八年级数学上册整式的乘除(习题及答案)
初二数学整式的乘除与因式分解习题含答案
整式的乘除与因式分解一、选择题1.以下计算中,运算正确的有几个〔 〕(1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (-a+b)(-a-b)=a 2-b 2 (4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.计算〔-2a 3〕5÷(-2a 5)3的结果是〔 〕A 、—2B 、2C 、4D 、—43.假设,那么的值为 〔 〕 A . B .5 C . D .24.假设x 2+mx+1是完全平方式,那么m=〔 〕。
A 、2B 、-2C 、±2D 、±45.如图,在长为a 的正方形中挖掉一个边长为b 的小正方形〔a>b 〕把余下的局部剪拼成一个矩形,通过计算两个图形〔阴影局部〕的面积,验证了一个等式,那么这个等式是〔 〕A .a 2-b 2=(a+b)(a-b)B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 26. ()=+2b a 7, ()=-2b a 3,那么与的值分别是 〔 〕A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.假设2,3=-=+ab b a ,那么=+22b a ,()=-2b a2.a -1a =3,那么a 2+21a的值等于 · 3.如果x 2-kx +9y 2是一个完全平方式,那么常数k =________________;4.假设⎩⎨⎧-=-=+31b a b a ,那么a 2-b 2= ; 5.2m =x ,43m =y ,用含有字母x 的代数式表示y ,那么y =________________;6、如果一个单项式与的积为-34 a 2bc,那么这个单项式为________________;7、〔-2a 2b 3〕3 〔3ab+2a 2〕=________________;8、()()()()=++++12121212242n ________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如以下图所示,那么打包带的长至少要____________〔单位:mm 〕。
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
八年级上册数学整式的乘除与因式分解精选练习题及答案
整式的乘除与因式分解精选练习题(一)一、填空题(每题2分,共32分)1.-x2·(-x)3·(-x)2=__________.2.分解因式:4mx+6my=_________.3.___ ____.4._________;4101×0.2599=__________.5.用科学记数法表示-0.0000308=___________.6.①a2-4a+4,②a2+a+,③4a2-a+,•④4a2+4a+1,•以上各式中属于完全平方式的有______(填序号).7.(4a2-b2)÷(b-2a)=________.8.若x+y=8,x2y2=4,则x2+y2=_________.9.计算:832+83×34+172=________.10..11.已知.12.代数式4x2+3mx+9是完全平方式,则m=___________.13.若,则,.14.已知正方形的面积是(x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式.15.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________.16.已知,那么_______.二、解答题(共68分)17.(12分)计算:(1)(-3xy2)3·(x3y)2;(2)4a2x2·(-a4x3y3)÷(-a5xy2);(3);(4).18.(12分)因式分解:(1);(2);(3);(4).19.(4分)解方程:.20.(4分)长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的.求原面积.21.(4分)已知x2+x-1=0,求x3+2x2+3的值.22.(4分)已知,求的值.3.(4分)给出三个多项式:,,4.(4分)已知,求的值.6.(4分)已知,试判断此三角形的形状.答案一、填空题1.x7 2.3.4.5.6.①②④7.8.12 9.10000 10.11.2 12.13.14. 15. 16.65二、解答题17.(1)-x9y8;(2)ax4y;(3);(4)18.(1);(2);(3);(4)19.3 20.180cm21.4 22.4 23.略24.7 25. 26.等边三角形。
华师大版八年级数学上册《第12章整式的乘除》章节测试含答案
八年级数学华师版整式的乘除章节测试(满分100分,考试时间60分钟)一、选择题(每小题 3 分,共 24 分) 1. 下列计算正确的是( ) A . a 4 + a 5 = a 9 B . (-3a 2 )3 = -9a 6 C . (m 2 )3 · m = m 6 D . (-q ) ·(-q )3 = q 4 2. 下列因式分解正确的是( ) A . x ( x 2 -1) = x 3 - x B . -a 2 + 6a - 9 = -(a - 3)2 C . x 2 + y 2 = ( x + y )2 D . a 3 - 2a 2 + a = a (a + 1)(a -1)3. 若代数式 y 2 + a 可以分解因式,则常数 a 不可以取( ) A .-1 B .-3 C .-4 D .-94. 计算 ( x 2 - 3x + n )( x 2 + mx + 8) 的结果中不含 x 2 和 x 3 的项,则 m ,n 的值为 ( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =85. 若关于 x 的代数式 x 2 + 3x + 2 可以表示为 ( x -1)2+ a ( x -1) + b ,则 a + b 的值为 ( )A .13B .12C .11D .10 6.若 x 2 - xy - 4m 是完全平方式,则 m 为( )A .2116yB .2116y -C .218yD .218y -7. 已知 x 3 + 3x - 2 = 0 ,则 2x 5 + x 4 + 7 x 3 - x 2 + x + 1 的值为( )A .3B .1C .2D .-3 8. 已知 x 2 + ax - 12 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 有( ) A .3 个 B .4 个 C .6 个 D .8 个二、填空题(每小题 3 分,共 21 分) 9. 3211()()=22x x ÷-10. 如果 a = 255 , b = 344 , c = 433 ,判断 a ,b ,c 的大小,用“<”连接为.11. 已知13a a +=,则221a a+的值是 .12. 已知一个多项式与单项式 7 x 3 y 3 的积为 28x 7 y 3 - 21x 5 y 5 + 2 y (7 x 3 y 3 )2 ,则这个 多项式为 .13. 计算:21(1)2-21(1)3-21...(1)9-21(1)=10- .14. 若 x m -2·x 3m= x 6,求12m 2 - m + 1的值为 .15. 设 P = a 2b 2 + 5,Q = 2ab - a 2 - 4a ,若 P =Q ,则 a +b =_ .三、计算题(本大题共 8 小题,满分 55 分) 16. (9 分)把下列各式因式分解.(1) 4x 2 y - 4 y ; (2) 2m 2 - 8mn + 8n 2 ;(3)1 - x 2 + 2xy - y 2 .17. (8 分)计算:(1) ( x - 2)2 - 2(2 - 2x ) - (1 + x )(1 - x ) ;(2) (-2 x 3 y )2·(-2 y ) + (-8x 8 y 3 + 4 x 2 ) ÷ (-2 x 2 ) .18. (8 分)化简求值:(1)已知3x+2 ·5x+2=153x-4 ,求( x-1)2 - 3x( x- 2) - 4 的值;(2)当a = -2 ,b =1 时,求[a2 (a3 +b)(a3 -b) +a2b2]÷231()2a-的值.19. (5 分)已知△ABC 的三边长分别为a,b,c,且满足a2 -16b2 -c2 + 6ab +10bc = 0 ,求证:a +c = 2b .20. (5 分)如果(x + 1) 是多项式x2 -mx +4的一个因式,求m 的值和另一个因式.a -421. (8 分)在求1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的 2 倍,于是她设:S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 ① 然后在①式的两边都乘以 2,得:2S = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 ② 由②-①得 2S - S = 210 -1 ,即 S = 210 -1 . 按照小林的思路:(1)请你计算1 + 6 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 的值; (2)如果把“2”换成字母“a ”(a ≠0 且 a ≠1),能否求出 1 + a + a 2 + a 3 + a 4 + … + a 2016 的值?22. (5 分)如图,王大妈家有一块边长为 a 米的正方形土地租给了邻居李大爷 种植.今年,她对李大爷说:“我把你这块地一边减少 4 米,另一边增加 4 米,继续租给你,你也没吃亏,你看如何?”李大爷一听,就答应了.同学 们,你认为李大爷吃亏了吗,为什么?4a -4a 423. (7 分)请用几何图形直观地解释(a + 2b)(2a +b) = 2a2 +5ab + 2b2 .。
初中数学整式的乘除法练习题(附答案)
初中数学整式的乘除法练习题一、单选题1.下列运算正确的是( )A.236a a a ⋅=B.22423a a a +=C.236(2)2a a -=- D.422()a a a ÷-= 2.计算结果为256x x --的是( )A .()(61)x x -+B .()(23)x x -+C .()(61)x x +-D .()(23)x x +-3.已知222610x y x y +--=-,那么20182x y 的值为( ) A.19 B.9 C.1 D.24.下列各式从左到右的变形中,是因式分解的为( )A.()a x y ax ay +=+B.()24444x x x x -+=-+C.()2105521x x x x -=-D.()()24416x x x +-=-5.若2()(3)x a x x x n +-=+-,则( )A.4,12a n =-=B.4,12a n =-=-C.4,12a n ==-D.4,12a n ==6.计算2201820192017-⨯的结果是( )A.-1B. 0C.1D. 4 0347.计算101100205⨯⋅的结果正确的是( )A. 1B. 2C. 0.5D. 108.下列计算正确的是( )A.22(3)(3)9x y x y x y -+=-B.2(9)(9)9x x x -+=-C.22()()x y x y x y --+=-D.2211()24x x -=-9.如果单项式23212a x y --和32713a b x y +--的和仍为单项式,那么他们的乘积为( ) A. 6423x y - B. 3216x y - C. 6416x y - D. 6416x y 二、解答题 10.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中12,2a b =-=. 11.甲、乙两人共同计算一道整式乘法:(2)(3)x a x b ++,由于甲抄错了第一个多项式中a 的符号,得到的结果为261110x x +-;由于乙漏抄了第二个多项式中x 的系数,得到的结果为22910x x -+.请你计算出,a b 的值,并写出这道整式乘法的正确结果.12.某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下:原式()2222a ab a b =+--(第一步)2222a ab a b =+--(第二步)22.ab b =-(第三步) (1)该同学解答过程从第_____________步开始出错,错误原因是____________;(2)写出此题正确的解答过程.13.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+ (1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 14.已知ABC 的三边长,,a b c 满足20a bc ab ac --+=.求证:ABC 是等腰三角形.三、计算题15.用简便方法计算:(1)298;(2)99101⨯.16.已知440,235m n m n +=-=,求()()2223m n m n +--的值.17.化简求值:2222111[()()](2)222x y x y x y ++--,其中3,4x y =-=.18.计算:()322322433431242x y xy x y x y ⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭. 四、填空题19.若长方形的面积是2327a ab a ++,宽为a ,则它的长为 .20.若22116a b -=-,14a b +=-,则a b -的值为 . 21.如果(221)(221)63a b a b +++-=,那么a b +的值为 .22.已知248(1)16x n x n +++是一个关于x 的完全平方式,则常数n 的值为 . 参考答案1.答案:D解析: A 选项,原式5a =,所以A 选项错误;B 选项,原式23a =,所以B 选项错误;C 选项,原式68a =-,所以C 选项错误;D 选项,原式422a a a =÷=,所以D 选项正确.故选D.2.答案:A解析:3.答案:B解析:222610x y x y +--=-,()()22130x y ∴-+-=,1,3x y ∴==,2018220182139x y =⨯=.4.答案:C解析:A 选项是整式乘法,错误;B 选项中右边的结果不是积的形式,错误;C 选项是因式分解,正确;D 选项中右边不是积的形式,错误.故选C.5.答案:D解析:2()(3)33x a x x x ax a +-=-+-22(3)3x a x a x x n =+--=+-,则31,3a a n -=-=-,解得4,12a n ==.故选D.6.答案:C解析:2201820192017-⨯22018(20181)(20181)=-+-()222018201811=--=.7.答案:B解析:原式10010010022052(205)2=⨯⨯⋅=⨯⨯⋅=. 8.答案:A解析: A 选项,原式229x y =-,正确;B 选项,原式281x =-,错误:C 选项,原式222x xy y =-+-,错误;D 选项,原式214x x =-+,错误.故选A. 9.答案:C解析:单项式23212a x y --和32713a b x y +--的和仍为单项式,∴ 2327=2a b a b -=⎧⎨+-⎩解得3=3a b =⎧⎨⎩故单项式23212a x y --和32713a b x y +--的乘积6416x y -. 10.答案:解:原式2222244484a b a ab b b ab =--+-+=,当12,2a b =-=时,原式4=-. 解析:11.答案:∵甲得到的算式: ()()()222362361110x a x b x b a x ab x x -+=+--=+-对应的系数相等, 2311b a -=,10ab =, 乙得到的算式: ()()()222222910x a x b x b a x ab x x ++=+++=-+对应的系数相等, 29b a +=-,10ab =,∴231129b a b a -=+=-⎧⎨⎩解得: 52a b =-⎧⎨=-⎩.∴正确的式子: ()()2253261910x x x x --=-+.解析:12.答案:(1)二;去括号时没有变号(2)(2)()()a a b a b a b +-+-()2222222222.a ab a b a ab a b ab b =+--=+-+=+解析:13.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:14.答案:因为20a bc ab ac --+=,所以20a ab bc ac --+=,所以()2()0,()()0a ab ac bc a a b c a b -+-=-+-=,则()()0a b a c -+=,因为0a c +≠,所以0a b -=,所以a b =,所以ABC 是等腰三角形.解析:15.答案:解:(1)原式222(1002)10024009604=-=+-=(2)原式2(1001)(1001)10011000019999=-⨯+=-=-=解析:16.答案:()()2223m n m n +-- ()()2323m n m n m n m n =++-+-+()()432m n n m =+-()()423m n m n =-+-.当440,235m n m n +=-=时,原式405200=-⨯=-.解析:17.答案:原式222211(2)(2)22x y x y =+-44144x y =-. 把3,4x y =-=代入得,原式260=.解析:18.答案:解:原式962486342714644x y x y x y x y =-⋅-⋅ 11101110271164x y x y =-- 11103116x y =-. 解析:19.答案:327a b ++解析:由题意可知长方形的长为2(3)27327ab a a a b a ++÷=++.故答案为327a b ++.20.答案:14解析:221()()16a b a b a b -=+-=-,14a b +=-,14a b ∴-=.21.答案:4±解析:(221)(221)63a b a b +++-=,22(22)163a b ∴+-=,2(22)64a b ∴+=,则228a b +=±.两边同时除以2,得4a b +=±.22.答案:1解析:()248116x n x n +++是一个关于x 的完全平方式11n n ∴+=±=。
(完整版)整式的乘除测试题(3套)及答案
21、(本题8分)若=2005, =2006,=2007,求的值。
a b c ac bc ab c b a ---++2
2222
、(本题8分).说明代数式的值,与的值无关。
[]
y y y x y x y x +-÷-+--)2())(()(2y 23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块, 规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面
积是多少平方米? 并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算. 现有一居民本月用水x 吨,则应交水费多少元?
a
e m
i
t
ma
mx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;
,24时如果元应交水费时解如果 63
,2,3===原式时当b a
i n t h e i r b
e i n
g a
r e
g o
六、解答题(每题4分,共12分)
38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.
39.已知2x+5y=3,求4x ·32y 的值.
40.已知a 2+2a+b 2-4b+5=0,求a ,b 的值.。
八年级数学上册 整式的乘除(习题及答案)(人教版)
整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。
初中数学整式的乘除练习题及参考答案
初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。
]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。
八年级数学上册第13章整式的乘除测试题及答案
八年级(上)数学检测题第十四章 勾股定理(80分钟,满分100分)班级 姓名 座号 得分一、选择题(每题3分,共30分)1.下列运算中,正确的是 ( )A .2054a a a =B .4312a a a =÷C .532a a a =+D .a a a 45=-2.÷c b a 468( )=224b a ,则括号内应填的代数式是 ( )A 、c b a 232B 、232b aC 、c b a 242D 、c b a 2421 3.下列从左边到右边的变形,属于因式分解的是 ( )A. 1)1)(1(2-=-+x x xB. 1)2(122+-=+-x x x xC. )4)(4(422y x y x y x -+=-D. )3)(2(62-+=--x x x x4、如果:()159382b a b a n m m =⋅+,则 ( )A 、2,3==n mB 、3,3==n mC 、2,6==n mD 、5,2==n m5.若x 2+2(m-3)x+16是完全平方式,则m 的值等于…………………( )A.3B.-5C.7.D.7或-16、下列多项式相乘,不能用平方差公式计算的是( )A 、(x -2y)(2y+x)B 、(-2y -x)(x+2y)C 、(x -2y)(-x -2y)D 、(2y -x)(-x -2y) 7、下列各式是完全平方式的是( )A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8、矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为 ( )A 、2c ac ab bc ++-B 、2c ac bc ab +--C 、ac bc ab a -++2D 、ab a bc b -+-22 9、将12-x 4+8分解因式正确的是( ) A 、12-(x 4-16) B 、12-(x 2+4)(x 2-4) C 、12-(x 2+4)(x+2)(x -2) D 、12-(x 2+2)(x 2-2)2 10、把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b)4D 、(a+b)2⋅(a -b)2二、填空题(每题3分,共30分)11.计算 -a ⋅(-a)2⋅(-a)3=______ ._______2142=÷-a b a ._____)2(23=-a 12.计算:.___________________)3)(2(=+-x x (-2x -3)(-2x+3)=_____________13.计算:._________________)12(2=-x (2x -2)(3x+2)=___________。
整式的乘除计算练习题及答案
整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题示范
例 1:计算 (2 x3y)2 ( 2y) ( 8x8 y3 4x2 ) ( 2x2 ) . 【操作步骤】 ( 1)观察结构划部分: (2 x3 y)2 ( 2 y) ( 8x8y3 4x2) ( 2x2)
①
②
( 2)有序操作依法则:辨识运算类型,依据对应的法则运算.
第一部分:先算积的乘方,然后是单项式相乘;
③(
23
2x )
(
3
3x
y)
2
;
④ 3b3 ( 2ac) ( 2ab) 2 .
2. ① 3xy2 (2 xz2 3x2 y) _____________________;
② 4xy 1 y3 2 ____________bc
___________________;
③ ( 4m2n4 8m4n2 ) (2 mn) 2 _______________;
第2页 共5页
④ ___________________ m2
mn2
3n
1 .
2
8. 计算:
① ( 4a3c2 )2 (4a3c2 ) ( a2c) ( 2ac );
② 4(a2 a 2) (2 a 1)2 ;
③ (a
2b )(2 a
b)
3
(a b
3
2ab )
( ab) .
思考小结
1. 老师出了一道题,让学生计算 (a b)( p q) 的值. 小聪发现这是一道“多 ×多”的问题,直接利用握手原则展开即可. (a b)( p q) =
第3页 共5页
3
4
④ (2 ab 2 )2 (2 a 2 b ) ________________________;
⑤ a (3a 3 2a 2 3a 1) ____________________.
3. ① ( x 3y)( x 3 y) ;
② (a 2b)(a 2b 1) ;
第1页 共5页
③ ( 2m 3n)(2 m 4n) ;
第二部分:多项式除以单项式的运算.
( 3)每步推进一点点.
【过程书写】
解:原式 4x6 y2 ( 2y) (4 x6 y3 2)
8x6 y3 4x6 y3 2
4x6y3 2
巩固练习
1. ① 5a 3b2 ( ab 2 ) ________________;
② ( m)3 ( 2m2n2 ) ________________;
④ ( x 2 y)2 ;
⑤ (a b c)( a b c) .
4. 若长方形的长为 (4 a2 2a 1) ,宽为 (2 a 1) ,则这个长方形的面积为 ( )
A. 8a3 4a2 2a 1
B. 8a3 1
C. 8a3 4a2 2a 1
D. 8a3 1
5. 若圆形的半径为 (2 a 1) ,则这个圆形的面积为(
④ ( 2x2 y)3 (__________) 2x3 y2 ;
⑤ ( m2n)3 (6m6n3) ( 12 mn2 ) _________.
7. ① (3x3yz 2x2 y) ( 3xy) ____________;
② 1 a 2b3 2a 3b 2 3a 4b 2
1 a2b _______________; 2
)
A. 4 a 2 C. 4 a2 4 a
B. 4 a2 4 a 1 D. 4a2 4a 1
6. ① 2x3 yz2
2 xy
__________________;
3
② ( a3b2 ) ( 2a3b2) ________________;
③ (2 x2 y)3 ( xy)2 ___________;