一次函数与图形变换

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与图形变换(含答案)

1.(2011•苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b 的值为()A.3 B. C.4 D.

1 2 3

2.(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC 绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.

3.(2013•湖州)如图,已知点A是第一象限内横坐标为2的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.

4.(2013•义乌市)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.

(1)若点B在线段AC上,且S1=S2,则B点坐标为;

(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为.

4 5

5.(2011•深圳)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.

6.(2011•攀枝花)如图,已知直线l1:与直线l2:y=﹣2x+16相交于点C,直线l1、l2分别交x轴于A、B

两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:

S△ABC=.

6 7

7.(2007•南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使

点B恰好落在x轴上的点D处,则点C的坐标是.

8.(2015•黑龙江)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC >BC.

(1)求直线BD的解析式;

(2)求△OFH的面积;

(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形若存在,请直接写出点N的坐标;若不存在,请说明理由.

9.(2014•新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的

速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).

(1)写出A,B两点的坐标;

(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大

(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.

10.(2013•泉州)如图,直线y=﹣x+2分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC上的动点.(1)求∠ABC的大小;

(2)求点P的坐标,使∠APO=30°;

(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变若不变,指出点P的个数有几个若改变,指出点P的个数情况,并简要说明理由.

11.(2013•牡丹江)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=,

(1)求B、C两点的坐标;

(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;

(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形若存在,请直接写出点N的坐标;若不存在,请说明理由.

12.(2010•双流县)如图,一次函数的图象与x轴、y轴分别交于A、B两点,且A、B两点的坐标分别为(4,0),(0,3).

(1)求一次函数的表达式.

(2)点C在线段OA上,沿BC将△OBC翻折,O点恰好落在AB上的D处,求直线BC的表达式.

13.(2011•黑龙江)如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2﹣6x+8=0的两个根(OA<OB),点C在y轴上,且OA:AC=2:5,直线CD垂直于直线AB于点P,交x轴于点D.

(1)求出点A、点B的坐标.

(2)请求出直线CD的解析式.

(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形若存在,请直接写出点M的坐标;若不存在,请说明理由.

14.(2013•济南)如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.

(1)求直线BD的函数表达式;

(2)求线段OF的长;

(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.

答案

1.(2011•苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b 的值为()

A.3 B. C.4 D.

【考点】一次函数综合题.

【专题】综合题;压轴题.

【分析】根据三角函数求出点B的坐标,代入直线y=x+b(b>0),即可求得b的值.

【解答】解:由直线y=x+b(b>0),可知∠1=45°,

∵∠α=75°,

∴∠ABO=180°﹣45°﹣75°=60°,

相关文档
最新文档