1.六年级(2)班有学生48人,男生与总人数的比是5:8,则女生有()人.A.30 B.18 C.25考点:按比例分配应用题.专题:比和比例应用题.分析:“男生与总人数的比是5:8”,则女生占了总人数的,总人数已知是48人,就是求48的是多少.据此解答.解答:解:48×=18(人)答:女生有18人.故选:B.点评:本题的重点是求出女生人数占总数的几分之几,再根据分数乘法的意义列式解答.例2.甲、乙、丙三个数的比是3:4:5,这三个数的平均数是48,乙数是()A.48 B.36 C.12 D.60考点:按比例分配应用题.专题:比和比例应用题.分析:“甲、乙、丙三个数的比是3:4:5”,则乙数占了三个数总和的,这三个数的和是48×3=144.据此解答.解答:解:48×3=144144×=48答:乙数是48.故选:A.点评:本题的重点是求出乙占了三个数和的几分之几,再求出三个数的和是多少,然后根据分数乘法的意义列式解答.例3.欢欢看一本80页的书,已看的页数和剩下的页数比是7:5,欢欢大约看了()页.A.7B.47 C.56考点:按比例分配应用题;比的应用.专题:比和比例应用题.分析:由“已看的页数和剩下的页数比是7:5”,可求出已看的页数占总页数的,然后根据总页数,解决问题.解答:解:7+5=12,80×=80×≈47(页).答:欢欢大约看了47页.故选:B点评:本题关健是先通过“已看的页数和剩下的页数比“求出已看的页数占总页数的几分之几,用按比例分配的方法,解决问题.例4.一批货物按2:3:5分配给甲、乙、丙三个商店.丙商店分得这批货物的,乙商店分得这批货物的30%.考点:按比例分配应用题.分析:把这批货物的总重量看做单位“1”,也就是要分配的总量,是按照甲、乙、丙三个商店的质量比为2:3:5进行分配的,先求出三个商店分得的总份数,进一步用按比例分配的方法求出三家商店各分得这批货物的几分之几,进而确定哪家商店分得这批货物的,进一步把乙商店分得这批货物的几分之几改写成百分数即可.解答:解:三个商店分得的总份数:2+3+5=10(份),甲商店分得:1×=,乙商店分得:1×==0.3=30%,丙商店分得,1×==;答:丙商店分得这批货物的,乙商店分得这批货物的30%.故答案为:丙,30.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,没有具体的数量,就看作单位“1”.演练方阵A档(巩固专练)1.在50千克盐水中,盐和水的比是1:9,盐是()千克.A.1:10 B.1:9 C.5D.5考点:按比例分配应用题.专题:比和比例应用题.分析:盐和水的比是1:9,则盐就占了盐水的,已知盐水重50千克,用乘法可求出盐的重量.据此解答.解答:解:50×=5(千克)答:盐是5千克.故选:D.点评:本题的重点是根据比与分数的关系求出盐占了盐水的几分之几,再根据求一个数的几分之几是多少用乘法计算.2.一个三角形,3个内角度数之比是2:5:2,这个三角形是()三角形.A.锐角B.钝角C.直角D.等边考点:按比例分配应用题;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得最大角的度数,由此判断三角形的类型.解答:解;2+5+2=9180×=100(度);答:这个三角形是钝角三角形;故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.3.甲、乙、丙三数之比为2:7:9,这三个数的平均数为24,则甲数是()A.8B.16 C.32 D.64考点:按比例分配应用题.专题:比和比例应用题.分析:根据这三个数的平均数为24,可得这三个数的和是24×3=72,求出这三个数的总份数及甲数占总份数的几分之几,根据求一个数的几分之几是多少用乘法计算.解答:解:2+7+9=1872×=8故选:A.点评:根据平均数求出总数,利用求一个数的几分之几是多少用乘法计算是解决此题的关键.4.一个三角形三个内角度数的比是3:2:1,这是一个()三角形.A.锐角B.直角C.钝角D.无法确定考点:按比例分配应用题;三角形的分类.专题:比和比例应用题.分析:因为三角形的内角度数和是180°,三角形的最大的角的度数占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.最大的角:180°×=90°所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.5.从直角的顶点引一条射线,把直角分成两个角,使它们的度数之比为2:3,其中较大角的度数是()A.36°B.54°C.18°D.108°考点:按比例分配应用题.专题:比和比例应用题.分析:把直角分成两个角,使它们的度数之比为2:3,就是把90度按照2:3进行分配,那么较大的角就占,根据一个数乘分数的意义,求出较大角.解答:解:2+3=5;90°×=54°;答:较大的角是54°.故选:B.点评:解答此题应明确直角是90°,求出总份数,然后求出较大角占的分率,再根据分数乘法的意义求解.6.把140本书按一定的比分给2个班,合适的比是()A.4:5 B.3:4 C.5:6考点:按比例分配应用题;比的应用.专题:压轴题.分析:把140本书按一定的比分给2个班,如果按4:5分,就是把140平均分成4+5=9(份),一个班分4份,一个班分5份,140不能被9整除;如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;如果按5:6分,就是把140平均分成5+6=11(份),一个班分5份,一个班分6份,140不能被11整除.解答:解:根据分析,如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;故选:B点评:本题是考查按比例分配的实际应用,培养学生应用所学知识解决问题的能力.7.已知甲数与乙数的比是2:7,甲乙两数的和是36,甲数比乙数少()A.16 B.18 C.20 D.22考点:按比例分配应用题.分析:根据题意可知:乙数占两数和的,乙数占两数和的,甲数比乙数少两数和的(﹣),进而根据一个数乘分数的意义,解答即可.36×(﹣),=36×,=20;故选:C.点评:解答此题的关键:判断出单位“1”,先求出甲数比乙数少两数和的几分之几,进而根据一个数乘分数的意义,解答即可.8.把600本书按3:5分给五、六年级,六年级分到()本.A.150 B.225 C.300 D.375考点:按比例分配应用题.分析:此题要分配的总量是600本书,是按照五、六年级的本数比为3:5进行分配,先求出五、六年级分得本数的总份数,进一步求出六年级分得的本数占总本数的几分之几,最后求得六年级分得的本数,列式解答后再选择即可.解答:解:总份数:3+5=8(份),六年级分得的本数:600×=375(本);答:六年级分到375本.故选:D.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,再看此总量是按照什么比例进行分配的,再进一步按照比例分配的方法求出其中的一个量.9.六一班有学生50人,六二班有学生40人,两个班共植树36棵,要合理分配任务,六一班应植树几棵?正确列式是()A.B.C.D.考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:要合理分配任务,也就是按照两个班的学生人数进行分配.先求出两个班一共有多少人,再求出六一班学生人数占两个班总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解答:解:50+40=90(人),36×=20(棵),答:六一班应植树20棵.故选:C.点评:此题解答关键是理解只有按两个班的人数的多少进行分配才合理.根据按比例分配的方法解答.10.被减数、减数与差的和是80,差与减数的比是5:3,差是()A.50 B.25 C.15考点:按比例分配应用题.分析:由于被减数=减数+差,所以根据“被减数、减数与差的和是80,”可求出减数和差的和,再由“差与减数的比是5:3,”可找到总数和总份数,即可求出一份.解答:解:(80÷2)÷(5+3)=40÷8=55×5=25故选B点评:找准总数,找准把总数分成的总份数,求出一份是多少.即可解答.B档(提升精练)1.把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分()吨.A.28 B.7C.14 D.21考点:按比例分配应用题.分析:根据总数是63吨,总份数是4+2+3,可求出一份是多少,再根据甲乡比乙乡多(4﹣2)份,即可求出甲乡比乙乡多分的吨数.解答:解:63÷(4+2+3)×(4﹣2)=63÷9×2=7×2=14(吨)答:故选C.点评:找准总数,找准把总数分成的总份数,再求出一份是多少.2.长方形的周长是48厘米,长与宽的比是3:5,它的面积是()平方厘米.A.270 B.135 C.540考点:按比例分配应用题;长方形、正方形的面积.专题:比和比例应用题;平面图形的认识与计算.分析:先求出长与宽的总份数,再求出长与宽占总数的几分之几,分别求出长与宽,进一步求出面积.解答:解:长与宽的总份数:3+5=8(份),48÷2×=9(厘米),48÷2×=15(厘米).面积:9×15=135(平方厘米).答:面积是135平方厘米.故选B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.3.一个等腰三角形的周长是120厘米,相邻两条边长度的比是2:1,这个等腰三角形的底是()A.60厘米B.48厘米C.30厘米D.24厘米考点:按比例分配应用题;等腰三角形与等边三角形.专题:压轴题.分析:由题意可知“等腰三角形相邻两条边长度的比是2:1”,根据三角形边的关系“三角形的两边之和大于第三边,两边之差小于第三边”,所以腰的长度大于底的长度,即:腰的长度:底的长度=2:1;这样把三角形的周长分成了2+2+1=5(份),底占其中的1份,底是周长的;知道周长求底,根据题意列式计算即可.解答:解:120×,=120×,=24(厘米);即:三角形的底是24厘米.故选:D.点评:解答此题先根据三角形边的关系确定腰和底的比,再求出周长的总份数,最后求底的长度.4.一个三角形三个角度数的比是2:2:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形考点:按比例分配应用题;三角形的分类.分析:三角形的内角和是180°,根据比例求出这三个角各是多少度,再根据角的度数判断是什么样的三角形.解答:解:总份数:2+2+5=9(份);这三个角的最大角是:180°×=100°;100°>90°;这个三角形是钝角三角形.故答案选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.甲、乙、丙三人储蓄钱数的比是1:2:3,他们储蓄钱数的平均数是50元,乙储蓄了()元.A.50 B.100 C.150考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:根据“甲乙丙三人储蓄钱数之比是1:2:3”,求得甲乙丙储蓄钱数的总份数,再求得乙储蓄的钱数占总数的几分之几;根据“他们储蓄钱数的平均数是50元”,求得三人储蓄的总钱数;最后求得乙储蓄的钱数,列式解答即可.解答:解:甲乙丙储蓄钱数的总份数:1+2+3=6(份);三人储蓄的总钱数:50×3=150(元);乙储蓄的钱数:150×=50(元).答:乙储蓄了50元.故选:A.点评:此题主要考查按比例分配应用题的特点:已知三个数的比,三个数的和,求其中的一个数,用按比例分配解答.6.把126吨化肥,按4:3:2分配给甲、乙、丙三个村,甲村比丙村多分化肥()吨.A.14 B.28 C.42考点:按比例分配应用题.专题:比和比例应用题.分析:根据总数是126吨,总份数是4+3+2,可求出一份是多少,再根据甲村比丙村多(4﹣2)份,即可求出甲村比丙村多分的吨数.解答:解:126÷(4+3+2)×(4﹣2)=126÷9×2=28(吨)答:甲村比丙村多分化肥28吨.故选:B.点评:找准总数,找准把总数分成的总份数,再求出一份是多少,进而解决问题.7.甲、乙、丙三个数的和为300,甲数为120,乙数和丙数的比是5:4,丙数是()A.180 B.100 C.80考点:按比例分配应用题.专题:比和比例.分析:乙数和丙数的比是5:4,根据比与分数的关系可知:丙数就占乙丙两数和,乙丙两数的和是(300﹣120).据此解答.解答:解:(300﹣120)×,=180×,=80.答:丙数是80.故选:C.点评:本题的关键是根据比与分数的关系求出丙占乙丙两数和的几分之几,再求出乙丙两数的和是多少,然后根据分数乘法的意义列式解答.8.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,结果A做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出480元给A、B、C三人作为报酬,若按天数计算劳务费,则这480元中A应该分()元.A.180 B.192 C.200 D.320考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意可知:他们一共做了6+5+4+1=16天,那么平均算下来,16÷4=4天,一个人就要做四天,但D做了一天因事请假,他做了一天,就少做了3天,则A多做了6﹣4=2天,B多做了一天,那么那48元是给多做天数的报酬,一共多做了3天,就用报酬费480÷3=160元,一天就要给160元,A多做了2天,就用160×2=320元即可解决.解答:解:一共做的天数:6+5+4+1=16(天)平均每人做的天数:16÷4=4(天)A多做的天数:6﹣4=2(天)B多做的天数:5﹣4=1(天)一共多做的天数:2+1=3(天)A应得480÷3×2=320(元),答:这480元应分给A320元.故选:D.点评:解答此题的关键是先求出一共做的天数,从而知道平均每人要做的天数,再求出A多做了几天,就把D少做3天的酬劳平均分成3份,即可求出.9.已知A+B=80,A:B=3:5,则A、B分别是()A.30、48 B.50、30 C.30、50考点:按比例分配应用题.分析:首先求得A、B两数的总份数,再分别求得A、B所占总数的几分之几,最后求得A、B两个数,列式解答即可.解答:解:总份数:3+5=8(份),数A:80×=30,数B:80×=50,或80﹣30=50.答:则A是30,B是50.故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比与两个数的和,求这两个数,用按比例分配的方法解答.10.绿化队准备植树96棵,按7:8:9的比例分配给甲、乙、丙三个小组.甲组应植树()棵.A.36 B.32 C.28 D.26考点:按比例分配应用题.专题:比和比例应用题.分析:由题意可得:甲组植树的棵数占植树总棵数的,把植树总棵数看作单位“1”,根据一个数乘分数的意义,用乘法解答即可.解答:解:7+8+9=24,96×=28(棵);答:甲组应植树28棵;故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.C档(跨越导练)1.一个分数的分子分母和是132,约分后为,原分数是()A.B.C.考点:按比例分配应用题.专题:压轴题.分析:解答此题先求分子和分母的和的总份数,再求1份是多少,然后求分子和分母分别是多少,最后写出这个分数.解答:解:总份数:4+7=11(份),一份:132÷11=12,分子:4×12=48,分母:7×12=84.即:这个分数是.故选:B.点评:此题主要考查按比例分配,解答此题先求分子、分母和的总份数,再求其中的1份是多少,最后求分子、分母分别是多少.2.一个最简真分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是,原来的分数是()A.B.C.D.考点:按比例分配应用题.分析:这个最简分数的分子、分母分别减去5之后,所得分数的分子、分母之和为(50﹣5﹣5)40.因为所得分数的值是,根据比例分配,则:所得分数的分子为:40×=16,分母为:40×=24.故:原分数为:=.解答:解:(50﹣5﹣5)×,=40×,=16;40×,=24.,=.故选:B.点评:解答此题的关键是求所得分数的分子、分母之和;重点是根据比例分配,求出所得现在分数的分子、分母分别占和的几分之几.3.把1些树苗按2:3:5分配给一班、二班、三班的学生去种植,一班比三班的树苗少()%.A.60 B.40 C.20考点:按比例分配应用题;百分数的实际应用.专题:比和比例应用题.分析:用一班比三班少的份数除以三班的份数,就是一班比三班少百分之几.据此解答.解答:解:(5﹣2)÷5,=3÷5,=60%.答:一班比三班的树苗少60%.故选:A.点评:本题的关键是根据比与除法的关系来进行解答.4.某电器商店有180台电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50 B.100 C.80考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意,首先求出总份数,再求出彩电占总数量的几分之几,根据一个数乘分数的意义,有乘法解答.解答:解:180×=100(台);答:彩电有100台.故选:B.点评:此题考查的目的是让学生掌握按比例分配应用题的特点及解答规律,已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.一种混合糖中甲、乙两种糖的比是2:3,现加入甲糖120千克,乙糖40千克,得到混合糖660千克,新混合糖中甲、乙两种糖的比是()A.15:16 B.16:17 C.16:15 D.15:17考点:按比例分配应用题;比的意义.分析:根据题意“现加入甲糖120千克,乙糖40千克,得到混合糖660千克”得到加入糖之前甲、乙两种糖的和:660﹣(120+40)=500克,再根据题意求得甲、乙两种糖的总份数,然后分别求得甲、乙两种糖各占总分数的几分之几,最后分别求得加入糖之前甲、乙两种糖的质量,用原来两种糖的质量分别加上加入糖的质量,求出新混合糖种甲乙两种糖分别是多少,再求比并化简,列式解答即可.解答:解:加入糖之前甲、乙两种糖的和:660﹣(120+40),=660﹣160,=500(千克),总分数:2+3=5(份),加入糖之前甲、乙两种糖的质量分别是:500×=200(千克),600×=300(千克),新混合糖中甲、乙两种糖的质量分别是:200+120=320(千克),300+40=340(千克),新混合糖甲、乙两种糖的比:320:340,=(320÷20):(340÷20),=16:17.答:新混合糖中甲、乙两种的比16:17.故选:B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比和两个数的和,在这里需根据题意求这两个数得和,用现在糖的质量减去加入糖的质量,用按比例分配的方法解答.6.甲、乙、丙三个数的平均数是19,甲、乙两数的比是3:4,丙比甲少3,甲是()A.24 B.18 C.15考点:按比例分配应用题.分析:根据“甲、乙、丙三个数的平均数是19”,可求出三个数的和为57,再根据“丙比甲少3”,可假设丙和甲一样也占3份,那么三个数的和就成为(57+3),先求出三个数的总份数,再求出甲数占三个数和的几分之几,进而求出甲数的数值即可.解答:解:三个数的和:19×3=57,丙和甲一样也占3份时,三个数的和为:57+3=60,总份数:3+4+3=10(份),甲数为:60×=18;答:甲数是18.故选:B.点评:此题属于考查按比例分配的应用题,解决此题关键是把丙和甲看的一样多,都占3份时,三个数的和是多少,作为要分配的总量,进而按照3:4:3进行分配,再用按比例分配的方法进行解答.7.下面的说法正确的是()A.一个等腰三角形的周长是108厘米,其中两条边的比是2:5,腰为24或45厘米B.一种彩票的中奖率是1%,爸爸买了100张这种彩票,爸爸一定会有1次中奖C.相关联的两个量X、Y,Y=X,那么Y和X成正比例考点:按比例分配应用题;辨识成正比例的量与成反比例的量;简单事件发生的可能性求解.专题:比和比例;比和比例应用题;可能性.分析:(1)根据三角形的特性:三角形的任意两条边之和一定大于第三条边,可知等腰三角形三条边的比为2:5:5,不会是2:2:5,按比例分配求出腰即可判断;(2)一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大;(3)由Y=X,变式可得出=4,根据正比例的意义作出判断.解答:解:A.因为:三角形的任意两条边之和一定大于第三条边,所以等腰三角形三条边的比为2:5:5,108×=45(厘米),因此腰为24厘米不对;B.一种彩票的中奖率是1%,买100张彩票一定有1张中奖的说法错误.C.Y=X,=4,比值一定,所以Y和X成正比例,是正确的;故选:C.点评:此题主要考查了概率的意义,以及等腰三角形的性质和正比例的意义等知识.8.下面说法正确的是()A.一个三角形内角度数的比是1:2:3,这是个锐角三角形B.国际儿童节和国庆节都在大月C.同一个平面内,永不相交的两条直线叫做平行线D.在生活中,知道了物体的方向,就能确定物体的位置考点:按比例分配应用题;年、月、日及其关系、单位换算与计算;垂直与平行的特征及性质;三角形的分类;三角形的内角和;方向.专题:综合判断题.分析:(1)根据三角形内角和是180度,按比例分配求出最大角的度数,即可判断;(2)知道一年中1、3、5、7、8、10、12是大月,再知道儿童节和国庆节在哪个月,即可得解;(3)根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,即可判断;(4)物体位置对于某一观察点来说,是由一定的方向和距离确定的,只知道方向或距离不能确定物体的位置.判断即可.解答:解;A.180×=90°,所以是直角三角形而不是锐角三角形;B.国际儿童节是6月1日,国庆节是10月1日,6月是小月,10月是大月,所以国际儿童节和国庆节都在大月错误;C.在同一平面内,不相交的两条直线叫做平行线,是正确的;D.对于某一观察点来说,知道了物体的方向和距离就可以确定物体的位置,只知道方向或距离不能确定物体的位置.故选c.点评:此题主要考查的知识:平行线的定义,一年中哪些是大月和小月,节日的日期,以及要确定一物体的位置,必须知道方向和距离.9.甲、乙、丙三人的平均体重是50千克,他们的体重的比是4:3:3,甲的体重是()A.50×3×B.50×C.50×D.50×3×考点:按比例分配应用题.分析:根据题意,三人的总体重为50×3=150(千克),甲的体重占三人总体重的,根据一个数乘分数的意义,列式即可.解答:解:甲的体重是:50×3×;故选:A.点评:解答此题的关键是找准对应量,找出数量关系,根据数量关系,用按比例分配解答.10.水是由氢和氧按1:8的重量化合而成的,72千克水中,含氢和氧各()A.1千克,71千克B.8千克,64千克C.9千克,63千克D.63千克,9千克考点:按比例分配应用题.专题:比和比例应用题.分析:因为氢和氧按1:8化合成水,氢占水的,氧占水的,然后用乘法解答即可.解答:解:72×=8(千克)72×=64(千克);答:含氢和氧分别有8千克、64千克;故选:B.点评:本题的关键是分别求出氢和氧各占水的几分之几,然后再根据一个数乘分数的意义,用乘法列式解答.。
-六年级上册数学教案-《按比例分配(解决问题)》西师大版
六年级上册数学教案《按比例分配(解决问题)》西师大版今天我要为大家分享的是六年级上册数学教案,《按比例分配(解决问题)》这一节的内容。
一、教学内容我们使用的教材是西师大版,这一节的主要内容是第四章第二节《按比例分配(解决问题)》。
这部分内容主要介绍了按比例分配的概念和解决实际问题的方法。
二、教学目标通过这一节课的学习,我希望学生们能够掌握按比例分配的基本概念和方法,并能够运用到解决实际问题中去。
三、教学难点与重点这一节课的重点是让学生理解并掌握按比例分配的方法,难点则是如何让学生能够灵活运用这一方法解决实际问题。
四、教具与学具准备为了更好地进行教学,我准备了一些实际问题的案例和图片,以及一些练习题供学生们练习。
五、教学过程我会通过一个实际问题引入本节课的主题,例如:“如果一家工厂生产A产品和B产品,A产品需要10个小时,B产品需要20个小时,现在工厂有40个小时的生产时间,应该如何分配生产A产品和B产品的时间?”然后,我会通过一些例题和练习题来进一步巩固学生对按比例分配的理解和应用。
六、板书设计在课堂上,我会通过板书来展示按比例分配的步骤和方法,以便学生们更好地理解和记忆。
七、作业设计作业题目:小明有24颗糖果,他要把这些糖果平均分给他的4个朋友,每个朋友会得到多少糖果?答案:每个朋友会得到6颗糖果。
八、课后反思及拓展延伸课后,我会通过学生的作业和课堂表现来反思自己的教学效果,并根据学生的实际情况进行拓展延伸,以提高学生的数学素养。
重点和难点解析在上述教案中,有几个重要的细节需要我们重点关注。
教材的章节和详细内容是本节课的基础,我们需要确保学生们能够理解和掌握这部分内容。
教学目标是指导我们教学的方向,我们需要通过各种教学活动来帮助学生们达到这些目标。
再次,教学难点和重点是我们在教学过程中需要特别关注的部分,我们需要找到合适的方法来帮助学生们理解和掌握这些难点和重点。
教具和学具的准备可以帮助我们更有效地进行教学,我们需要确保学生们能够清晰地看到并理解这些教具和学具。
按比例分配解决问题精选
1、张大伯家的苗圃有240平方米,其中2/5的面积已经种了玫瑰花,剩下的按1:3的面积比种兰花和郁金香。
三种花的面积分别是多少平方米?2、学校的菜园有350平方米,其中4/5的面积已经种了土豆,剩下的按3:4的面积比种西红柿和茄子。
三种蔬菜的面积分别是多少平方米?3、用96厘米长的铁丝围成一个三角形,这个三角形3条边长度的比是3:4:5。
3条边的长各是多少?4、一个工厂有甲、乙、丙三个车间,甲、乙、丙三个车间的人数比是2:3:5,丙车间比乙车间多40人。
甲、乙、丙三个车间各有多少人?5、两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。
货车和客车的速度比是12:7。
货车和客车各行多少千米?6、一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?7、某蔬菜基地把一批蔬菜按4:5:3的比例批发给甲、乙、丙三个餐厅,丙餐厅比乙餐厅少批发40千克。
这批蔬菜一共有多少千克?8、有840吨粮食,分给两个运输队运出去。
甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配,甲乙两运输队各应9、甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?10、学校进来一批图书,按3:4:5分配给四、五、六年级。
五年级分得120本,其他年级各分得多少本?11、长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?12、一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的面积是多少?13、小华和爷爷的年龄比是1:6,已知小华比爷爷小50岁,小华和爷爷的年龄和是多少?14、在一道减法中,被减数是96 ,减数与差的比是7:9,减数是多少?差是多少?15、甲乙丙分别有些邮票,他们邮票数量比是7:4:3,丙有60枚邮票,甲和乙各有多少枚邮票?16、甲乙两地相距720千米,客车和货车分别从两站同时相对开出,3.6小时相遇,客车和货车的速度比是3:2。
《按比例分配解决问题》六年级数学说课稿
《按比例分配解决问题》六年级数学说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、演讲致辞、心得体会、职业规划、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work plans, work summaries, job reports, speeches, insights, career plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《按比例分配解决问题》六年级数学说课稿相关推荐《按比例分配解决问题》六年级数学说课稿作为一名专为他人授业解惑的人·民教师,就难以避免地要准备说课稿,说课稿有助于提高教师的语言表达能力。
六年级上册数学教案-《按比例分配问题解决》西师大版
六年级上册数学教案《按比例分配问题解决》西师大版我今天要分享的教案是我六年级上册数学课的教学计划,主题是《按比例分配问题解决》,使用的教材是西师大版。
一、教学内容:今天我们要学习的是按比例分配问题的解决方法。
我会带领学生回顾一下已经学过的比例知识,包括比例的定义,比例的性质,以及如何求解比例问题。
然后,我会引入按比例分配的概念,解释什么是按比例分配,以及它在实际生活中的应用。
我会通过一些具体的例题,教授学生如何使用按比例分配的方法来解决问题。
二、教学目标:通过本节课的学习,我希望学生能够掌握按比例分配的基本概念和方法,能够独立地解决相关的实际问题。
三、教学难点与重点:本节课的重点是让学生理解并掌握按比例分配的方法。
难点在于如何引导学生将实际问题转化为按比例分配问题,并运用所学的知识来解决。
四、教具与学具准备:为了帮助学生更好地理解按比例分配,我准备了一些图片和实际问题,以及相关的练习题。
五、教学过程:六、板书设计:在课堂上,我会根据讲解的内容,适时地进行板书,帮助学生理解和记忆。
板书的内容主要包括按比例分配的定义,解题的步骤和方法。
七、作业设计:今天的作业是让学生独立解决一些按比例分配的实际问题。
题目包括:1.甲、乙两地相距120公里,一辆汽车从甲地出发,以60公里/小时的速度向乙地行驶,请问汽车需要多少小时才能到达乙地?2.有一桶水,甲、乙两人约定,甲喝去一半,乙喝去四分之一,剩下的水平分,请问甲、乙各喝了多少?答案:1. 2小时;2. 甲喝了3/8,乙喝了1/8。
八、课后反思及拓展延伸:通过今天的教学,我发现大部分学生能够理解和掌握按比例分配的方法,但是在将实际问题转化为按比例分配问题上,还有一些学生存在困难。
在今后的教学中,我将继续强调实际问题的转化,并通过更多的练习,帮助学生巩固知识。
同时,我也会引导学生将按比例分配的方法应用到生活的其他方面,拓展他们的知识应用能力。
重点和难点解析:在上述教案中,有几个重点和难点是我认为需要特别关注的。
按比例分配解决问题教学反思(四篇)
按比例分配解决问题教学反思整节课以思考、交流贯穿全过程,让学生在观察、对比、交流中思考,在思考中探索、获取新知,尤其是特别注重为学生创设独立思考、合作交流的空间。
教学中,无论是学生观察、发现或是“探索创新”或是“巩固深化”或是“联系实际”都是让学生独立思考,再进行小组合作或再组织讨论交流,这样才能使学生有话可说、有话想说、有话能说,充分发挥每个学生的积极性,不仅有利于培养学生独立思考的习惯和自主探索的能力,也大大提高了合作学习的效率。
在课堂教学中,充分体现以人为本的教学理念,联系生活实际,创设平等、民主、和谐的课堂气氛,培养学生良好的情感,让学生主动参与学习,在体验中发现知识、掌握知识、应用知识。
总之,在本课中进行的教学方面的实践,使我有了一定的收获。
今后还应不断反思,加以总结和改进,以不断提高自己的教学水平。
按比例分配解决问题教学反思(二)新课标积极倡导学生“主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。
比如通过篮球的分配问题的问题,让有关系列问题动态生成,通过学生的猜测、观察、思考、交流的方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程,并以积极的方式影响学生的学习生活,同时也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略的多样化,使生生、师生评价在价值观上都得到了发展。
通过对比性的练习,学生能抓住按比例分配的题目的主要特征,注意和分数乘法应用题的区别,把新知识纳入已有的知识体系中,有利于知识的建构。
在练习中,把一条线段按1:___分成两部分孩子还是没有大困难的,但在把一个三角形按1:___分成两个小三角形时效率明显打折了,但通过小组交流讨论,集思广益,还是很快得出了方法。
生活问题、数学问题,本来就是相通的。
按比例分配解决问题教学反思(三)这节课的主要教学内容其实还是比较简单的,检查预习的时候,我就知道有很多孩子基本能“依葫芦画瓢”地解决类似的问题了。
《用比例解决问题》比和按比例分配
交叉相乘法
交叉相乘法是一种通过交叉相乘来解决问题的复杂方法。
交叉相乘法是通过将两个比例交叉相乘来解决问题的。例如,如果一个物品的数 量与另一个物品的数量成反比,我们可以通过将它们的数量交叉相乘来找出它们 之间的直接关系。
05
案例分析
案例一:按比例分配物品
总结词:等量等分
详细描述:当有若干物品需要按照一定的比例分配给不同的人时,每个人得到的物品数量是相等的, 即等量等分。例如,将10个苹果平均分给5个人,每个人得到2个苹果。
案例二:按比例分配费用
总结词:需分配
详细描述:当有若干费用需要按照一定的比例分摊给不同的人时,每个人需要支付的费用是根据其需求或贡献来决定的,即 按需分配。例如,在分摊餐厅账单时,根据每个人的点餐量来决定各自需要支付的金额。
04
比例在实际问题中的应用
比例在生活中的应用
烹饪
在烹饪中,比例是非常重要的。 例如,制作蛋糕时,需要按照一 定的比例混合面粉、糖、蛋和其
他材料。
健康
在保持健康方面,比例也起着关键 作用。例如,饮食中应保持适量的 脂肪、碳水化合物和蛋白质的比例 。
体育
在体育活动中,比例的应用也很广 泛。例如,在训练中,需要按照一 定的比例分配力量和耐力的训练。
《用比例解决问题》比和按 比例分配
汇报人: 日期:
目录
• 比例的定义与性质 • 比和按比例分配的基本概念 • 用比例解决问题的基本方法 • 比例在实际问题中的应用 • 案例分析
01
比例的定义与性质
按比例分配的问题解决
一、化简与求比值0.48:0.5 7.2:0.832:41 35.2:0.8 725:0.75 8:32 3t:15kg 65:32 31:21 1:25.0:41 2:75 43:52 1622:1211 48:16:32 7.5:0.25 0.625:83 8.5:34 98:32 0.8t:750kg 0.3km:75m 500g:2kg 0.32:1.6 1.25:0.8 0.25:1.7515:12 65:45 65:45 125:43 7.0:313 8.0:27 154:52 209:8.1 公顷公顷:5152 二、问题解决知识点一 两个量的按比例分配问题分数法:先求各部分的和即总分数,然后用总数量×总份数各部分份数=各部分的量 例子 一条公路长8400米,按4:3分配给甲、乙两个筑路队铺设,两个队应该铺设多少米?1、幼儿园买了25千克苹果和15千克橘子,把这些水果按3:2分到大班和小班,每个班各得到水果多少千克?2、一袋大米吃了的与剩下的之比是3:2,吃了30千克,剩下多少千克?3、配置一种盐水,盐与水的质量比是1:5,盐水有150克,盐有多少千克?4、甲乙两车同时从相距77千米的两地相对开出,5.5时后相遇。
甲乙两车速度的比是3:4。
甲乙两车每时分别行多少千米?5、用96厘米长的铁丝围成一个长与宽的比是5:3的长方形。
长方形的面积是多少平方厘米?6、商店运来一批洗衣机,卖出24台,卖出的与剩下的台数比是3:5,这批洗衣机一共有多少台?7、化工厂要用一种药与水按1:200的比例配制成药水,0.4升药需要水多少升?100升水需药多少升?8、学校买来370本故事书,先拿出100本捐给希望工程,剩下的按4:5分给五六年级。
五六年级各分的多少本?9、甲车队有载重4吨的汽车5辆,乙车队有载重3.5吨的汽车6辆。
按运输能力,把运送820吨货的任务交给甲乙两个车队,甲车队应运多少吨?1.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?2.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是 3:8,这两种拖拉机各有多少台?3.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
比和比例及列方程解应用题
比和比例及列方程解应用题一、有关比的应用题(按比例分配)在这一部分中,我们需要解决的问题是已知各部分的总和与各部分量的比,求各部分量。
为了解决这个问题,我们可以使用归一法或分数乘法。
对于归一法,我们需要先计算出总数量除以总份数的结果,这个结果就是每份数。
然后,我们将每份数乘以各自的份数,就可以得到各部分的量。
对于分数乘法,我们需要将总数量乘以各部分的份数,然后再除以总份数,就可以得到各部分的量。
以下是一些例题:1.一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2.一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3.工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完这条路的一半,这条公路全长多少米?4.青年运输队计划3天运完一批货物。
第一天运了480吨,占这批货物的40%;第二天运的和第三天运的吨数比是3:5,第三天运的货物是多少吨?5.红云小队三天共植树150棵,第一与第二天植树棵数的比是5:6,第二天与第三天植树的比是3:2,第一、第二、第三天植树多少棵?二、比例应用题(正比例和反比例)在这一部分中,我们需要解决的问题是已知两个量之间的比例关系,求另一个量。
这个问题可以分为正比例和反比例两种情况。
对于正比例,我们可以使用比例公式y=kx,其中k为比例系数,x和y分别表示两个量。
我们可以通过已知的x和y 值来求解k,然后再根据已知的x或y值来求解另一个量。
对于反比例,我们可以使用比例公式y=k/x,其中k为比例系数,x和y分别表示两个量。
同样地,我们可以通过已知的x和y值来求解k,然后再根据已知的x或y值来求解另一个量。
以下是一些例题:1.数学小组和美术小组人数的比为5:3,数学小组不美术小组多24人,两组各有多少人?2.师徒两人共同加工一批零件,师傅和徒弟加工零件个数的比为4:1,已知徒弟比师傅少加工600个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲
可以按他们所行 乙 路程的比分摊。
甲: 乙:
丙
90×
1 1+2+3
90×
2 1+2+3
丙: 90×
3 1+2+3
=15(元) =30(元) =45(元)
还可以把总路程 甲
分成三段,按段 乙
数分摊。
丙
每段运费:
90×
1 3
=30(元)
第一段的运费甲、乙、丙三人分摊,每人10元。
问题解决
分摊运费
复习
一个农场计划在100hm2的地里播种大豆
和玉米。播种面积的比是3:2。两种作物各播
种多少公顷?
大豆占总面积2 = 60(hm2)
大 玉米占总面积的五分之二
玉豆 米
2
100×
= 40(hm2)
3+2
答:大豆播种60hm2 ,玉米播种40hm2。
甲、乙、丙三人合租一辆车运同样多的货 物,从A地到B地需付运费90元。甲在全程的 1 处卸货,乙在全程的 2 处卸货,只有丙到B地。3 他们如何分摊运费? 3
2、小强家房子出租给小李、小张、小王三个年青人, 每月房租是630元,6月份,小李只住到10日就搬走了, 小张只住到20日也搬家了。到月底小强的妈妈要去收房 租了,如果你是小强,你会建议妈妈怎样收这三个年青 人的房租比较合理?
精品文档 欢迎下载
第二段的运费乙、丙两人分摊,每人15元。
第三段的运费丙一人付30元。
甲:10元
乙:10+15=25(元)
丙:10+15+30=55(元)
• 甲、乙、丙三个工程队共同承包
一项工程,总工程款为80万元,
甲队做总工时的 52,乙队做总工
时的
3 5
,只有丙队全程参与,
三个工程队如何分配工程款?
• 小王、小张、小李三人合租一
辆“的士”,共付费用42元, 小 在王全在程全的1程70的处下52车处,下小车李,坐小完张 全程。他们三人应该如何分摊
费用?
• 小明家的房子出租给小林、小张 和小王三个年轻人,每月房租是 600元。六月份小林只住到10日 就搬家了,小张住到20日搬家, 小林、小张和小王各应该付房租 多少元?
1、小明和小军从动物园乘出租车回家,两人的家在同 一方向,小明在全程的3/4处下车,小军坐完全程,共 付车费35元。他们应该怎样分摊费用?