动点轨迹方程的常见求法

合集下载

求动点轨迹方程的几种方法

求动点轨迹方程的几种方法

1、求曲线方程的一般步骤:建系、设点、列式、化简、确定点的范围.2、求动点轨迹方程的几种方法:(1)直接法:(2)定义法:(3)相关点代入法:(4)待定系数法;(5)交轨法;(6)参数法:(7)点差法: 典型例题一:直接法: 此类问题重在寻找数量关系。

当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.二:定义法:熟悉一些基本曲线的定义是用定义法求曲线方程的关键.1)圆:到定点的距离等于定长;2)椭圆:到两定点的距离之和为常数(大于两定点的距离);3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离);4)抛物线:到定点与定直线距离相等.(定点不在定直线上).例1.已知点()1,0F ,点A 是直线1:1l x =-上的动点,过A 作直线2l ,12l l ⊥,线段AF 的垂直平分线与2l 交于点P .求点P 的轨迹C 的方程.例2: 一条线段AB 的长等于a 2,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?例3:已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.求曲线Γ的方程.例4:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

5:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支三:相关点代入法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例1:点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )例2:已知抛物线2 4C y x =: 焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 轨迹方程.3.已知A 为曲线2:410C x y 上的动点,定点(2,0)M ,若2AT TM ,求动点T 的轨迹方程.四、交轨法 1.求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程. 2.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.例:两条直线10x my --=和10mx y +-=的交点的轨迹方程是( )五、待定系数法六、参数法此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。

动点轨迹方程的常见求法

动点轨迹方程的常见求法

动点轨迹方程的常见求法湖南省临澧县第一中学 朱福文 胡鸥 415200一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。

例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。

求椭圆和双曲线的方程。

解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22b y = 1,双曲线的方程为22m x -22ny = 1。

2c = 213 , ∴c = 13 .a – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。

二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。

它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。

例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。

解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2α 3-x y = K PB = tg(π-2α) = - tg2α=αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

怎样求动点的轨迹方程

怎样求动点的轨迹方程

思路探寻在解题时,我们经常会遇到求动点的轨迹方程问题.此类问题主要考查圆锥曲线的定义、图形以及几何性质,对同学们的想象与计算能力都有较高的要求.在解答此类问题时,需根据题目中所给的条件建立起各个变量之间的联系,得到关于动点的关系式,进而求得动点的轨迹方程.本文主要谈一谈动点的轨迹方程的几种求法.一、直接法直接法是求动点的轨迹方程的基本方法.通常要先设出动点的坐标;然后根据题目中所给的条件,利用相关的公式、定义、性质列出有关动点坐标的关系式;再通过化简、消元、变形,得到动点的轨迹方程;最后验证所得的结果是否满足题目的条件.例1.已知两定点A (-2,0),B (2,0),动点P 满足 PA ∙PB =0.由点P 向x 轴作垂线PQ ,垂足为Q ,若 PM = MQ ,求点M 的轨迹方程.解:设M (x ,y ),P (x 1,y 1),则Q (x 1,0),因为 PA ∙PB =0,所以x 12+y 12=4.因为PM ⊥x 轴, PM = MQ ,所以x 1=x ,y 1=2y ,所以点P 的坐标为(x ,2y ).又因为点P在圆x 12+y 12=4上,所以x 2+4y 2=4,所以点M 的轨迹方程为x 24+y 2=1.本题较为简单,可采用直接法求解.题目的条件中已明确给出了动点的几何关系,只要设出动点的坐标,根据已知条件建立关于点M 的坐标的关系式,即可得到点M 的轨迹方程.二、相关点法若一动点P 随着另一动点Q 的变化而变化,且已知另一动点Q 的运动轨迹,就可以利用相关点法,根据另一动点Q 的轨迹来求得动点P 的轨迹方程.在解题时,需先建立两个动点坐标之间的联系,求得另一动点Q 的轨迹方程;然后用动点P 的坐标表示相关点Q 的坐标,将其代入相关点Q 的轨迹方程,即可求得动点P 的轨迹方程.例2.从圆x 2+y 2=1上的任意一点P 向y 轴作垂线,求该垂线段中点M 的轨迹方程.解:设点P 为(x 0,y 0),点M 为(x ,y ),由题意知:ìíîïïx =x 02,y =y 0,即{x 0=2x ,y 0=y .因为点P 在圆上,所以x 02+y 02=1,可得4x 2+y 2=1,所以点M 的轨迹为椭圆,其轨迹方程为4x 2+y 2=1.分析题意可知,点M 随着点P 的变化而变化,需采用相关点法解答.先设出点M 和P 的坐标,并根据二者之间的联系建立关系式;然后用点M 的坐标表示P 点,通过P 点的轨迹方程间接求得M 点的轨迹方程.三、交轨法如果动点是两条曲线的交点,就可以采用交轨法来求动点的轨迹方程.先选出一个适当的参数表示动点;再根据题目中的条件建立关于参数的式子;然后通过恒等变换,逐步消去参数,得到所求点的轨迹方程.例3.已知动点P 在直线l :x -y -2=0上运动,过P 点作抛物线C :y =x 2的两条切线PA ,PB ,与抛物线C分别相切于A ,B 两点,求△APB 的重心G 的轨迹方程.解:设切点A ,B 的坐标分别为(x 1,x 12)和(x 2,x 22),则切线PA ,PB 的方程分别为:2x 1x -y -x 12=0,2x 2x -y -x 22=0,可得x p =x 1+x 22,y p =x 1x 2.设G 的坐标为(x ,y ),根据三角形重心的坐标公式可得:x =x 1+x 2+xp 3=x p ①,y =y 1+y 2+y p 3=4x p 2-y p3②.又因为点P 在直线l :x -y -2=0上运动,所以x p -y p -2=0③,由①②③可得△APB 的重心G 的轨迹方程是:y =43x 2-13x +23.解答本题,首先要根据题目中所给的条件设出切点的坐标,通过对抛物线的方程求导,得到切线的方程,并求出点P 的坐标;然后设出重心G 的坐标,根据中点的坐标公式和重心的坐标公式建立关系式,即可利用交轨法求得重心G 的轨迹方程.求动点的轨迹方程问题的难度往往不大,但解题时的计算量较大,同学们在解题时要谨慎计算,注意检验,避免出错.(作者单位:江苏省南通市海门四甲中学)史玉蕾48Copyright ©博看网. All Rights Reserved.。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

动点轨迹方程求解的常见方法

动点轨迹方程求解的常见方法

动点轨迹方程求解的常见方法符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).轨迹方程就是与几何轨迹对应的代数描述。

轨迹方程就是与几何轨迹对应的代数描述。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。

动点轨迹方程求解的常见方法一、动点轨迹方程解题步骤1、建系——建立适当的坐标系,设出动点M的坐标;2、设点——设轨迹上的任一点P(x,y),写出点P的集合;3、列式——列出动点p所满足的关系式;4、代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;5、证明——证明所求方程即为符合条件的动点轨迹方程。

二、动点轨迹方程求解常见的6种方法动点轨迹方程的求解方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1、直译求解法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

2、定义求解法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

高考动点轨迹方程的常用求法含练习题及答案

高考动点轨迹方程的常用求法含练习题及答案

轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,那么有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 二、直接法:直接根据等量关系式建立方程.例1:点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,那么点P 的轨迹是〔 〕 A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,,由2PA PB x =·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.应选D .三、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题.例3:△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、待定系数法:当曲线的形状时,一般可用待定系数法解决.例5:A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.〔1〕求E 点轨迹方程;〔2〕过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:〔1〕设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,那么22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; 〔2〕设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量〔参数〕,把x ,y 联系起来 例4:线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 那么由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.配套训练一、选择题1.椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,那么直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 二、填空题3.△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,那么动点A 的轨迹方程为_________.4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7.双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y 〕,A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y 〕,依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0〕(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),那么Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),那么A 1P 的方程为:y =)(11m x mx y ++① A 2Q 的方程为:y =-)(11m x mx y --② ①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0〕,Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,那么(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

求动点的轨迹方程常用的四种方法

求动点的轨迹方程常用的四种方法

O

x
这个式子说明动点P到定点O , A的距离之差的绝 对值等于2(小于|OA|);所以点P的轨迹是双曲线。
该双曲线的两焦点为O , A(4, 0) ,中心在线段OA的中点 O(2, 0) 此时c = 2 , a = 1,所以 b 3 所以所求的双曲线方程为:
O
2
y
y ( x 2) 1 3
这样就有点M到点A的距离等于点M到 直线 x 2 的距离,这符合抛物线的定 O 义,所以点M的轨迹就是以点A为焦点, x 2 以直线 x 2为准线的抛物线。
A
x
即所求的轨迹方程为: y 2 8x( x 0)
或 y 0( x 0)
三、代入法
当主动点P在某曲线 f ( x, y ) 0 上移动时,与P具备相关 关系的因动点M随其移动而形成曲线,求动点M的轨迹 方程 g ( x, y) 0的方法叫代入法。分析关系如下:
例1 已知A、B为两定点,动点M到A与到B的距离比为
Y
1、如图所示建立直角坐标系
2、利用命题所给条件建立等量关系
| MA | | MB |

M ( x, y )
A(a,0)
( x a)2 y 2 ( x a) y
2 2

O
B(a, 0) x
3、把|MA|,|MB|转换代数式
a 2 4c 2 a 2c | CD | 4c c c 2 2 3 3 ( x 1) ( y 2) 1 2 F ( x, 2 y) 2 2 4 2 9( y 3 ) 2 ( x 1) 1 化简得: 4
二、定义法
1、熟练掌握椭圆、双曲线、抛物线的第一、第 二定义;以及初三时学习的六种基本轨迹定义。 2、分析命题给出的条件符合那种曲线的定义。 3、解题步骤:①定形——利用定义确定曲线类型 ②定位——利用条件确定曲线位置 (此时可确定曲线的待定系数方程) ③定大小——求方程中的待定系数。

求动点轨迹方程最简捷的四种方法

求动点轨迹方程最简捷的四种方法

2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。

求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法梁关化,2015,6,16高考数学的解几题中有一类是求动点轨迹方程题。

有的复习资料归纳这类题的解法过细,其实从历届的高考题来看,主要是下面三种:一是直接法,二是消参法,三是定义法。

直接法就是根据题目提供的明的和暗的条件,把动点的坐标满足的等式直接写出。

消参法就是分析动点的变动是因什么变动而引起,是另一动点,还是动直线,还是动曲线?如是另一动点引起,就把动点的坐标设为参数。

如是动直线引起,就把动直线方程的有关参数设为参数。

如是动曲线引起,就把动曲线方程的有关参数设为参数,接着根据题目提供的明的和暗的条件,把动点的坐标和参数满足的等式列出,最后把参数消去。

理论上,n 个参数需要(n+1)个等式才能把参数消去。

消参方法很奇妙,要通过解题,总结消参的技巧。

定义法就是分析动点满足的条件是否就是某一轨迹满足的条件,符合某一轨迹的定义,如是,就可以用待定法求解。

三法当中,高考解几大题考得最多的是消参法,难度也较大。

我在一篇消参法的小文中说到消参的许多具体做法,如代入法,加减法,平方后加减法,两式相乘法,两式相除法等等。

下面以2015年广东高考数学的解几大题为例,详细述说这三种方法。

(2015年广东高考数学的解几大题,文理同题,本小题满分14分)已知过原点的动直线l 与圆C 1:05622=+-+x y x 相交于不同的两点A ,B .(1) 求圆C 1的圆心坐标;(解略,答案:(3,0)) (2) 求线段AB 的中点M 的轨迹C 的方程;(答案:492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ) (3) 是否存在实数k ,使得直线L :)4(-=x k y 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。

(解略,答案:存在,752752≤≤-k 或34±=k )12221112222211(,),,,333,1,)(),322,,334,)()225,03,3y y M x y C M x x y y C M y x x C A B C C M C y y x -⊥⋅=-+=-+<+=<≤解法一(直接法):设则动直线l 的斜率为直线的斜率为由图易知l 从而有化简变形得(x-但由于动直线l 与圆相交于两个不同的点故圆心到直线l 的距离(即线段的长度)小于圆的半径,因此有(x-3)与(x-联立解得x>同时由图易知所以222112222222253,,3335)()(3)223(:)(,),(,),(,),650)65093620()0,5x y x M x y A x y B x y y kx x y x y x x x <≤+=<≤=⎧⎨+-+=⎩-+=∆=->⇒<因此动点M 的轨迹方程为(x-说明此法中用到平面几何的垂径分弦定理解法二(消参法):设动直线l 的方程为y=kx(这里的k 与第三小题中的k不同).解方程组消后整理得(1+k 于是有1+k 1+k 12222222222263(1)3(2)33)()2295503,3533335)()(3)223(:(,),x x k y y x x y x y xM x y +=⎧=⎪⎪∴⎨⎪=⎪⎩+=<<≤∴<≤+=<≤∆1+k 1+k 1+k 消去k 后,再变形得(x-由1+k ,得x>,同时由图易知因此,动点M 的轨迹方程为(x-说明消k 是分两步进行,先(2)式除以(1)式,求出k=,再代入(1)即可)解法三(定义法):设由图易知OMC 12222223,0),233,,22335)()3,223335,)()(3)223(:MC y x y x =+=<≤+=<≤是一个直角三角形,其斜边中点C 的坐标为(所以动点M 的轨迹以C 为圆心,为半径的圆.因此动点M 的轨迹方程为(x-,用解法一的方法同样可以求出x 的取值范围:因此动点M 的轨迹方程为(x-说明此法中用到平面几何直角三角形斜边上的中线等于斜边的一半的性质) 虽然此题三法都可以解,但不是所有的题都是如此,我们要具体问题具体分析,选用最好的方法求解.此题还涉及到轨迹的完备性问题,如果考生不注意,肯定被扣分.。

专题四:求动点轨迹方程5种方法(解析版)

专题四:求动点轨迹方程5种方法(解析版)

专题四:求动点轨迹方程5种方法(解析版)一、直接法步骤:1、建立恰当的坐标系,设动点坐标()y x ,;2、由已知条件列出几何等量关系式,建立关于y x ,的方程()0=y x f ,;3、化简整理;4、检验,检验点轨迹的纯粹性与完备性。

[例1] 已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,如图所示。

由动点P 向圆O 和圆O '所引的切线长相等,求动点P 的轨迹方程。

【解析】设()y x P ,,由圆O 的方程为:222=+y x ,圆O '的方程为()6422=+-y x 。

由已知得BP AP =,所以22BP AP =,所以2222B O P O OA OP '-'=-,则6222-'=-P O OP 。

所以()6422222-+-=-+y x y x ,化简得23=x 。

所以动点P 的轨迹方程为23=x 。

[练习1] 已知平面上两定点()20-,M ,()20,N ,点P 满足MN PN MN MP ⋅=⋅,求点P 的轨迹方程。

【解析】设()y x P ,,则()2+=y x MP ,,()40,=MN ,()y x PN --=2,,因为MN PN MN MP ⋅=⋅,所以()()222424y x y -+=+,所以()2222y x y -+=+。

两端同时平方得:2224444y y x y y +-+=++,整理得:y x 82=。

所以点P 的轨迹方程为y x 82=二、定义法步骤:1、分析几何关系;2、由曲线的定义直接得出轨迹方程。

[例2] 已知圆A :()36222=++y x ,()02,B ,点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。

【解析】 由题可得,()02,-A ,4=AB 。

因为Q 点在线段PB 的中垂线上,所以QB PQ =。

《求动点轨迹方程的五种方法》

《求动点轨迹方程的五种方法》

求动点轨迹方程的五种方法一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.解:设M (x ,y ),直线MN 切圆C 于N ,则有 λ=MQ MN,即 λ=-MQONMO 22, λ=+--+2222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.若1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线; 若λ≠1,方程化为2222222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122-+λλ为半径的圆.二、代入法若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.例2 已知抛物线12+=x y ,定点A (3,1),B 为抛物线上任意一点,点P在线段AB 上,且有BP :P A =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.解:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2==PBAP λ, ∴ .2121,212311++=++=y y x x 解得2123,232311-=-=y y x x . 又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,∴ .1)2323()2123(2+-=-x y 整理得点P 的轨迹方程为),31(32)31(2-=-x y 其轨迹为抛物线.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.例3 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是(A )012122=+-x y(B )012122=-+x y(C )082=+x y(D )082=-x y解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).例4 一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为(A )抛物线 (B )圆(C )双曲线的一支 (D )椭圆解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).四、参数法若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.例5 设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(A )求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且12-=t t OQ OP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+ 由题意得⎪⎩⎪⎨⎧==-,,122t ba b a解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得 ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 其中t >1.消去t ,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x . 其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.五、交轨法 一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线P A 和QB 交点M 的轨迹方程.解:P A 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则P A :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,P A 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

高考数学知识点:动点的轨迹方程_知识点总结

高考数学知识点:动点的轨迹方程_知识点总结

高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。

1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。

要特别注意消参前后保持范围的等价性。

多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。

高考数学知识点:动点的轨迹方程

高考数学知识点:动点的轨迹方程

高考数学知识点:动点的轨迹方程
高考数学知识点:动点的轨迹方程高考数学知识点:动点的轨迹方程
动点的轨迹方程:
在直角坐标系中,动点所经过的轨迹用一个二元方程
f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。

1、直接法:
如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2、定义法:
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;
即可。

交轨法实际上是参数法中的一种特殊情况。

求轨迹方程的步骤:
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
(2)写集合写出符合条件P的点M的集合P(M);
(3)列式用坐标表示P(M),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,。

求动点的轨迹方程常用方法

求动点的轨迹方程常用方法

求动点的轨迹方程常用方法动点的轨迹方程是描述动点运动轨迹的数学表达式。

在物理学和数学中,有几种常用方法来求解动点的轨迹方程。

下面将介绍其中的三种常见方法:欧拉-拉格朗日方程、牛顿定律和分离变量法。

一、欧拉-拉格朗日方程欧拉-拉格朗日方程是描述一般运动的最基本方式之一、它可以用来求解多自由度系统的运动方程,从而推导出动点的轨迹方程。

其步骤如下:1.确定系统的广义坐标和广义速度。

广义坐标是用来描述系统状态的独立变量,广义速度是广义坐标对时间的导数。

2.编写拉格朗日函数。

拉格朗日函数是系统动能和势能的差值,可以表示为L=T-V,其中T是系统的动能,V是系统的势能。

3.根据拉格朗日函数,得出欧拉-拉格朗日方程。

欧拉-拉格朗日方程可以用拉格朗日函数对广义坐标求导的形式表示。

4.解方程得到广义坐标的函数形式,即为动点的轨迹方程。

二、牛顿定律牛顿定律是经典力学中最为基础的定律之一、使用牛顿定律可以求解物体的运动轨迹。

其步骤如下:1.描述物体所受的外力。

外力是物体运动的原因,可以是引力、摩擦力等。

2.应用牛顿第二定律,F=m*a。

其中F是物体所受合力,m是物体的质量,a是物体的加速度。

应用力的平衡条件和牛顿第二定律可以得到物体的运动方程。

3.解运动方程得到物体的位置关于时间的函数形式,即为动点的轨迹方程。

三、分离变量法分离变量法是微分方程的一种常见解法,可以用来求解一类特殊的微分方程,即可分离变量的微分方程。

其步骤如下:1.根据动点的运动特征,列出微分方程。

微分方程应符合动点的运动规律。

2.将微分方程化为可分离变量的形式。

对微分方程进行代数运算,将未知函数和变量分离。

3.对方程两边进行积分,得到物体位置关于时间的函数形式,即为动点的轨迹方程。

这三种方法是求解动点轨迹方程的常用方法。

根据具体情况选择适合的方法可以更高效地求解出动点的轨迹方程。

例谈求动点轨迹方程的几种方法

例谈求动点轨迹方程的几种方法

例谈求动点轨迹方程的几种方法求动点的轨迹方程问题是高考的热点问题,难度较大,根据近几年全国卷的相关题目的得分情况开看,得分率普遍较低.求动点轨迹方程的关键是要仔细审题,分析已知条件和动点轨迹的特点,然后将动点满足的条件用动点坐标来表示,化简要注意等价变形,并要考虑一些特殊点是否适合方程.求动点的轨迹方程的一般步骤:在平面直角坐标系中,设动点,根据题目条件,得出横坐标x与纵坐标y的关系式,即为动点的轨迹方程.简化来说,核心步骤是建系、设点、列式、代人、化简、检验.一、待定系数法当已知曲线的形状时,利用待定系数法,设出曲线方程,根据已知条件,求出未知数.此类题目一般比较简单.例1.与椭圆共焦点,且过点的双曲线方程为()A. B. C. D.【解析】由题得椭圆的焦点为,所以双曲线的焦点为,设双曲线的方程为,所以,解之得所以双曲线的方程为 .故选:B.【答案】B.二、定义法定义法往往是根据课本中椭圆、双曲线与抛物线的定义,需要利用数形结合思想,挖掘位置关系,研究动点满足的几何特征,从题目的已知条件中提取出相关定义进行求解.例2.动圆M与圆外切,与圆内切,则动圆圆心M的轨迹方程是__________.【来源】安徽省淮南市2019-2020学年高二上学期期末数学(文)试题【解析】设动圆的圆心为:,半径为,动圆与圆外切,与圆内切,所以,,,因此该动圆是以原点为中心,焦点在轴上的椭圆,且,,解得,∴,椭圆的方程为: .【答案】.名师点拨:如果动圆与两个相互内含的定圆的位置关系为一个内切,一个外切,那么动圆圆心的轨迹为椭圆.同样可得:1.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与某一个外切,某一个内切,那么动圆的圆心的轨迹为双曲线;2.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与圆M外切,与圆N内切(与圆M内切,与圆N外切),那么动圆的圆心的轨迹为双曲线的一支;3.如果动圆与两个相离的定圆的位置关系为同时外切或内切,那么动圆的圆心的轨迹为双曲线的一支.4.如果动圆与一个定圆和一条直线同时相切(直线与定圆不相切),那么动圆的圆心的轨迹为抛物线;5.如果动圆与一个定圆和一条直线同时相切(直线与定圆相切),那么动圆的圆心的轨迹为抛物线或一条射线.三、直译法根据题意中动点的几何关系,将其转化为动点坐标的关系式,化简后即为动点P的轨迹方程,在将关系式进行变形和化简的过程中,一定要注意是否等价.例3..动点与定点的距离和它到定直线的距离的比是,则动点的轨迹方程是___________.【来源】广东省阳江市第三中学2019-2020学年高二上学期第二次月考试题【解析】设,则,化简得: .【答案】 .名师点拨:已知平面内某动点P到定点F的距离与到定直线l的距离之比为e,当时,动点P的轨迹为椭圆;当时,动点P的轨迹为双曲线;当时,动点P的轨迹为抛物线.此为圆锥曲线的第二定义.例4.已知两点、,直线、相交于点,且这两条直线的斜率之积为,则点的轨迹方程为________.【来源】河南省南阳市第一中学2019-2020学年高二上学期第四次月考数学(理)试题【解析】设点,由直线、的斜率之积为,整理得,即,因此,点的轨迹方程为 .【答案】 .名师点拨:已知平面内某动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为椭圆;动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为抛物线.此为圆锥曲线的第三定义.四、相关点法(涉及点差)根据题目中的条件,无法直接列出动点的相关关系式,但是所研究的动点本身不是主动运动,而是受另一动点运动的牵制,即动点是随着另一相关点的运动而运动,一般需要将两个点的坐标都设出来,用动点的坐标表示相关点的坐标,代入相关点所满足的等式,便可得到动点的轨迹方程.例5.已知椭圆的左右焦点为、,点为椭圆上任意一点,过作的外角平分线的垂线,垂足为点,过点作轴的垂线,垂足为,线段的中点为,则点的轨迹方程为___________.【来源】邯郸市大名一中2020-2021学年高二上学期10月月考题【解析】如图,延长交的延长线于,连接.因为为的平分线且,故为等腰三角形且,,所以 .在中,因为,所以,故的轨迹方程为: .令,,则,因为线段的中点为,所以,所以,即 .【答案】 .五、参数法有些题目很难直接找出动点的横、纵坐标,如果中间借助中间参数,如斜率、变角等,可以很容易地使动点的横、纵坐标之间建立联系,消去参数,即得动点的轨迹方程.消参时一定要注意参数的取值范围对方程中的x和y的范围的影响.例6.平面直角坐标系中,已知两点,,若点满足(为原点),其中,且,则点的轨迹是()A.直线 B.椭圆 C.圆 D.双曲线【来源】陕西省渭南市临渭区2019-2020学年高一下学期期末数学试题【解析】设,则,解得:,,,整理得:,点的轨迹是直线.【答案】A.六、交轨法如果动点是两条动曲线的交点,即动点的坐标同时满足两条曲线方程,选出一个适当的参数,求出两条动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程,需注意动点的取值范围.例7.已知过点的直线与相交于点,过点的直线与相交于点,若直线与圆相切,则直线与的交点的轨迹方程为__________.【来源】江苏省南通市如皋中学2020届高三创新班下学期高考冲刺模拟(三)数学试题【解析】设直线AC,BD的斜率分别为,则直线AC,BD的方程分别为:,据此可得:,则:,直线CD的方程为:,整理可得:,直线与圆相切,则:,据此可得:,由于:,两式相乘可得:,即直线与的交点的轨迹方程为 .名师点拨:求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形,消参的途径灵活多变;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.注明:本文系2021年度河南省基础教育教学研究项目《新课标下数学思想方法在高中物理中的应用与研究》(课题编号JCJYB210609028)的研究成果。

求动点轨迹方程的常用方法

求动点轨迹方程的常用方法

参考答案:x2

y2

4(
7 2

x

4)
求动点轨迹方程方法:
1.直接法:是通法,适用性强,但要尽量避免复杂计算.
2.定义法:要准确判断轨迹形状.
3.代入法:要有双动点和已知其一动点轨迹方程.
4.向量法:要能找到垂直或平行的动向量.
5.参数法:已知特殊曲线方程.
相应习题
1.动点P到定点(-1,0)的距离与到点(1,0)距离之差为2,则 P点的轨迹方程是____y_=_0_(_x_≥_1_)___.
弦OA的中点M的轨迹方程.
yA M
O C(1,0)
方法二 定义法(公式法):先判断并证明轨 迹形状,再根据特殊曲线定义写出方程.
由垂径定理可知: CM OA x OMC为直角三角形
直角顶点M的轨迹为以斜边
OC为直径的圆.
圆的圆心为OC的中点(
1 2
,0),
半径
r

1 2
|
OC
|
1 2
2


x0 y0

2x 2y
由于点A在圆C上, 则 (x0 1)2 y02 1
(2x 1)2 (2y)2 1

(x

1 2
)
2

y2

1 4
所求轨迹方程为:(x
-
1 2
)2

y2

1 4
(舍去原点(0,0))
例:已知圆C的方程为: (x -1)2 y2 1,过原点O作任一弦OA,求

x

0 xA 2
y

0 ya 2
1cos 2 sin 2

关于求动点轨迹方程的方法

关于求动点轨迹方程的方法

关于求动点轨迹方程的方法求动点轨迹方程是几何学中的一个重要概念,也是物理学和工程学中的基础知识。

轨迹可以指遵循一定运动规律的物体的路径,它在平面几何中所得出的方程成为轨迹方程。

在这篇文章中,我们将会讨论求动点轨迹方程的几种方法。

方法一:向量法向量法是一种基于向量的方法,它可以帮助我们求出动点的轨迹方程。

向量法基于向量的基本原则:方向和大小。

对于一个动点,我们可以将它的位置表示为(x,y),为了简化计算,我们可以将动点的初始位置设为(0,0),并且我们可以将它的速度表示为一个向量:v = (u,v)其中u表示在x轴方向的速度,v表示在y轴方向的速度。

那么,动点在t秒后的位置可以表示为:(x,y) = tv将v代入公式中得到:x = ut,y = vt因此,动点的轨迹方程为:y = (v/u)x这就是动点的轨迹方程,其中u和v分别代表在x轴和y轴上的速度。

方法二:参数式方程法参数式方程法基于参数方程的原理,它可以将动点的位置表示为变量的函数。

为了得到动点的轨迹方程,我们可以选择一个常量t作为时间变量,并且确定一个运动规律。

我们可以将动点的位置表示为:(x,y) = (f(t),g(t))其中f(t)和g(t)是在t时刻动点在x轴和y轴上的位置函数。

通过选择适当的函数,我们可以确定动点的运动规律并得到它的轨迹方程。

例如,如果我们选择f(t) = sin(t),g(t) = cos(t),可以得到一个美丽的圆形轨迹。

在参数式方程法中,我们可以使用任何函数来表示动点的位置,因此,这种方法非常灵活。

方法三:微积分法微积分法是一个重要的数学工具,它可以用来求取动点的轨迹方程。

微积分法基于对动点位置的导数以及运动规律的理解。

我们可以将动点在直角坐标系上的位置表示为(x,y),由于动点在运动,它的位置会随着时间变化,因此x和y都是关于时间变量t的函数。

我们可以将它们分别表示为:x = f(t), y = g(t)现在我们可以计算位置的导数,得到:dx/dt = f'(t), dy/dt = g'(t)由于动点的速度v可以表示为:v = (dx/dt,dy/dt)因此,我们可以用这个速度来计算动点在任意时刻的运动规律和位置。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点轨迹方程的常见求法湖南省临澧县第一中学 朱福文 胡鸥 415200一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。

例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。

求椭圆和双曲线的方程。

解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22b y = 1,双曲线的方程为22mx -22n y = 1。

2c = 213 , ∴c = 13 .a – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。

二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。

它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。

例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。

解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图:则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2α 3-x y = K PB = tg(π-2α) = - tg2α=αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。

三、曲线定义法;若动点轨迹直接符合已知圆锥曲线定义,则可直接利用定义写出其方程。

例3、已知定点A(0, 7), B(0, -7), F 1(12, 2),以F 1为一个焦点,作过AB 的椭圆,求另一个焦点F 2的轨迹。

解:根据椭圆的定义,1AF + 2AF = 1BF + 2BF ,但1AF =13,1BF = 15, 故得2AF +13 = 2BF +15,即A F 2-B F 2 = 2根据定义,动点F 2的轨迹是以A 、B 为焦点,实轴长2a = 2的双曲线的下支, A F 2 > B F 2 ,其轨迹方程为:y 2-482x = 1 (y ≤ -1) 四、几何性质法;根据动点所满足的平面几何性质得到等量关系求出其轨迹方程。

例4、已知圆O :x 2 + y 2= 16及点A(2, 0),求过A 且与圆O 相切的诸圆圆心P 的轨迹方程。

解:如右图:过A 且与圆O 相切的圆,只能与圆O 相内切,根据两圆相内切的性质:连心线必过其切点,设切点为M ,则O 、P 、M 共线, ∴OM = OP + PM 。

又因为A 在圆P 上,∴PM = PA 。

∴OP + PA =OM = 4。

故P 的轨迹是以O 、A 为焦点,长轴长为OM = 4的椭圆。

故 P 的轨迹方程:4)12-x (+32y = 1。

五、相关点法;若动点P(x, y)依赖于某已知曲线上的另一个动点P 1(x 1,y 1)而运动,且x 1, y 1可用x, y表示,则将P 1(x 1,y 1)代入已知曲线,求出P 点的轨迹方程。

此法也称代入法或转移法。

例5、定点A(3,0)为圆x 2 + y 2 = 1外一定点,P 为圆上任一点,(除出圆与x 轴的交点), ∠POA的平分线交PA 于点Q, 求出Q 点的轨迹方程。

解:如右图:设Q(x,y) , P(x o ,y o ) ,由于OQ 平分∠POA ,则有:λ=QP AQ =OP OA =3 ,即Q 分AP 的比为3,由定比分点公式得:{313331300++=+=x x y y 解得{x x y y 343400== 代入x 2 + y 2= 1(x -43)2 + y 2 = 169 。

六、复数法;利用复数的几何意义,把动点的运动看成是复数对应的向量的旋转与模的伸长与缩短而得出所求的轨迹方程。

例6、已知椭圆92x +52y = 1的右焦点为F ,B 为椭圆上的动点,ΔFAB 为正三角形,且F 、A 、B 为逆时针方向排序,求出A 点的轨迹方程。

解:设椭圆上任意一点所对应的复数是Z B ,依题意复数满足方程:2+B Z + 2-B Z = 6。

设点A 所对应的复数是Z ,因为F 、A 、B 为逆时针方向排序,ΔFAB 为正三角形,所以向量FB 可由向量FA 沿逆时针方向旋转3π而得到。

∴Z B -2 = (Z – 2)(cos 3π + isin 3π) ① y Z B + 2 =21(1 + 3)(Z -23i) ② 对①、②两式分别取模后相加得:2-Z + i Z 32- = 2+B Z + 2-B Z = 6故A 点的轨迹的复数方程为:2-Z + i Z 32- = 6。

七、引参消参法;若题目出现当动点运动所受限制条件较多,不易直接建立x 、y 的某种联系,但且发现x 、y 同时受到另外一个变量t (如角度、斜率、截距等)的制约而将它们用t 表示,然后通过消去变量t 而得到所要求的动点的轨迹方程f(x, y)=0。

例7、过点M(-2, 0)作直线L 交双曲线x 2-y 2 = 1于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB 。

求动点P 的轨迹方程。

解:设过M 的直线方程为: y = k (x + 2) (k ≠0,k ≠±1),代入双曲线x 2-y 2 = 1得:(1- k 2)x 2-4 k 2x -4 k 2-1 = 0 OAPB 为平行四边形,则:x P = x A + x B = 2214kk - ; y y P = y A + y B = k (x A + x B消去k 得x P 2-y P 2当L ⊥x 轴时,P 点坐标为(-4,0)上述方程。

而由k ≠0,得x P ≠0。

故所求的轨迹方程为:x 2-y 2+ 4x = 0 (x ≠0)。

八、交轨法;它常常适用于出现需求两曲线交点的轨迹方程问题 ,解此类问题往往需借助解方程组得出含有某参数的交点坐标,再消去参数而得到所求动点的轨迹方程。

例8、已知椭圆22a x +22by = 1(a>b>0)和定点A(0, b), B(0, -b), C 是椭圆上的动点, 求ΔABC 的垂心H 的轨迹方程。

解:设椭圆上C 点(acos θ, bsin θ),又A(0, b)、B(0, -b)。

∴AC 边的高线的方程为:y = x b b a θθsin cos --b , 而AB 边的高线的方程为:y = bsin θ ,设H(x, y),则点H 适合{b x b b a y b y --==θθθsin cos sin 即⎪⎩⎪⎨⎧==θθcos sin 2a b x b y ,由cos 2θ + sin 2θ = 1得242a b x +22by = 1。

又点C 不能与A 、B 重合,所以y ≠±b 。

故所求的轨迹方程为:242a b x +22by = 1 (x ≠0)。

九、极坐标法;根据题意建立极坐标系,引入动点的极坐标,寻找动点变量间的等量关系而求出动点轨迹的极坐标方程,再化极坐标方程为普通方程。

例9、已知∠AOB =2α(0 <α <2π),其内一动点P,从点P 向角的两边分别作垂线PQ 、PR ,且四边形OQPR 的面积为定值a 2,求动点P 的轨迹方程。

解:以O 点为极点,∠AOB 的平分线为极轴建立极坐标系,设P(ρ,θ) ∴OR = ρcos(θ+α) , PR = ρsin(θ+α),OQ = ρcos(α-θ) , PR = ρsin(α-θ) ∴21ρ2sin(θ+α)cos(θ+α21ρ2 sin(α-θ) cos(α-θ) = a 2 即41ρ2[ sin2(θ+α) + sin2(α-θ)] = a 2 A ∴21ρ2 sin2α cos2θ = a 2 ∴ρ2 cos2θ = α2sin 22a 即动点P 的轨迹方程为:x 2-y 2= 2a 2csc2α (在∠AOB 的内部的一段)。

十、向量法;利用向量具有几何和代数形式的双重属性来探求解析几何轨迹问题也是常见的方法之一.例10 、两根杆分别绕着定点A 和B (AB = 2a) 在平面内转动,并且转动时两杆保持相互垂直,求两杆交点的轨迹方程.解:建立坐标系如右图:设点P 的坐标为(x , y), 则AP = (x+a , y) , BP = (x -AP ⊥BP∴·= (x+a)(x -a) + y 2即所求的轨迹方程为:x2+ y2= a2(x ≠±a) ..。

相关文档
最新文档