圆柱的体积练习题
圆柱的体积练习题(1)
底面积:
半径:
3.14×(10÷2)²=78.5(㎝²) 12.56÷3.14÷2=2(㎝)
体积:
底面积:
78.5×6=471(㎝³)
3.14×2²=12.56(㎝²)
体积:
12.56×12=150.72(㎝³)
三、应用题。 1、一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方 厘米?
2分米=20厘米 3.14×(16÷2)²×20=4019.2(㎝³)
2、一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方 厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)
体积:3.14×(10÷2)²×60=4710(㎝³)
质量:4710×7.8=36738g=36.738kg≈36.7kg
3、一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大 约可装水多少千克?(1立方分米水重1千克)
3.14×1.5²×3=21.195dm² =21.195kg
4、有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱 体,应削多少体积的木头?
正方体体积:10×10×10=1000(㎝³) 圆柱体积:3.14×(10÷2)²×10=785(㎝³) 削去体积:1000-785=215(㎝³)
下图的杯子能不能装下这袋牛奶?(数据是从杯子里 面测量得到的。)
侧面展开后恰好是正方形说明圆柱的底面周长和高相等。 r=37.68÷3.14÷2=6(厘米) V=3.14×6²×37.68=4259.3472(立方, 80%x=16 X=20
杯子容积:3.14×(8÷2)²×20=1004.8㎝²=1004.8mL
7、把一根长 1.5 米的圆柱形钢材截成三段后,如图,表面积比原 来增加 9.6 平方分米,这根钢材原来的体积是多少?
六年级数学圆柱体积练习题(附答案)
六年级数学圆柱体积练习题(附答案)1、填空。
1)一个圆柱体,底面周长是125.6厘米,高是12厘米,它的侧面积是()平方厘米。
答案:377.6平方厘米。
2)一个圆柱体,底面半径是3厘米,高是5厘米,它的侧面积是()平方厘米,表面积是()平方厘米。
答案:侧面积约为94.2平方厘米,表面积约为150.8平方厘米。
3)把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
答案:40平方分米。
4)一个圆柱体,底面半径是3厘米,高是15厘米,它的表面积是()平方厘米。
答案:226.08平方厘米。
5)一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积()。
答案:相等。
6)一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是()立方厘米。
答案:2000立方厘米。
7)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米。
答案:6立方厘米。
8)一个圆柱和一个圆锥的体积和底面积相等,圆锥的高是9厘米,圆柱的高是()厘米。
答案:18厘米。
9)圆锥的底面半径是2厘米,体积是6.28厘米,这个圆锥的高是()厘米。
答案:5厘米。
10)一个棱长是4分米的正方体装满水后,倒入一个底面积是12平方分米的圆锥体里正好装满,这个圆锥体的高是()分米。
答案:10分米。
11)把圆柱体的侧面展开,得到一个矩形,它的长等于圆柱底面周长,宽等于圆柱的高.12)一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米.答案:1884平方厘米。
13)一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米.答案:24π平方厘米。
14)一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米.答案:2厘米。
15)把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.答案:40平方分米。
16)把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.答案:30.8平方分米。
北师大版六年级数学下册《圆柱的体积》课时练习题(含答案)
北师大版六年级数学下册《1.3圆柱的体积》课时练习题(含答案)一、填空题1.一个圆柱的底面积是215cm,高是8cm,这个圆柱的体积是( )3cm。
2.一个圆柱的底面积是30平方厘米,高是3厘米,这个圆柱的体积是( )立方厘米。
3.一块棱长4分米的正方体木料,若削成一个最大的圆柱,这个圆柱的表面积是( )平方分米,削去部分的体积是( )立方分米。
4.一个圆柱形油桶,从里面量底面直径是10分米,装满了油,把桶里的油倒出25,还剩942升,油桶的高是( )分米。
5.如图所示,把底面半径是4厘米,高是20厘米的圆柱切成若干等份,拼成一个近似的长方体。
这个近似长方体的长是( )厘米,宽是( )厘米,高是( )厘米,底面积是( )平方厘米,体积是( )立方厘米。
二、判断题6.表面积相等的两个圆柱,它们的体积不一定相等。
( )7.两个圆柱的体积相等,那么它们的表面积也相等。
( )8.等底等高的圆柱和圆锥,它们的体积比为3∶1。
( )9.底面积相等的长方体、正方体、圆柱,它们的体积相等。
( )10.拿出两张长16厘米、宽4厘米的长方形纸,一张横着卷成圆柱形,另一张竖着卷成圆柱形,两个圆柱的体积一样大。
( )三、选择题11.把一根6米长的圆柱截成4小段后,表面积增加了48平方厘米,问原来这个圆柱的体积是()立方厘米。
A.36 B.3600 C.48 D.480012.一个圆柱形容器,从里面量底面周长是62.8cm,高是5cm,这个玻璃容器的容积是()毫升。
A.1256 B.1570 C.1884 D.314013.在长0.6米的圆柱形钢柱上,用一根长314厘米的铁丝正好沿钢柱绕一圈,这根钢柱的体积是()立方分米。
A.47.1 B.471 C.4710 D.188414.把一根长20分米的圆柱形木头沿横截面截成5段小圆柱形木头后,表面积比原来增加了80平方分米。
这根圆柱形木头的体积是()立方分米。
A.200 B.180 C.150 D.10015.你听过木桶效应吗?组成木桶的木板如果长短不齐,那么这只木桶的盛水量,不取决于最长的那一块木板,而是取决于最短的。
(完整版)圆柱的体积练习题(最新整理)
圆柱的体积练习题1、填表圆柱底面高半径直径周长表面积体积5米4米1.5米2(单位:厘米)3、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?5、计算下面各圆柱体的体积。
A、底面积是1.25平方米,高3米。
B、底面直径和高都是8分米。
C、底面半径和高都是8分米。
D、底面周长是12.56米,高2米。
6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0.82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢管长250厘米,求这根钢管的体积是多少立方厘米?圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。
2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如果1升柴油重0.85千克,这具油桶可装柴油多少千克?(得数保留整千克)6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)7、下图是一个长15厘米,宽6厘米、高15厘米的长方体钢制机器零件,中间有一个底面半径为5求这个零件的体积。
圆柱体体积练习题
圆柱体积练习题班级姓名一、填空:1.把一个底面直径和高都是2分米的圆柱体切开拼成一个近似的(),这个长方体底面的长约是(),宽约(),高是(),底面面积约是(),体积约是()。
2.一个圆柱的底面面积是25平方厘米,高是10分米,它的体积是()。
3.一个圆柱的体积是314立方分米,它的底面面积是平方分米,它的高是()。
4.一个圆柱的底面半径扩大2倍,高不变,它的底面积(),侧面积(),体积();一个圆柱的底面半径扩大2倍,高也扩大2倍,它的底面积(),侧面积(),体积();一个圆柱的底面半径扩大2倍,高扩大3倍,它的底面积(),侧面积(),体积()。
5.一个圆柱的底面半径为4厘米,侧面展开后正好是一个正方形,这个圆柱的体积是()。
6.一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面半径是(),高为()的()体,它的体积是()。
7.把一根长2米的圆木,截成两段后表面积增加了48平方厘米,这根圆木原来的体积是()。
8.一个底面半径为2厘米,高为4厘米的圆柱,侧面积是(),表面积是(),体积是()。
9.底面周长和高分别相等的圆柱和长方体,体积相比较,()的体积较大。
10.把4段底面周长相等的圆柱钢材焊接成一个圆柱,减少的底面有()个。
11.一个圆柱形油桶,从桶内量得底面直径是20分米,高是20分米,这个油桶的体积是(),容积是()。
12.立方米=()立方分米=()升85000毫升=()升=()立方分米1500立方厘米=()毫升=()升13.两个圆柱的高相等,底面周长的比是2:5,则体积之比是()。
14.两个圆柱的高相等,底面半径的比是2:3,则体积之比是()。
15.一个油桶的体积()它自身的容积。
16.一个圆柱的底面周长是314米,高是10分米,它的底面积是(),侧面积是(),表面积是(),体积是()。
二、判断题:1.圆柱的底面积越大,体积越大。
()2.把正方体木块削成一个最大的圆柱,则此圆柱的直径与高相等。
圆柱体积计算练习题
柱的外表和体积的计算练习题1. 一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?2. 一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?3.一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?4.一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?5.把一根长1.5米的圆柱形钢材截成三段后,如图,外表积比原来增加9.6平方分米,这根钢材原来的体积是多少?6.把一段长20分米的圆柱形木头沿着底面直径劈开,外表积增加80平方分米,原来这段圆柱形木头的外表积是多少?7砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?8一个圆柱高减少3厘米,外表积就减少28.26平方厘米,求现在的圆柱的体积和外表积9〔1〕一只铁皮水桶能装水多少升是求水桶的〔侧面积、外表积、容积、体积〕〔2〕做一只圆柱体的油桶,至少要用多少铁皮是求油桶的〔侧面积、外表积、容积、体积〕〔3〕做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的〔侧面积、外表积、容积、体积〕〔4〕求一段圆柱形钢条有多少立方米,是求它的〔侧面积、外表积、容积、体积〕10、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?*(7.5)11、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?12、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?13、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?14、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥局部的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)15、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?(得数用进一法保存整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保存整千克数)16、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,外表积比原来增加了多少平方厘米?17、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
六年级上册圆柱的体积练习题
六年级上册圆柱的体积练习题圆柱的体积计算是六年级数学上一个重要的知识点,通过练习题可以巩固对圆柱体积的理解和计算能力。
本文将为您提供一些六年级上册关于圆柱的体积练习题,希望对您的学习有所帮助。
练习题1:小明拿到了一根高度为10cm的圆柱体雪糕,底部半径为2cm。
请问这根雪糕的体积是多少?解答:根据圆柱体积的计算公式V=πr²h,其中V代表体积,r代表圆柱底面半径,h代表圆柱体的高度。
将题目中给出的数值代入公式中,即可计算出体积。
V = π × 2² × 10 = 40π cm³(约125.66 cm³)练习题2:有一个圆柱,底部半径为5cm,高度为12cm。
请计算该圆柱的体积。
解答:同样使用圆柱体积公式V=πr²h进行计算。
V = π × 5² × 12 = 300π cm³(约942.48 cm³)练习题3:小华拿到了一块蛋糕,形状看起来像一个圆柱体,底部直径为8cm,高度为6cm。
请帮他计算蛋糕的体积。
解答:根据题目的描述,底部直径为8cm,即底部半径r为4cm。
将数据代入圆柱体积公式进行计算。
V = π × 4² × 6 = 96π cm³(约301.71 cm³)练习题4:一个圆柱体的底部半径为3cm,体积为226π cm³。
请问这个圆柱体的高度是多少?解答:根据已知数据和圆柱体积公式进行计算。
226π = π × 3² × h解方程后可得:h = 226 / (9π) ≈ 8 cm通过以上的练习题,我们可以巩固对圆柱的体积计算方法的理解。
希望这些题目能够帮助您提高对圆柱体积计算的熟练度,加深对数学知识的理解。
如果您还有其他关于圆柱体积的问题,欢迎继续提问或探讨。
祝您学习进步!。
2022-2023学年人教版数学六年级下册圆柱的体积练习题(含答案)
【分析】等底等高圆锥体积是圆柱体积的 ;也就是圆柱体积是圆锥体积的3倍;再用圆柱的体积减去圆锥的体积,剩下的就是削去部分的体积,再用削去部分的体积除以圆锥的体积,把圆柱的体积看作是3,则圆锥体积是1;即可解答。
【详解】(3-1)÷1
=2÷1
=2
把一个圆柱形木料削成一个最大的圆锥,圆锥的体积是圆柱的 ,消去部分是圆锥体积的2倍。
=50.868(平方米)
50.868×128=6511.104(元)
答:贴瓷砖的面积是50.868平方米,需要购买6511.104元的瓷砖。
【点睛】本题考查了圆柱相关的应用题,这个水池相当于没有上面底面的圆柱。
17.不相同,一个体积是50.24立方厘米,另一个体积是100.48立方厘米。
【分析】以这个长方形的长为轴旋转得到的圆柱底面半径是2厘米、高是4厘米,以这个长方形的宽为轴旋转得到的圆柱底面半径是4厘米、高是2厘米,根据圆柱体积=底面积×高,分别计算出两个圆柱的体积,再比较即可。
【点睛】利用圆柱的认识及特征以及圆柱的体积公式进行解答。
9.30
【分析】把长方体钢材截成两段,表面积会增加2个截面的面积,先用增加的表面积除以2,求出一个截面的面积,再根据公式V=Sh,代入数据计算即可求出这个钢材原来的体积。
【详解】2÷2=1(平方分米)
1×30=30(立方分米)
【点睛】掌握长方体切割的特点,明确增加的表面积是哪些面的面积,以此为突破口,利用公式列式计算。
9.把一根长30分米的长方体钢材截成两段,表面积比原来增加了2平方分米,这个钢材原来的体积是( )立方分米。
10.把一个圆柱形木料削成一个最大的圆锥,圆锥的体积是圆柱的( ),削去部分是圆锥体积的( )。
圆柱体积计算练习题
圆柱体积计算练习题
圆柱体积计算是数学中常见的一个题型,它是一种基本的几何
计算题。
在这篇文章中,我们将介绍如何计算圆柱的体积,并提供
一些练习题供大家练习。
一、圆柱的定义与公式
圆柱是一个有两个平行且相等的底面的几何体。
底面是两个相
等的圆,它们之间的距离是柱的高度。
圆柱的体积是指其底面积乘
以高度。
圆柱的体积计算公式如下:
V = πr^2h
其中,V是圆柱的体积,r是底面圆的半径,h是圆柱的高度,
π是一个常数,近似值为3.1415。
二、练习题
1. 已知一个圆柱的半径r为5cm,高度h为8cm,请计算其体积。
解答:根据圆柱的体积计算公式,将r和h代入公式中,可得
V = π * 5^2 * 8 = 3.1415 * 25 * 8 ≈ 628.32(cm^3)
所以该圆柱的体积约为628.32立方厘米。
2.一个圆柱的体积为1000π立方米,其半径r为10米,请计算其高度h。
解答:根据圆柱的体积计算公式,将V和r代入公式中,可得1000π = π * 10^2 * h
整理化简得
1000 = 100h
解方程得 h = 10(米)
所以该圆柱的高度为10米。
3.若将一个圆柱的底面半径和高度分别扩大为原来的3倍,那么新圆柱的体积是原来的几倍?
解答:设原来的圆柱的底面半径为r,高度为h,新圆柱的底面半径为3r,高度为3h。
根据圆柱的体积计算公式,原来的圆柱体积为V1 = πr^2h,新圆柱的体积为V2 = π(3r)^2(3h)。
五年级圆柱体积练习题
五年级圆柱体积练习题一、填空题1. 圆柱的体积公式是:V = _______ × _______。
2. 一个圆柱的底面半径是5厘米,高是10厘米,它的体积是_______立方厘米。
3. 如果圆柱的底面积是78.5平方厘米,高是10厘米,那么圆柱的体积是_______立方厘米。
4. 要计算圆柱的体积,我们需要知道圆柱的_______和_______。
5. 当圆柱的底面半径增加一倍时,如果高保持不变,体积将变为原来的_______倍。
二、判断题(对的打“√”,错的打“×”)1. 圆柱的体积等于底面积乘以高。
_______2. 如果两个圆柱的高相同,底面半径越大,体积就越小。
_______3. 圆柱的体积和它的侧面积有直接关系。
_______4. 圆柱的底面半径和高都增加一倍时,体积增加四倍。
_______5. 体积相等的两个圆柱,它们的底面积和高一定相等。
_______三、选择题1. 下列哪个公式可以用来计算圆柱的体积?A. V = πr²hB. V = 2πrhC. V = πr² + h2. 一个圆柱的底面直径是10厘米,高是5厘米,它的体积是:A. 78.5立方厘米B. 314立方厘米C. 157立方厘米3. 如果圆柱的底面积是36π平方厘米,高是6厘米,那么圆柱的体积是:A. 216π立方厘米B. 72π立方厘米C. 18π立方厘米4. 两个圆柱体积相等,一个圆柱的底面半径是另一个的两倍,那么它们的高之比是:A. 1:2B. 2:1C. 1:15. 一个圆柱的体积是1000立方厘米,如果高减少到原来的一半,底面半径增加一倍,那么新的体积是:A. 2000立方厘米B. 1000立方厘米C. 500立方厘米四、简答题1. 请解释圆柱体积公式的含义。
2. 如何计算圆柱的体积?3. 如果一个圆柱的体积是500立方厘米,高是10厘米,求圆柱的底面半径。
4. 描述一下,当圆柱的底面半径和高发生变化时,体积会如何变化。
圆柱的体积经典练习题答案
圆柱的体积经典练习题答案圆柱的体积经典练习题答案圆柱是我们生活中常见的几何体之一,它的体积计算是数学中的基础知识。
下面,我将为大家介绍一些圆柱的体积经典练习题及其答案,希望能帮助大家更好地理解和掌握这一知识点。
题目一:一个圆柱的底面半径为5cm,高度为10cm,求它的体积。
解答一:圆柱的体积公式为V = πr²h,其中V表示体积,r表示底面半径,h表示高度。
根据题目中给出的数据,我们可以将其代入公式进行计算。
V = π × 5² × 10 = 250π cm³所以,这个圆柱的体积为250πcm³。
题目二:一个圆柱的体积为1000π cm³,底面半径为8cm,求它的高度。
解答二:同样地,我们可以使用圆柱的体积公式来解答这个问题。
1000π = π × 8² × h化简后得到:h = 1000 / (8²) = 1000 / 64 = 15.625 cm所以,这个圆柱的高度为15.625 cm。
题目三:一个圆柱的体积为400π cm³,底面半径为6cm,求它的侧面积。
解答三:圆柱的侧面积公式为A = 2πrh,其中A表示侧面积,r表示底面半径,h表示高度。
根据题目中给出的数据,我们可以将其代入公式进行计算。
A = 2π × 6 × h = 12πh cm²又已知体积为400π cm³,可以根据体积公式推导出h的表达式:400π = π × 6² × h化简后得到:h = 400 / (6²) = 400 / 36 = 11.111 cm将h的值代入侧面积公式中:A = 12π × 11.111 = 133.333π cm²所以,这个圆柱的侧面积为133.333π cm²。
通过以上三个经典练习题的解答,我们可以看出,圆柱的体积和侧面积的计算都是基于圆柱的底面半径和高度,并且使用了相应的数学公式。
圆柱的表面积和体积练习题
1、把一个高为5厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80平方厘米,求原来圆柱的表面积。
2、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的长是6.28厘米,高是5厘米,求它的体积。
3、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的宽是4厘米,高是5厘米,求它的体积。
4、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4厘米,高是5厘米,求它的体积。
5、一个圆柱的侧面积是125.6平方厘米,半径是8厘米,求它的体积。
6、把一个棱长为4厘米的正方体削成一个最大的圆柱,求削成圆柱的体积。
7、一个长方体木块,长10厘米,宽8厘米,高4厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?8、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方厘米,求原来木料的体积9、一个圆柱高为15厘米,把它的高增加2厘米后表面积增加25.12平方厘米,求原来圆柱的体积。
10、一个圆柱高为20厘米,如果把高减少3厘米,它的表面积就减少31.68平方厘米,求原来圆柱的体积。
11、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的体积。
12、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的高。
1∏= 2∏= 3∏= 4∏= 5∏=6∏=7∏=8∏=9∏=10∏=12∏=14∏=15∏=16∏=18∏=20∏=25∏=1.5的平方∏=2.5的平方∏=圆的周长公式:______________ ______________ ______________ 圆的面积公式:______________圆的侧面积公式:______________圆的表面积公式:______________圆的体积公式:______________长方体的表面积:______________正方体的表面积:______________长方体的体积:______________正方体的体积:______________长度单位:()()()()面积单位:()()()()()体积单位:()()()()()。
(完整版)圆柱体的体积练习题
圆柱体的体积练习题〔一〕1 .把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形, 求这个机件的体积.3 .要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?5 .把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米, 求浇制100节这种管道需要多少混凝土?6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和外表积.7 .做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?〔1立方分米水重1千克〕圆柱体的体积练习题〔二〕1、一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米.这个油桶的容积是多少?2、把一个棱长是6分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?3、一个圆柱体的体积是10立方分米,底面积是2.5平方分米,它的高是多少分米?4、一个圆柱的底面周长是12.56分米,高是3米,它的体积是多少立方分米?5、一根长2米的圆木,截成两段后,外表积增加了24平方厘米,这根圆木原来的体积是多少?6、一个底面直径是6厘米的茶杯里,装有7厘米高的水,放入一块小石头,水面上升到10厘米,这个石头的体积是多少立方厘米?7、把一张长62.8厘米,宽31.4厘米的长方形硬纸片,卷成一个圆柱形纸筒, 它的体积是多少?8、一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的体积是多少立方厘米圆柱体的体积练习题〔三〕1、一个圆柱体汽油桶,从里面量底面半径20厘米、高1米.如果每立方米汽油重0.73千克,这个油桶最多能装汽油多少千克?2、把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?3、将一个棱长为6分米的正方体钢材熔铸成底面半径为3分米的圆柱体,这个圆柱有多长?4、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?5、一个无盖的圆柱形水桶,侧面积是188.4平方分米,底面周长是62.8分米做这个水桶至少要多少平方分米?这个水桶的容积是多少立方分米?6、把一个长、宽、高分别是9cm 7cm 3cm的长方体铁块和一个棱长是5cm的正方体铁块,熔铸成一个圆柱体.这个圆柱体的底面直径是20cm,高是多少厘米?7、将一个圆柱体沿着底面直径切成两个半圆柱,外表积增加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的体积是多少立方厘米?8、用一块长50厘米,宽30厘米的长方形铁皮做圆柱形容器的侧面,再另用一块铁皮做底,怎样做才能使此容器的容积最大?9、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底.这样做成的铁桶的容积最大是多少?圆柱体的体积练习题〔四〕1、一个长方体长7厘米,宽4厘米,高6厘米,把它削成一个体积最大的圆柱体,圆柱体的体积是多少?2、在一只底面半径为20厘米的圆柱形小桶里,有一半径为10厘米的圆柱形钢材浸没在水中.当钢材从桶里取出后,桶里的水下降了3厘米.求这段钢材的长.3、在半径为20厘米的圆柱形储水桶里,有一段截面为正方形的方钢浸没在水中, 正方形的边长是4厘米.当这段方钢从水中取出时,桶里的水面下降了0.5厘米这段方钢长多少厘米?4、一个圆柱形的玻璃杯中盛有水,水面高 2.5cm,玻璃杯内侧的底面积是72平方厘米,在这个杯中放进棱长6cm的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?5、有一种饮料瓶的瓶身呈圆柱形〔不包括瓶颈〕,容积是30分米3.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余局部的高度为5厘米. 瓶内现有饮料多少立方分米?6、把一个底面半径是1厘米的圆柱体侧面展开,得到一个正方形,这个圆柱体的体积是多少立方厘米?7、在一底面半径为30厘米的圆柱形容器内,有一半径为20 H米的圆柱形钢材浸没在水中.当取出钢材之后,水面下降了4厘米.求圆钢的长度.。
圆柱的体积练习题
圆柱的体积练习题圆柱的体积练习题圆柱是我们日常生活中常见的几何体之一,它的形状简单而又美观。
在几何学中,我们经常需要计算圆柱的体积,因此掌握计算圆柱体积的方法是非常重要的。
本文将通过一些练习题来帮助读者巩固对圆柱体积的理解和计算能力。
练习题一:已知圆柱的底面半径为5厘米,高度为10厘米,求其体积。
解析:圆柱的体积公式为V = πr²h,其中V表示体积,π表示圆周率(取近似值3.14),r表示底面半径,h表示高度。
根据题目中给出的数据,代入公式进行计算即可得到答案。
V = 3.14 * 5² * 10 = 3.14 * 25 * 10 = 785立方厘米练习题二:已知圆柱的体积为1000立方米,底面半径为8米,求其高度。
解析:根据圆柱的体积公式V = πr²h,我们可以通过已知的体积和底面半径来求解高度。
将已知的数据代入公式,可以得到关于h的方程式,然后解方程即可求得高度。
1000 = 3.14 * 8² * h解方程可得h = 1000 / (3.14 * 64) ≈ 4.99米练习题三:已知圆柱的体积为200立方厘米,高度为6厘米,求其底面半径。
解析:同样地,我们可以利用圆柱的体积公式来求解底面半径。
将已知的数据代入公式,得到关于r的方程式,然后解方程即可求得底面半径。
200 = 3.14 * r² * 6解方程可得r² = 200 / (3.14 * 6) ≈ 10.17r ≈ √10.17 ≈ 3.19厘米练习题四:已知圆柱的体积为5000立方米,高度为15米,求其底面半径。
解析:同样地,我们可以利用圆柱的体积公式来求解底面半径。
将已知的数据代入公式,得到关于r的方程式,然后解方程即可求得底面半径。
5000 = 3.14 * r² * 15解方程可得r² = 5000 / (3.14 * 15) ≈ 33.56r ≈ √33.56 ≈ 5.8米通过以上练习题,我们可以看到计算圆柱体积的方法是相对简单的,只需要将已知的数据代入体积公式,并进行简单的计算即可得到答案。
圆柱体积计算公式练习题
圆柱体积进阶练习(A)组1.【题文】一个圆柱形铁皮油桶的底面半径为3分米,如果里面的油深2分米,这个油箱里装油()升。
A.18.84 B.37.68 C.56.52【答案】C【解析】根据圆柱形油桶的底面半径为3分米,可以求出油桶的底面积,再运用圆柱的体积公式V=sh求出所装油的容积。
解:3.14×3²×2=56.52(升)2.【题文】一根圆柱形木料长4米,沿横截面切成三段后表面积增加了2.4平方分米,这根木料原来的体积是()立方分米。
A.16B.24C.2.4D.36【答案】B【解析】圆柱形木料截成3段后,表面积比原来增加了4个圆柱的底面积,由此先求出木料的底面积,再利用圆柱的体积公式V=sh,求出木料原来的体积。
解:4米=40分米2.4÷[2×(3-1)]×40=0.6×40=24(立方分米)3.【题文】圆柱的高扩大2倍,底面半径也扩大2倍,圆柱的体积就扩大( )倍。
A.2倍B.4倍C.8倍【答案】C【解析】利用圆柱的体积公式分别求得扩大前、后的体积,再进行比较即可选出正确答案。
解:扩大前的体积:V=πr2h,扩大后的体积:V=π(r×2)2×(h×2)=8πr2h,所以圆柱的体积就扩大了8倍。
4.【题文】如图,一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米,原来圆柱的体积是_____立方厘米。
A.401.92 B.100.48 C.40.96 D.200.96【答案】B【解析】可以通过高增加2厘米,表面积将增加25.12平方厘米,先求出圆柱的半径,然后再运用圆柱的体积公式V=Sh=πr²h,求出原来圆柱的体积。
解:圆柱的底面圆的半径:25.12÷2÷3.14÷2=2(厘米)原来圆柱的体积:3.14×22×8=100.48(立方厘米)5.【题文】一段圆柱形铝合金材料长2.5米,横截面的半径是2厘米,已知每立方厘米的铝合金材料重3克,这段铝合金材料重()千克。
圆柱的体积练习题3.10答案
圆柱的体积练习题3.101.圆柱的底面积越大,它的体积就越大。
(×)2.如果两个圆柱体积相等,它们一定是等底等高。
(×)3.底面积相等的两个圆柱体积相等。
(×)4.两个等高的圆柱,底面积大的那个圆柱体积一定大。
(√)5. 圆柱的体积计算公式是(V= sh=πr²h)6.一个圆柱形水桶,底面积是6m2 高是0.5m,它的体积是多少立方米?V=sh=6×0.5=3(立方米)7. 一个圆柱,底面半径是1厘米,高是5厘米,它的体积是多少立方米?V=sh=πr²h=3.14×1×1×5=15.7(立方厘米)=0.0000157(立方米)8.一个圆柱,底面直径是20厘米,高是10厘米,它的体积是多少立方厘米?r=20÷2=10(厘米)V=sh=πr²h=3.14×10×10×10=3140(立方厘米)9.一个圆柱,底面周长是50.24分米,高是10分米,它的体积是多少立方分米?r=C÷π÷2=50.24÷3.14÷2=8(分米)V=sh=πr²h =3.14×8²×10=2009.6(立方分米)10.把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是多少厘米?体积是多少立方厘米?C=2πr= 2×3.14×5=31.4(厘米)h=C=31.4(厘米)V=sh=πr²h =3.14×5²×31.4=2464.9(立方厘米)11.一个圆柱形木桩,沿直径切开,截面是一个正方形,圆柱底面周长是6.28分米,求圆柱的体积。
d=C÷π=6.28÷3.14=2(分米)r=d÷2=2÷2=1(分米)h=d=2(分米)V=sh=πr²h =3.14×1×1×2=6.28(立方分米)圆柱的表面积练习题 3.1012、底面周长是18.84米,高是5米。
圆柱圆锥的体积练习题
圆柱圆锥的体积练习题圆柱和圆锥是几何学中常见的几何体形状,计算其体积是应用数学中的基本问题之一。
本文将提供几个圆柱和圆锥的体积计算练习题,以帮助读者进一步熟悉并掌握这一概念。
练习题一:计算圆柱的体积一个圆柱的底面半径为4cm,高为10cm。
请计算该圆柱的体积。
解答:圆柱的体积公式为V = πr²h,其中V表示体积,π是一个常数(取近似值3.14),r表示底面半径,h表示高度。
代入给定的数值,我们可以得到V = 3.14 × 4² × 10 = 502.4cm³。
练习题二:计算圆锥的体积一个圆锥的底面半径为6cm,高为12cm。
请计算该圆锥的体积。
解答:圆锥的体积公式也为V = 1/3πr²h,代入给定的数值,可得V = 1/3 × 3.14 × 6² × 12 = 452.16cm³。
练习题三:圆柱与圆锥相等体积已知一个圆柱的底面半径为8cm,高为20cm。
我们想要找到一个圆锥,使其与该圆柱具有相等的体积。
请计算这个等体积圆锥的底面半径和高。
解答:设圆锥的底面半径为r,高为h。
根据题意,圆柱和圆锥的体积相等,即πr²h = 3.14 × 8² × 20。
化简上述等式,得到r²h = 8² × 20,r²h = 1280。
我们还需要另一个方程来解决未知数r和h。
观察圆锥体积公式,我们可以发现圆锥的体积与底面半径的平方和高的乘积有关,即V = 1/3πr²h。
这可以被改写为h = 3V / (πr²)。
代入已知的体积V = 3.14 × 8² × 20,我们可以计算出h = 3 × (3.14 ×8² × 20) / (πr²)。
北师大版六年级数学下册 第一单元 第3课时 圆柱的体积(课时练习题)
北师大版六年级数学下册课时练习第一单元《圆准和圆锥》第3课时圆柱的体积一、填空题1. 一个圆柱的底面半径是3cm,高是5cm,它的侧面积是cm2,表面积是cm2,体积是cm3。
2. 把一限长6m的圆柱体木料锯成等长的两段圆柱体,表面积增加了6.28m2,那么这根圆柱体木料的底面积是m2,锯后每小段木料的体积是m3。
3. 如图所示,把一个高为10厘米的圆柱切成若干等份,拼成一个近似的长方体。
如果这个长方体的底面积是50平方厘米,那么圆柱体积是立方厘米。
4. 一个圆柱形的无盖水桶,从里面量水桶高12dm,底面半径是高的1。
这个水桶可以装水L。
45. 如图,把一个圆柱体的侧面展开,得到一个长3.14分米、宽2分米的长方形,这个圆柱体的侧面积是平方分米,体积是立方分米。
6. 一个圆柱的底面积是15cm2,高是8cm,这个圆柱的体积是cm3。
7. 一根2m长的圆柱形木材,锯成3段小圆柱后,表面积比原来增加了12.56m2,原来这根木材的体积是m3。
8. 把一张长方形的铁皮按图中裁剪,正好可以做成一个圆柱,这个圆柱的体积是立方厘米。
9. 把一个棱长2分米的正方体木料,加工成一个最大的圆柱,这个圆柱体的体积是立方分米。
10. 将一根3米长的圆柱形木料截成3小段圆柱,表面积比原来增加了50.24平方分米,原来的圆柱形木料的体积是立方分米。
二、判断题11. 圆柱的高不变,底面半径扩大到原来的2倍,体积也扩大到原来的2倍。
()12. 圆柱的底面半径一定时,它的体积和高成正比例。
()13. 求圆柱、圆锥、正方体、长方体的体积,都可以用公式V=Sh算。
() 14. 一根圆柱形木料底面直径2dm,高30cm,它的体积是188.4cm3。
() 15. 圆柱的底面半径扩大到原来的10倍,高除以10,则它的体积不变。
() 16. 一个圆柱与圆锥等底等高,圆柱的体积比圆锥多18m3,圆锥的体积是9m3。
()三、单选题17. 妈妈榨了一大杯橙汁招待客人,倒入小杯子中(如图),可以倒满()杯。
圆柱练习题大全
圆柱练习题大全圆柱是几何学中的一个重要概念,常常在数学和物理学的学习中出现。
本文将为大家提供一系列的圆柱练习题,以帮助读者更好地理解和掌握圆柱的相关知识。
练习题一:计算圆柱的体积已知一个圆柱的半径为 r,高度为 h,请计算其体积 V。
解析:圆柱的体积公式为V = πr^2h,其中π 取近似值3.14。
练习题二:计算圆柱的表面积已知一个圆柱的半径为 r,高度为 h,请计算其表面积 S。
解析:圆柱的表面积由三部分组成:底面积、侧面积和顶面积。
底面积为πr^2,侧面积为2πrh,顶面积为πr^2。
因此,圆柱的表面积公式为S = 2πr^2 + 2πrh。
练习题三:已知圆柱的体积求半径已知一个圆柱的体积为 V,高度为 h,请计算其半径 r。
解析:通过圆柱的体积公式V = πr^2h,可以得到半径 r 的计算公式为r = √(V / (πh))。
练习题四:已知圆柱的体积求高度已知一个圆柱的体积为 V,半径为 r,请计算其高度 h。
解析:通过圆柱的体积公式V = πr^2h,可以得到高度 h 的计算公式为h = V / (πr^2)。
练习题五:已知圆柱的表面积求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。
解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于半径 r 的方程,然后求解该方程即可。
练习题六:已知圆柱的表面积求高度已知一个圆柱的表面积为 S,半径为 r,请计算其高度 h。
解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于高度 h 的方程,然后求解该方程即可。
练习题七:已知圆柱的体积和表面积求半径已知一个圆柱的体积为 V,表面积为 S,请计算其半径 r。
解析:根据题意,可以得到两个方程:V = πr^2h 和S = 2πr^2 +2πrh。
将这两个方程联立,然后求解该方程组,即可得到半径 r。
练习题八:已知圆柱的表面积和高度求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册试卷与教案
圆柱的体积练习题
一、填空。
1、一个圆柱体,底面积是12平方分米,高6分米,它的体积是()立方分米。
2、一个圆柱体积是84立方厘米,底面积21平方厘米,高是()。
3、已知圆柱谷桶里底面半径是 3米,高4米,它的底面积是(),容积是()立方米。
二、求下面圆柱的体积
1)底面积0.6平方米,高0.5米 2)底面半径4厘米,高12厘米
3)底面直径5分米,高6分米 4)底面周长12.56厘米,高12厘米
三、应用题。
1、一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?
2、一段圆柱形的钢材。
长60厘米。
横截面直径10厘米。
每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)
3、一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)
4、有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱体,应削多少体积的木头?
5、一只圆柱形水桶,底面半径是0.2米,高0.5米,装了桶水,问桶中有水多少升?
6、一只圆柱形的玻璃杯,测得内直径是8厘米,内装药水的深度是16厘米,正好占杯内容积的80%,这个杯的容积是多少毫升?。