利用轴对称性质求几何最值

合集下载

初中数学中利用轴对称性求最值问题例析_王水友

初中数学中利用轴对称性求最值问题例析_王水友

段两端的距离相等知,PA=PD,所以求 PC+PD 的最
小值就转化为求 PC+PA 的最小值,即求 AC 的长度
即可。
例 2 已知抛物线
y
y =ax2 + c 经 过 A (0,1), P(2姨 3 ,-3)。
(1) 求 抛 物 线 的 解 析 式 并 判 定 C( 姨 3 ,0) 是否在此抛物线上;
A
D
C
O
x
M
P
(2) 点 M 是 抛 物 线
对称轴上的动点,连 MP、MC,试 求△PCM 周 长 的 最
小值。
【分析】 此题第二问是二次函数中利用轴对称
性求三角形周长的最小值问题 。由于 PC 的长度 保
持不变,要使△PCM 的周长最小,只要使 CM+MP的
值最小即可,这样问题就转化成例 1 的类型。
和点 B(2,1)。 (1) 求 此 抛 物 线 解
析式; (2) 点 C、D 分别是
x 轴和 y 轴上的动点, 求 四 边 形 ABCD 的 周 长的最小值。
y A′(-1,3)
D
A(1,3)
B(2,1)
E
C
x
B′(2,-1)
(3) 过 点 B 作 x 轴 的 垂 线 ,垂 足 为 E 点 ,点 P
A
N
B 线 时 ,BN′ 的 长 就 是 BM + MN 的 最 小 值 ,而 BN′大 于
或等于 BH,所以 BH 的长就是 BM+MN 的最小值,
容易算出 BH=4。
(五) 两动两定型
已知两定点,分别在两条直线上找两点,使这
两点与已知两定点构成的四边形周长最小。
例 7 已知抛物线 y=ax2+bx+1 经过点 A(1,3),

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

运用轴对称进行化归,解决几何最值问题

运用轴对称进行化归,解决几何最值问题

运用轴对称进行化归,解决几何最值问题作者:韩江来源:《初中生世界·八年级》2014年第10期未知问题可化归为已知问题,复杂问题可化归为简单问题. 化归是一种非常重要的数学思想方法,只要掌握了化归的方法,一切问题都将迎刃而解. 本文以轴对称变换为例,与同学们谈谈用化归思想解决几何最值问题.一、两个数学基本事实两点之间的所有连线中,线段最短. 如图1,线段AB最短. 把这个数学事实称为“模型1”,简称“模1”.在直线外一点与直线上各点连接的所有线段中,垂线段最短. 如图2,垂线段PH最短. 把这个数学事实称为“模型2”,简称“模2”.很多几何最值问题,都可以通过化归的方法与这两个数学模型联系起来. 最经典的莫过于“将军饮马问题”.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题. 如图3,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营. 请问怎样走才能使总路程最短?【解析】如图4,作点A关于直线l的对称点A′,连接A′B交直线l于点P,连接PA、PB,此时PA+PB最短. 数学原理:点A、B是定点,点P是动点,点A的对称点A′仍是定点,根据轴对称性质得PA=PA′,从而PA+PB=PA′+PB,问题就化归为“模1”,所以图4中A-P-B为最短路径,如果点P取在其他位置,都将违背“两点之间,线段最短”.把“将军饮马问题”称为“模型3”,简称“模3”. “模3”的特点是有两个定点、一个动点,两个定点在动点所在直线的同一侧.二、具体应用1. 单动点最值问题例1 如图5,正方形ABCD的边长是1,以AB为一边作等边△ABE,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为______.本题是一个较复杂的问题,它是“模1”与“模3”相结合的一个典型,熟知这两种模型,通过化归的方法,得到了一个解决此问题的好方法.三、基本策略运用轴对称进行化归,解决几何最值问题,基本策略是先找到一个定点(如果没有,可找一个合适的动点),再作此点的对称点,从而将某些线段通过轴对称进行位置变换,通常都可以将问题化归为文中的3种模型.同学们,初中数学的几何最值问题还有很多类型,比如还可以通过其他图形的变换进行化归,或者还可以用函数的方法解决,限于篇幅,本文不作赘述. 化归的方法和策略也有很多,希望通过本文能够抛砖引玉,引导你们归纳有用的数学模型,通过体悟,能够将陌生的数学问题化归为已知的数学问题. 只要掌握了化归的方法,你就找到了解决问题的钥匙.(作者单位:江苏省无锡市天一实验学校)。

中考数学经典几何模型之轴对称最值模型(解析版)

中考数学经典几何模型之轴对称最值模型(解析版)

中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山B'QDA'AP B C典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.变式练习>>>1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,变式练习>>>2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.变式练习>>>3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.例题4. 如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为2.【解答】解:作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.此时AB+BC+CD=A′B+BC+CD′=A′D′为最短距离.连接DD′,AA′,OA′,OD′.∵OA=OA′,∠AOA′=60°,∴∠OAA′=∠OA′A=60°,∴△ODD′是等边三角形.同理△OAA′也是等边三角形.∴OD'=OD=4,OA′=OA=2,∠D′OA′=90°.∴A′D′==2.变式练习>>>4. 如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:AC=2,BC=1.(1)求折线OPQB的长的最小值;(2)当折线OPQB的长最小时,试确定Q的位置.【解答】解:(1)作点B关于AC的对称点B′,作点O关于AB的对称点O′,连接AB′,QB′,AO′,PO′,B′O′,则QB=QB′,OP=O′P,折线OPQB的长=OP+PQ+QB=O′P+PQ+QB′,∴折线OPQB的长的最小值=B′O′.∵在长方形ABCD中,∠ABC=90°,在△ABC中,AC=2,BC=1,∠ABC=90°,∴∠BAC=30°,∵点B、B′关于AC对称,点O、O′关于AB对称,∴∠B′AC=30°,AB′=AB=,∠O′AB=30°,AO′=AO=1,∴∠B′AO′=90°,∴B′O′=,∴折线OPQB的长的最小值=2;(2)设B′O′交AC于点Q′,∵在Rt△AO′B′中,AO′=1,B′O′=2,∴∠AB′O′=30°,则∠AO′B′=60°,∵在△AO′Q′中,∠Q′AO′=∠Q′AB+∠BAO′=60°,∴△AO′Q′是等边三角形,∴AQ′=AO′=1=AO,∴点Q′就是AC的中点O.∴当折线OPQB的长最小时,点Q在AC的中点.例题5. 如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.变式练习>>>5.如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ∴四边形APQA'是平行四边形∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0)∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,)故选:A.例题6. 如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,求DF+GF的最小值为.【解答】解:取AB的中点O,点O、G关于BC的对称点分别为O'、G',∵G与G'关于BC对称,∴FG=FG',∴FG+DF=FG'+DF,∴当G(也就是G')固定时,取DG'与BC的交点F,此时能够使得FG+FD最小,且此时FG+DF的最小值是DG',现在再移动点E(也就是移动G),∵BG⊥AE,∴∠AGB=90°,∴当点E在BC上运动时,点G随着运动的轨迹是以O为圆心,OA为半径的90°的圆弧,点G'随着运动的轨迹是以O'为圆心,O'B为半径的90°的圆弧,∴当取DO'与交点为G'时,能够使得DG'达到最小值,且DG'的最小值=DO'﹣O'G'=﹣1=﹣1,即DF+GF的最小值为﹣1.故选:A.变式练习>>>6.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.例题7. 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°【解答】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.变式练习>>>7.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.例题8. (1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.【解答】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CE sin∠BCE==;即:CM+MN的最小值为;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH﹣EG=﹣1=,∴S四边形AGCD最小=h+6=×+6=,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC﹣CF=4﹣1=3.达标检测领悟提升强化落实1. 如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为()A.5B.10C.15D.10【解答】解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.2. 如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.3. 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是8﹣2和8+2.【解答】解:y=x+4,∵当x=0时,y=4,当y=0时,x=﹣4,∴OA=4,OB=4,∵△ABE的边BE上的高是OA,∴△ABE的边BE上的高是4,∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,过A作⊙C的两条切线,如图,当在D点时,BE最小,即△ABE面积最小;当在D′点时,BE最大,即△ABE面积最大;∵x轴⊥y轴,OC为半径,∴EE′是⊙C切线,∵AD′是⊙C切线,∴OE′=E′D′,设E′O=E′D′=x,∵AC=4+2=6,CD′=2,AD′是切线,∴∠AD′C=90°,由勾股定理得:AD′=4,∴sin∠CAD′==,∴=,解得:x=,∴BE′=4+,BE=4﹣,∴△ABE的最小值是×(4﹣)×4=8﹣2,最大值是:×(4+)×4=8+2,故答案为:8﹣2和8+2.4. 正方形ABCD,AB=4,E是CD中点,BF=3CF,点M,N为线段BD上的动点,MN=,求四边形EMNF周长的最小值++.【解答】解:作点E关于BD的对称点G,则点G在AD上,连接GM,过G作BD的平行线,截取GH=MN=,连接HN,则四边形GHNM是平行四边形,∴HN=GM=EM,过H作PQ⊥BC,交AD于P,交BC于Q,则∠HPG=∠HQF=90°,PQ=AB=4,∵∠PGH=∠ADB=45°,∴HP=PG==1,HQ=4﹣1=3,由轴对称的性质,可得DG=ED=2,∴AP=4﹣2﹣1=1,∴BQ=1,又∵BF=3CF,BC=4,∴CF=1,∴QF=4﹣1﹣1=2,∵当点H、N、F在同一直线上时,HN+NF=HF(最短),此时ME+NF最短,∴Rt△HQF中,FH===,即ME+NF最短为,又∵Rt△CEF中,EF===,∴ME+NF+MN+EF=++,∴四边形EMNF周长的最小值为++.故答案为:++.5. 如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为3.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD,∵BC=6,∴BD=3,∴AD=3,即BF+EF=3.故答案为:3.6. 如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回到E点,则蚂蚁所走的最小路程是.【解答】解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===27. 如图,在△ABC中,AC⊥BC,∠B=30°,点E,F是线段AC的三等分点,点P是线段BC上的动点,点Q是线段AC上的动点,若AC=3,则四边形EPQF周长的最小值是8.【解答】解:过E点作E点关于BC的对称点E′,过F点作F点关于AC的对称点F′,∵在△ABC中,AC⊥BC,∠B=30°,AC=3,∴AB=6,∵点E,F是线段AC的三等分点,∴EF=2,∵E′F′=AB=6,∴四边形EPQF周长的最小值是6+2=8.故答案为:8.8. 如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.9. 在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.【解答】解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小.∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.故答案为:.10. 如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.12. 如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.11. 如图△ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使△DPQ的周长最小?并求出这个最值.【解答】解:作D关于BC、AC的对称点D′、D″,连接D′D″,DQ,DP.∵DQ=D″Q,DP=D′P,∴△DPQ的周长为PQ+DQ+DP=PQ+D″Q+D′P=D′D″,根据两点之间线段最短,D′D″的长即为三角形周长的最小值.∵∠A=∠B=60°,∠BED=∠AFD=90°,∴∠α=∠β=90°﹣60°=30°,∠D′DD″=180°﹣30°﹣30°=120°,∵D为AB的中点,∴DF=AD•cos30°=1×=,AF=,易得△ADF≌△QD''F,∴QF=AF=,∴AQ=1,BP=1,Q、P为AC、BC的中点.∴DD″=×2=,同理,DD′=×2=,∴△DD′D″为等腰三角形,∴∠D′=∠D″==30°,∴D″D′=2DD′•cos30°=2××=3.12. 如图,C 为线段BD 上一动点,分别过点B 、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问AC+CE的值是否存在最小值?若存在,请求出这个最小值;若不存在请说明理由.(3)根据(2)中的规律和结论,请直接写出出代数式+的最小值为25.【解答】解:(1)由线段的和差,得BC=(8﹣x).由勾股定理,得AC+CE =+=+=+;(2)当A、C、E在同一直线上,AC+CE最小;当A、C、E在同一直线上时,延长AB,作EF⊥AB于点F,∵AB=5,DE=1,∴AF=6,∵∠ABD=90°,∴∠FBD=90°,∵∠BDE=∠BFE=90°,∴四边形BFED是矩形,∴BD=EF=8,∴AE===10;(3)如下图所示:作BD=24,过点B作AB⊥BD,过点D作ED ⊥BD,使AB=3,ED=4,连接AE交BD于点C,当BC=x,∵x+y=24,∴y=24﹣x,AE的长即为代数式的最小值,过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=3,AF=BD=24,所以AE===25,即代数式+的最小值为25,故答案为:25.- 21 -。

初中几何最值问题解题技巧

初中几何最值问题解题技巧

初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。

下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。

例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。

2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。

例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。

利用这些不等式,可以推导出一些关于几何元素的最值关系。

3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。

例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。

对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。

4.利用几何定理:几何定理是解决几何最值问题的有力工具。

例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。

对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。

5.利用数形结合:数形结合是解决几何最值问题的常用方法。

通过将几何问题转化为代数问题,可以更容易地找到问题的解。

例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。

以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。

《轴对称变换在几何最值中的应用》教学设计

《轴对称变换在几何最值中的应用》教学设计
巧妙使用课本。 结果是许多学生对课 习数学 的重要方式 , 画图找点解决实际 问题 中最 短路 径问题 的探 的内容和方法及时回归课本 ,
究过程是体现这一理念很好的素材 ,它对培养学生 的探究精神 以 本 的使用价值认 识不 足,认为课本没有什 么看头 ,对课本 中的概
及动手实践能力 , 发展数学应用 意识等有重要的作用 。 教学片断一 : 情境导入 。 巧妙转化 念、 方法掌握得模棱 两可 , 一 听就懂 , 一看 就会 , 一做 就不对 , 教材
教学片段二 : 及时练 习。 巩 固新 知
题1 ( 中考原题 ) 已知平行 四边形 A B C D, E是 A B上一点 , P是
AC上一动点 , 确定点 P的位置 , 使得 P E + P B之和最小 。
A E B
题2 ( 中考原题) 已知梯形 A B C D, A D / / B C , A D = D C = 4 , B C = 8 ,
生 动手 实 践 、 自主 探 索 、 合 作 交 流 的 能力 。
关键词: 轴对称变换 ; 几何最值 ; 教学设 计
轴对称变换是几何 中一种基本变换 ,如何利用轴对称变换解 石把学生吸引住。 因为本节课是一节复 习课 , 学生 已有一定的基础 决实际问题中的路径最短 问题 、 轴对称变换的作图和性质以及“ 两 知识 , 所 以直 接用一道中考原题导人 , 使学生都跃跃 欲试 , 产生 求
点 Ⅳ在 B C上 , C Ⅳ= 2 , E是 A 日的中点 ,在 AC上 找一点 ,使 得
图 1
图 2
【 课堂场景 】
师: 同学们 , 请看一道 中考原题 , 你会做吗?你认 为它难吗? ( 学 生乍看到 这个问题 时 , 绝大 多数一 时束手无策 。 找不到本 题 的切入 口, 极 少数 学生会 想到 利 用轴对称 变换 的性 质找 到 点

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。

即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。

轴对称性质在几何最值问题中的应用

轴对称性质在几何最值问题中的应用
试 题研究> 识延 知 伸
数学教学通 讯( 教师版 )
投稿郝 sj v . 3 o 箱: k i1 , r x @ p 6 cn
轴对称性质在几何最值问题中的应用
王 海 清
广 东惠州学 院数 学 系 5 6 0 107
豳 圉 嘉 一:
关键 词 : 黼 轴
几何 最值 问题
线B E. 而点C. 对 角线B D_ 在 D所 在 直 线
的 同侧 . 点C关 于对 角线B D的 对称 点 恰好
是 点A.连 结AE交 对 角 线 BD于 点 P. 点 P 则
数 学教学通讯 【 教师版 )
位置 决 定 . 目标 是 通过 轴 对称 性 质将 线 段
迁 至 同一直 线 上来 处 理.
C] \/、 、 厂D 、 幻,


利用 轴 对 称 性质 求 最 值 的题 目多 足 关 丁
不在 同一 直线 上 的三 点 所 构 成 的 线 段 和
问题 . 三个点 中有一 个 动点 或 是两 个 动 即
点. 下面 将对 这两 类 问题进 行 分析 、 讨论 . 解析
变 式2 如 图3 .等 边 三 角 形AB C的 边 长 为 2 为AB 中 点 . 为 B 上 的 点 , , 的 P C
同侧 . 它们 到河 边 的距离 分 别为A - m. C1 k
B = m D 3 m.现要 在河 边 C 上 建 D3 k C = k D

水 厂分别 向A. 两村 输送 自来水 . 设 B 铺
点E. 易得 D C AC I m, : D= E = = A E C k 3 k 在 R △A 船 中 , 、 m. t A船 i :
作 点 关 于 直 线 C D的 对 称 点 , 连 4 .

利用轴对称知识求最值

利用轴对称知识求最值

利用轴对称求最小值数学题中有些求两线段之和最小的题目,同学们感到找不到思路,其实它是利用轴对称求最短距离的变形。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有两个:(1)两点之间线段最短;(2)三角形两边之和大于第三边。

现以部分中考题为例加以分析,希望能对同学们有所帮助。

一、两点一线的最值问题例:如图,草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在图中画出这一点。

理解转化题意:将这一问题转化为数学问题,即已知直线l 及同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。

首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。

因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。

解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。

二、两点两线的最值问题已知两个定点位于平面内两个相交的的直线之间,要在两条直线上确定两个动点使得线段和最短。

这类问题中动点满足最值的位置是由动点和定点所在的直线位置决定,可以通过轴对称图形的性质“搬点移线”(在保持线段的长度不变的情况下将某点搬至某线段所在的直线),将所求线段移到同一直线上就可以了。

例:(课本P47练习题9),如图(4)A 点为马厩,B 点为帐篷,牧马人一天要从马厩牵出马,先到草地边某一点牧马,然后到河边去饮水,再回到帐篷,请你确定一天的最短路程。

初中几何模型轴对称最值模型

初中几何模型轴对称最值模型

中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山B'QDA'AP B C典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.变式练习>>>1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.例题4. 如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.4.如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ∴四边形APQA'是平行四边形∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0)∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,)故选:A.例题5. 如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,求DF+GF的最小值为.【解答】解:取AB的中点O,点O、G关于BC的对称点分别为O'、G',∵G与G'关于BC对称,∴FG=FG',∴FG+DF=FG'+DF,∴当G(也就是G')固定时,取DG'与BC的交点F,此时能够使得FG+FD最小,且此时FG+DF的最小值是DG',现在再移动点E(也就是移动G),∵BG⊥AE,∴∠AGB=90°,∴当点E在BC上运动时,点G随着运动的轨迹是以O为圆心,OA为半径的90°的圆弧,点G'随着运动的轨迹是以O'为圆心,O'B为半径的90°的圆弧,∴当取DO'与交点为G'时,能够使得DG'达到最小值,且DG'的最小值=DO'﹣O'G'=﹣1=﹣1,即DF+GF的最小值为﹣1.故选:A.变式练习>>>5.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.例题7. 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°【解答】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.变式练习>>>6.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.达标检测领悟提升强化落实1. 如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为()A.5B.10C.15D.10【解答】解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.2. 如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.3. 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是8﹣2和8+2.【解答】解:y=x+4,∵当x=0时,y=4,当y=0时,x=﹣4,∴OA=4,OB=4,∵△ABE的边BE上的高是OA,∴△ABE的边BE上的高是4,∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,过A作⊙C的两条切线,如图,当在D点时,BE最小,即△ABE面积最小;当在D′点时,BE最大,即△ABE面积最大;∵x轴⊥y轴,OC为半径,∴EE′是⊙C切线,∵AD′是⊙C切线,∴OE′=E′D′,设E′O=E′D′=x,∵AC=4+2=6,CD′=2,AD′是切线,∴∠AD′C=90°,由勾股定理得:AD′=4,∴sin∠CAD′==,∴=,解得:x=,∴BE′=4+,BE=4﹣,∴△ABE的最小值是×(4﹣)×4=8﹣2,最大值是:×(4+)×4=8+2,故答案为:8﹣2和8+2.4. 正方形ABCD,AB=4,E是CD中点,BF=3CF,点M,N为线段BD上的动点,MN=,求四边形EMNF周长的最小值++.【解答】解:作点E关于BD的对称点G,则点G在AD上,连接GM,过G作BD的平行线,截取GH=MN=,连接HN,则四边形GHNM是平行四边形,∴HN=GM=EM,过H作PQ⊥BC,交AD于P,交BC于Q,则∠HPG=∠HQF=90°,PQ=AB=4,∵∠PGH=∠ADB=45°,∴HP=PG==1,HQ=4﹣1=3,由轴对称的性质,可得DG=ED=2,∴AP=4﹣2﹣1=1,∴BQ=1,又∵BF=3CF,BC=4,∴CF=1,∴QF=4﹣1﹣1=2,∵当点H、N、F在同一直线上时,HN+NF=HF(最短),此时ME+NF最短,∴Rt△HQF中,FH===,即ME+NF最短为,又∵Rt△CEF中,EF===,∴ME+NF+MN+EF=++,∴四边形EMNF周长的最小值为++.故答案为:++.5. 如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为3.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD,∵BC=6,∴BD=3,∴AD=3,即BF+EF=3.故答案为:3.6. 如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回到E点,则蚂蚁所走的最小路程是.【解答】解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===27. 如图,在△ABC中,AC⊥BC,∠B=30°,点E,F是线段AC的三等分点,点P是线段BC上的动点,点Q是线段AC上的动点,若AC=3,则四边形EPQF周长的最小值是8.【解答】解:过E点作E点关于BC的对称点E′,过F点作F点关于AC的对称点F′,∵在△ABC中,AC⊥BC,∠B=30°,AC=3,∴AB=6,∵点E,F是线段AC的三等分点,∴EF=2,∵E′F′=AB=6,∴四边形EPQF周长的最小值是6+2=8.8. 如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.9. 在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.【解答】解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小.∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.故答案为:.10. 如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.12. 如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.。

几何最值问题解法

几何最值问题解法

几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】A1B C D.5 2例2.在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是。

例3.如图,圆柱底面半径为2cm,高为9cmπ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为cm。

例4. 在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .练习题:1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .二、应用垂线段最短的性质求最值: 典型例题:例1. 在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .例2.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1 BC . 2D +1例3. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短 时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-)例4.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形; ②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化; ④点C 到线段EF 的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个例5.如图,△ABC中,∠BAC=60°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.例6.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、43.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点, PQ 切⊙O 于点Q ,则PQ 的最小值为【 】A. B .C.3 D.24.如图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD⊥CD,∠ADB=∠C.若P 是BC 边上一动点,则DP 长的最小值为 .三、应用轴对称的性质求最值: 典型例题:例1. 如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最 短距离为 ▲ cm .例2. 如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为【 】135A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的坐标系如图所示.若P是x轴上使得PA PB值最小的点,⋅=.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为.例5. 如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN 于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是练习题:1. 如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为.2. 如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=时,AC+BC的值最小.3.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水。

中考数学知识点考点复习指导利用轴对称求最值

中考数学知识点考点复习指导利用轴对称求最值

中考数学知识点考点复习指导利用轴对称求最值利用轴对称求最值是高中数学中的一个重要的知识点,也是中考数学中经常考察的内容之一、下面我将从以下几个方面为你详细介绍如何利用轴对称求最值。

1.轴对称性的概念轴对称性是指对于平面上的一个图形,如果沿条直线旋转180度后,旋转后的图形与原图形重合,那么我们就说这个图形具有轴对称性。

轴对称的直线称为轴线。

轴对称的图形的特点是:图形的任意一点关于轴线对称的点也在图形内部。

2.利用轴对称求最值的一般步骤求解最值的一般步骤为:首先明确最值是指最大值还是最小值,然后利用轴对称性把问题转化为一个等价的问题,利用已知条件求解这个等价问题,最后还原到原问题中,得到最值。

3.利用轴对称求最值的具体方法在具体的问题中,可以根据实际的情况,运用合适的方法进行求解。

下面是常见的一些方法:(1)利用轴对称线上的点求最值:对于轴对称的图形,如果可以确定图形上的其中一点关于轴线的对称点是最值点,那么这个最值点的横坐标就可以作为最值的解。

(2)利用轴对称图形的特点求最值:对于具有轴对称性的图形,如果能够找到一些特殊的点,使得这些点关于轴线对称,而且能够确定这些点是最值点,那么这个最值点就可以作为最值的解。

(3)利用轴对称图形的性质求最值:对于轴对称的图形,如果能够利用对称性与其他已知条件建立等式或不等式,然后求解这个等式或不等式的解,就可以得到最值的解。

(4)利用轴对称折线的特点求最值:对于轴对称的折线图,可以利用折线图的性质,比如单调性,交点等,将问题转化为求解折线的最值的问题,然后利用已知条件求解最值。

4.练习题示例为了更好地理解和掌握利用轴对称求最值的方法,我们可以通过一些练习题来加深印象。

下面是一些练习题的示例:(1)求函数y=2x^2-3x+1在区间[-1,2]上的最大值和最小值。

解:首先,求函数的极值点,对应的x值是-1/4、然后,将-1/4代入函数,得到y=-1/8、所以在[-1,2]上,最大值为1,最小值为-1/8(2)求函数y=x^3-3x^2+3x的最大值和最小值。

几何最值问题常用解法初二

几何最值问题常用解法初二

几何图形中常见最值问题的解法平面几何图形中的最值问题是近几年中考常见的题型,此类问题常让学生无从下手,特别是新市民子女,由于他们数学知识的短缺、题目信息采集不够、综合应用能力弱、数学思维紊乱,课本知识理解不到位等原因造成错误为此我在平时教学中注重对这类问题的归类整理,在教学中对他们进行必要的专题拓展训练,引导他们归纳、总结、获得解决这类问题的基本技能,培养他们的思维习惯.一、轴对称变换—最短路径问题1.书本原型:(1)点A 、点B 在直线l 两侧,在直线l 找一点P ,使PA PB +值最小.分析根据两点之间线段最短.点P 既在直线l 上,又在线段AB 上,PA PB +值最小.解连接AB ,交直线l 于点P ,点P 就是所要求作的点.(2)点A 、点B 在直线l 同侧,在直线l 找一点P ,使PA PB +最小.分析利用轴对称的性质找一个点1B ,使得1PB PB =,因而1PA PB PA PB +=+,要使PA PB +最小,只要1PA PB +最小,只要A 、P 、1B 三点共线.解作点B 关于l 的对称点1B ,连接1AB 交l 于点,点P 就是所要求作的点.(也可以作点A 关于l 的对称点1A ,连接1A B 交l 于点P ,点P 就是所要求作的点).2.应用例1在右图中,以直线l 为x 轴,以O 为坐标原点建立平面直角坐标系,点(1,2)A 、(4,1)B .(1)在x 轴上找一点P ,使PA PB +最小,请在图中画出点P ,并求出点PA PB +的最小值.分析作A 、B 两点中的一点关于x 轴的对称点,连接这个对称点与另一点的线段交x 轴于点P .PA PB +的最小值实际上就是线段1AB 的长3.∴PA PB +的最小值是3.(2)在y 轴上找一点C ,在x 轴上找一点D ,使四边形ACDB 的周长最小,则点C 的坐标为,点D 的坐标为.分析本题两个动点C 、D ,要使四边形ACDB 的周长最小,只要AC CD BD AB +++的值最小,而AB 是一个定值,只要AC CD BD ++最小.作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,则1AC A C =,1BD B D =,AC CD +11BD A C B D CD +=++,只要1A 、C 、D 、1B 共线,则11A C B D CD ++最小,从而AC CD BD ++最小.解作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,连接11A B .交y 轴于点C ,交x 轴于点D .设直线11A B ,的解析式为y kx b =+, 点A (1,2)关于y 的对称点1(1,2)A -, 点B (4,1)关于x 轴的对称点1(4,1)B -,241k b k b -+=⎧∴⎨+=-⎩,解得3/57/5k b =-⎧⎨=⎩,∴直线11A B 的解析式为37.55y x =-+∴点C 的坐标为7(0,5,点D 的坐标为7(,0)3.二、垂线段最短—最短路径问题1.书本原型在灌溉时,要把河中的水引到农田P 处,如何挖渠使渠道最短.分析根据垂线段最短,P 到直线l 最短的距离是点P 到直线l 的垂线段的长.解过点P 作直线河岸l 的垂线段,垂足为点A ,线段PA 就是最短的渠道.2.应用例3如图,在平面直角坐标系xOy 中,直线AB 经过点(4,0)A -、(0,4)B ,⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线,PQ Q 为切点,则切线长PQ 的最小值为.分析因为PQ 是⊙O 的切线,连接OQ ,则90PQO ∠=︒.由勾股定理得222PQ PO OQ =-.因为⊙O 的半径1OQ =,要使PQ 最小,只要PO 最小,从而转化为求PO 的最小值,当PO AB ⊥时,PO 最小值为2.PQ ∴.四、平面展开图—最短路径问题我们常常遇到蚂蚁从一个几何体的一个侧面上一个点,绕过侧面走到另一个点,怎样走最近的问题.通常将曲面展平,转化为两点之间线段最短、垂线段最短问题,从而将曲面的最短路径问题转化为平面最短路径问题例5如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是.分析这是一个蚂蚁爬行的最短路径问题,将圆柱的侧面展平,得到一个矩形.蚂蚁从容器外壁爬到容器内壁最短,就是蚂蚁沿圆柱侧面爬到容器顶经过某一点P ,再爬到点A 的最短路径,实际上就是在一边DE 上找一点P ,使1PA PB +最小.根据轴对称—最短路径问题的作图步骤得蚂蚁沿线段2BA 最短,根据勾股定理可得2BA 的长.解在21Rt A B B ∆中,2112A B = cm ,15BB =cm由勾股定理得,222221114425169A B A B BB =+=+= ,213A B ∴=cm.所以蚂蚁爬行的最短路线长是13cm.学生觉得难以解决的几何最值问题,我在平时的教学中注重把书本原型跟学生讲透;让学生理解书本上的原理:两点之间线段最短、垂线段最短、三角形两边之和大于第三边,两边之差小于第三边,让学生感受到数学中的化归思想、数形结合思想,让学生有章可循,有法可用.授人以鱼不如授人以渔,对于新市民子女的数学学习,主要是提高他们数学学习兴趣,学会解题技能,让他们感受到学习数学乐趣,让他们想学数学、能学数学、学好数学,从而爱上数学,真正实现《新课程标准》所倡导的理念:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展.”。

八年级数学利用轴对称解几何动点最值问题分类总结(将军饮马)

八年级数学利用轴对称解几何动点最值问题分类总结(将军饮马)

利用轴对称解几何动点最值问题分类总结(将军饮马)轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。

比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。

下面对三类线段和的最值问题进行分析、讨论。

(1)两点一线的最值问题:(两个定点+ 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2.连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2)一点两线的最值问题:(两个动点+一个定点)问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。

核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:1.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

2.如图,点A是∠MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。

(3)两点两线的最值问题:(两个动点+两个定点)问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。

轴对称性质在几何最值问题中的应用

轴对称性质在几何最值问题中的应用

轴对称性质在几何最值问题中的应用作者:王海清来源:《数学教学通讯(教师阅读)》2008年第12期广东惠州学院数学系 516007摘要:随着新课标的实施,利用轴对称性质求解几何最值问题已经成为近几年中考和竞赛的热点. 本文主要讨论两类常见的利用轴对称性质求最值的问题.关键词:轴对称性质;几何最值问题在近几年的中考和数学竞赛中,常常遇到利用轴对称性质求解几何图形中一些线段和的最大值或最小值问题. 轴对称的作用是迁线、迁角,把图形中比较分散、缺乏联系的元素集中到某个新的基本图形中,为应用某些定理提供方便.从教学的角度看,教师应教会学生处理这类问题的方法,但更要让学生理解方法背后所运用的数学知识,还要能清楚说明理由,使之知其然亦知其所以然. 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有两个:(1)两点之间线段最短;(2)三角形两边之和大于第三边.笔者对近年的考题进行分析后发现,利用轴对称性质求最值的题目多是关于不在同一直线上的三点所构成的线段和问题,即三个点中有一个动点或是两个动点. 下面将对这两类问题进行分析、讨论.[⇩]有一点未被确定的最值问题这类最值问题所求的线段和中只有一个动点,已知的两个定点在动点所在直线的同一侧. 解决这类题的方法是找任一定点关于动点所在直线的对称点,连结这个对称点与另一定点交动点所在直线于一点,交点即为动点满足最值的位置.例1如图1,A,B两个村子在河CD的同侧,它们到河边的距离分别为AC=1km,BD=3km. CD=3km . 现要在河边CD上建一水厂分别向A,B两村输送自来水. 铺设水管的工程费用为每千米20 000元. 请在CD上选择水厂位置O,使铺设水管的费用最省(画图表示),并求得铺设水管的总费用F.[A][C][A′][O′][O][B][D][E]图1解析如果点A,B在河CD的异侧,显然点O即为AB与河CD所在直线的交点.因此,可设法在保持AO长不变的情况下,将点A移至直线CD的另一侧来考虑.作点A关于直线CD的对称点A′,连结A′B交直线CD于点O,则AO+BO=A′O+BO=A′B. 由两点间线段最短可得此时的线段和AO+BO最小,所以水厂应建在点O处. 在直线CD上另外任取一点O′,因为AO′=A′O′,利用三角形的三边关系显然有AO′+BO′>AO+BO.过点A′作A′E垂直于BD的延长线于点E,易得DE=A′C=AC=1km,A′E=CD=3km .在Rt△A′BE中,A′B===5km. 所以总费用F=5×20000=105元.变式1如图2,已知正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE +PC的最小值为()[A][D][P][B][E][C][E][P]图2A. 2B.C. D.解析动点P在正方形ABCD的对角线BD上,而点C,E在对角线BD所在直线的同侧,点C关于对角线BD的对称点恰好是点A. 连结AE交对角线BD于点P,则点P即为PE+PC 取得最小值的位置. 由轴对称性质知PE+PC=AE. 利用勾股定理易知AE==,即答案为B.变式2如图3,等边三角形ABC的边长为2,M为AB的中点,P为BC上的点,设PA+PM的最大值和最小值分别为Smax和Smin,则S-S等于()[A][M][B][P][C][A′]图3A. 4B. 4C. 3D. 3解析(1)因为PM≤CM,PA≤CA,所以当点P与点C重合时,PM+PA的值最大. 易求CM=,所以Smax=2+.(2)定点A,M在动点P所在线段BC的同侧. 作点A关于BC边的对称点A′,连结A′M 交BC边于点P,由轴对称性质知,PM+PA的最小值即为A′M的长度. 连结A′C,由∠ACA′=120°,∠ACM=30°,得∠A′CM=90°,且A′C=AC=2,CM=. 所以A′M==. 即PA+PM 的最小值Smin=.所以S-S=(2+)2-2=4,答案为B.[⇩]有两点未被确定的最值问题这类最值问题所要求的线段和中只有一个定点,另外两个都是动点. 动点满足最值的位置由定点和动点所在直线的位置决定,目标是通过轴对称性质将线段迁至同一直线上来处理.例2如图4,∠AOB=45°,角内有一点P,PO=10,在角的两边分别有点Q,R(均不同于O),则△PQR周长的最小值为______.[P′][P″][R′][O][Q′][Q][A][P][B][R]图4解析点Q,R未定,要使△PQR的周长最小,可设法在保持QP,RP长度不变的情况下,将点P分别移至OA,OB的另一侧来考虑,使得△PQR的三条边刚好落在QR所在的直线上.作点P关于OA的对称点P′,关于OB的对称点P″. 连结P′P″,分别交OA,OB于点Q,R. 由轴对称性质得QP=QP′,RP=RP″. 由两点间线段最短得△PQR周长的最小值为P′P″的长. 点Q,R即是满足周长取得最小值的点. 分别在OA,OB上另外任取一点Q′,R′,△PQ′R′的周长=R′P″+R′Q′+Q′P′>P′P″.连结OP′,OP″,由对称性得OP′=OP″=OP=10,∠P′OP″=90°. 所以P′P″=10. 即△PQR的周长最小值为10.变式1如图5,在河湾处M点有一个观察站,观察员要从M点出发,先到AB岸,再到CD岸,然后返回M点,则该船应该走的最短路线是_________. (先画图,再用字母表示)解析此题与例2基本一致. 作点M关于直线AB的对称点M′,关于直线CD的对称点M″,连结M′M″分别交直线AB,CD于点P,Q,则MP+PQ+QM是船行驶的最短路线.变式2如图6,在矩形ABCD中,AB=20cm,BC=10cm,若在AC,AB上各取一点M,N,使BM+MN的值最小,求这个最小值.[A][N][B][M][C][D][B′][O]图6解析点B,N在点M所在直线的同侧,利用轴对称性质在保持MB长度不变的情况下,将点B移至AC的另一侧来考虑问题.作点B关于直线AC的对称点B′,BB′交AC于点O,于是BM+MN=B′M+MN. 点N在直线AB上,点B′在直线AB外,过点B′作B′N垂直于AB于点N,交AC于点M. 由直线外一点到直线上的最短距离为这点到直线上的垂线段的长度,得B′N的长为BM+MN的最小值. 点M,N为满足条件的点.连结AB′. 在△ABC中,AB=20cm,BC=10cm,由面积相等得AC×BO=AB×BC. 于是BO=4cm,所以BB′=8cm . 在△ABO中,由勾股定理得AO==8cm . 在△ABB′中,由面积相等得AB×B′N=BB′×AO,得B′N=16cm . 即BM+MN的最小值为16cm .。

初中数学几何模型与最值问题05专题-费马点中的对称模型与最值问题(含答案)

初中数学几何模型与最值问题05专题-费马点中的对称模型与最值问题(含答案)

初中数学最值问题专题5 费马点中的对称模型与最值问题【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN的周长的最小值为___________.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )A .B .C .D .5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.ABCDME6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接P C,P E.当△P CE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A点右侧),点H 、B 关于直线l :y x =+对称.(1)求A 、B 两点的坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连结HN 、NM 、MK ,求HN +NM +MK 的最小值.专题5 费马点中的对称模型与最值问题 答案【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD △△AGF ,△MD =GF △ME +MA +MD =ME +EG +GF过F 作FH △BC 交BC 于H 点,线段FH 的长即为所求的最小值.ABCDMEHFGE MDCBA3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.【解析】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△P MN 的周长最短,最短的值是CD 的长.△点P 关于OA 的对称点为C , △P M =CM ,O P=OC ,△COA =△P OA ; △点P 关于OB 的对称点为D , △P N =DN ,O P=OD ,△DOB =△P OB ,△OC =OD =O P=3,△COD =△COA +△P OA +△P OB +△DOB =2△P OA +2△P OB =2△AOB =60°, △△COD 是等边三角形, △CD =OC =OD =3.△△P MN 的周长的最小值=P M +MN +P N =CM +MN +DN ≥CD =3.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为()A.B.C.D.【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结P Q分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=D P+DC+CQ+AB=P Q+AB==4+2=6,故选B.5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【解析】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PMPM =,2PN P N =,1212PMN PM MN P N PP ∴∆=++=,且1AOP AOP ∠=∠,2BOP BOP ∠=∠,12260POP AOB ∠=∠=︒,128OP OP OP ===,12PP O ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.6、如图,在平面直角坐标系中,抛物线y =x 2﹣x ﹣与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接P C ,P E .当△P CE 的面积最大时,连接CD ,CB ,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【解析】(1)△y=x2﹣x﹣,△y=(x+1)(x﹣3).△A(﹣1,0),B(3,0).当x=4时,y=.△E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.△直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.△直线CE的解析式为y=x﹣.过点P作P F△y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则F P=(x﹣)﹣(x2﹣x﹣)=x2+x.△△E P C的面积=×(x2+x)×4=﹣x2+x.△当x=2时,△E P C的面积最大.△P(2,﹣).如图2所示:作点K关于CD和C P的对称点G、H,连接G、H交CD和C P与N、M.△K是CB的中点,△k(,﹣).△点H与点K关于C P对称,△点H的坐标为(,﹣).△点G与点K关于CD对称,△点G(0,0).△KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.△GH==3.△KM+MN+NK的最小值为3.(3)如图3所示:△y ′经过点D ,y ′的顶点为点F ,△点F (3,﹣).△点G 为CE 的中点,△G (2,).△FG =.△当FG =FQ 时,点Q (3,),Q ′(3,).当GF =GQ 时,点F 与点Q ″关于y =对称,△点Q ″(3,2).当QG =QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:a +=,解得:a =﹣.△点Q 1的坐标为(3,﹣).综上所述,点Q 的坐标为(3,),Q ′(3,)或(3,2)或(3,﹣). 7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A=+对称.点右侧),点H、B关于直线l:y x(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数解析式;BK AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连结HN、NM、(3)过点B作直线//MK,求HN+NM+MK的最小值.【解析】(1)依题意,得ax2+2ax−3a=0(a≠0),两边都除以a得x2+2x−3=0,解得x1=−3,x2=1,△B点在A点右侧,△A点坐标为(−3,0),B点坐标为(1,0),答:A.B两点坐标分别是(−3,0),(1,0).证明:△直线l:y x+-=,△点A在直线l上.当x=−3时,y(3)0(2)△点H、B关于过A点的直线l:y x+对称,△AH=AB=4,过顶点H作HC△AB交AB于C点,则AC=12,2AB HC==△顶点H(1,-,代入二次函数解析式,解得a=,△二次函数解析式为2y x=,答:二次函数解析式为2y x=+.(3)直线AH的解析式为y=+,直线BK的解析式为y=-y xy⎧=⎪⎨⎪=-⎩,解得3xy=⎧⎪⎨=⎪⎩K),则BK=4,△点H、B关于直线AK对称,K,△HN+MN的最小值是MB,过K作KD△x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,则QM=MK,QE=EKAE△QK,△根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,△BK△AH,△△BKQ=△HEQ=90△,由勾股定理得QB8==△HN+NM+MK的最小值为8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称中几何动点最值问题总结
轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。

比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:
(1)两点之间线段最短;
(2)三角形两边之和大于第三边;
(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。

下面对三类线段和的最值问题进行分析、讨论。

(1)两点一线的最值问题:(两个定点+ 一个动点)
问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点, 若AE=2,EM+CM的最小值为( )
A.4 B.8 C. D.
2.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()
A.15° B.22.5° C.30° D. 45°
3.如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE 最小,则这个最小值是 _____________.
4.(2006•)如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是_____________.
5.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是( )
A. B. C. D. 10
6..(2009•)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()
A.2√3 B. 2√6 C. 3 D. √6
(2) 一点两线的最值问题: (两个动点+一个定点)
问题特征:已知一个定点位于平面两相交直线之间,分别在两直线上确定两个动点使线段和最短。

核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:
例1 :如图6,接力赛场上,甲同学站在L1、L2两条交叉跑道之间的任意一点A 处,要将接力棒传给站在L1跑道上的乙同学,乙同学要将接力棒传给站在L2跑道上的丙同学,丙同学跑回A 处,试找出乙丙同学所站的最佳位置使比赛的路程最短。

l 2
l 1
图6
C B
A'
A''
A
Q
R
1. 如图,已知∠AOB 的大小为α,P 是∠AOB 部的一个定点,且OP=2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( )
A .30° B.45° C.60° D.90°
2. 如图,∠AOB=30°,有一点P 且OP=,若M 、N 为边OA 、OB 上两动点,那么△PMN 的周长最小为( )
A .2√6 B.6 C. √6/2 D. √6
3.如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是____________
4. 在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线BC于D,M、N分别是AD与AB 上动点,则BM+MN的最小值是 _________ .
(3)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。

核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

变异类型:
例1 如图4,河岸两侧有、两个村庄,为了村民出行方便,计划在河上修一座桥,桥修在何处才能两村村民来往路程最短?
解析:设桥端两动点为、,那么点随点而动,等于河宽,且垂直于河岸。

将向上平移河宽长到,线段与岸线的交点即为桥端点位置。

四边形为平行四边形,,此时值最小。

那么来往、两村最短路程为:。

2.如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()
A.50 B.50√5 C. 50(√5-1) D. 50(√5-1)
3. (2010年市中考)在平面角坐标系中,矩形的顶点在坐标原点,顶点、分别在轴、轴的正半轴上,,,为边的中点。

(1)若为边上的一个动点,当的周长最小时,求点的坐标;
(2)若,为边上的两个动点,且,当四边形的周长最小时,求点,的坐标。

解析:作点关于轴的对称点,则,。

(1)连接交轴于点,连接,此时的周长最小。

由可知,那么,则。

(2)将向左平移2个单位()到点,定点、分别到动点、的距离和等于为定点、到动点的距离和,即。

从而把“两个定点和两个动点”类问题转化成“两个定点和一个动点”类型。

在上截取,连接交轴于,四边形为平行四边形,。

此时
值最小,则四边形的周长最小。

由、可求直线解析式为,当时,,即,则。

(也可以用(1)中相似的方法求坐标)
(4)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。

核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。

变异类型:演变为多边形周长、折线段等最值问题。

例5 (2009年省中考)如图6,在锐角中,,,的平分线交于点,、分别是和上的动点,则的最小值为 4 。

解析:角平分线所在直线是角的对称轴,
上动点关于的对称点

上,

,当
时,
最小。

作于,交
于,







2:如图9,在矩形ABCD 中,AB=20cm ,BC =10cm ,在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值。

图9
O
M
B'
C
D
A
分析:
在△ABC 中,AB=20cm ,BC =10cm ,由勾股定理得AC==105cm ,由AC ×BO=AB ×BC ,得BO=45cm ,所以BB ’=85cm 。

由△ABC ∽△B ’NB ,得B ’N =16cm ,即BM +MN 的最小值为16cm 。

3 :如图5,∠MON=30°,边OM 、ON 分别有定点A 、D ,OA=2,OD=5,在ON 、OM 边上确定动点B 、C 的位置,使折线ABCD 的长度最短,这时折线ABCD 的长度为()
分析:若A 位于ON 的另一侧,D 位于OM 的另一侧,则连接AD 与OM 、ON 边相交可得B 、C 点的位置。

可以想办法在保
C
B D'
O
N
M
A
持线段AB、CD长度不变的情况下,将点A“搬”至ON的另一侧,将点D“搬”至OM的另一侧,将线段AB、CD“移”至BC所在直线来考虑。

作A关于ON的对称点A’, D关于ON的对称点D’,连接A’D’交ON,OM于点B,C,此时折线ABCD的长度最短,连接OA’,OD’,∠A’OB=∠AOB=∠D’OA=30°,故∠
A’OD’=90°,OA’=OA=2,OD’=OD=5,故折线ABCD的长度等于A’D’=29。

相关文档
最新文档