二次函数 (06)
二次函数y=ax2+bx+c的图象和性质(七大类型)(题型专练)(原卷版)

专题06 二次函数y=ax2+bx+c的图象和性质(七大类型)【题型1:二次函数的y=ax2+bx+c顶点、对称轴与最值问题】【题型2: 二次函数y=ax2+bx+c图像变换问题】【题型3:二次函数y=ax2+bx+c的性质】【题型4:二次函数y=ax2+bx+c的y值大小比较】【题型5:二次函数y=ax2+bx+c的最值问题探究】【题型6: 二次函数y=ax2+bx+c的图像问题】【题型7: 二次函数y=ax2+bx+c中a,b,c系数间的关系】【题型1:二次函数的y=ax2+bx+c顶点、对称轴问题】1.(2023•高阳县校级模拟)抛物线y=x2﹣2x﹣3的顶点为()A.(1,﹣4)B.(1,4)C.(0,﹣3)D.(2,﹣3)2.(2022秋•合川区期末)抛物线y=﹣x2﹣6x的顶点坐标是()A.(﹣3,9)B.(﹣3,﹣9)C.(3,﹣9)D.(3,9)3.(2023春•宁波月考)已知抛物线y=ax2+bx+2经过A(4,9),B(12,9)两点,则它的对称轴是()A.直线x=7B.直线x=8C.直线x=9D.无法确定4.(2022秋•连平县校级期末)二次函数y=ax2+bx+c图象上部分点的坐标满足下表,则该函数图象的顶点坐标为()x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)5.(2022秋•南充期末)若二次函数y=x2+2x+c﹣1图象的顶点在x轴上,则常数c的值为()A.c=2B.c=1C.c=﹣2D.c=06.(2022秋•新会区期末)二次函数y=﹣x2+2x+m图象的顶点坐标是(1,3),则m=()A.1B.2C.3D.57.(2022秋•兰山区校级期末)已知抛物线的解析式为y=﹣x2﹣6x﹣7,则这条抛物线的顶点坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)8.(2023•亳州模拟)下列抛物线中,与抛物线y=x2﹣2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2﹣4x C.y=2x2﹣x+4D.y=﹣2x2+4x 9.(2023春•宁波月考)已知抛物线y=ax2+bx+2经过A(4,9),B(12,9)两点,则它的对称轴是()A.直线x=7B.直线x=8C.直线x=9D.无法确定【题型2: 二次函数y=ax2+bx+c图像变换问题】10.(2021秋•门头沟区期末)如果将抛物线y=2x2先向左平移2个单位,再向上平移3个单位后得到一条新的抛物线,这条新的抛物线的表达式是()A.y=2(x﹣2)2+3B.y=2(x+2)2﹣3C.y=2(x﹣2)2﹣3D.y=2(x+2)2+311.(2023•温州二模)将二次函数y=x2﹣8x+2的图象向左平移m(m>0)个单位后过点(5,2),则m的值为()A.2B.3C.4D.512.(2023•双流区模拟)在平面直角坐标系中,如果抛物线y=﹣x2+2x﹣1经过平移可以与抛物线y=﹣x2互相重合,那么这个平移是()A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位13.(2023•神木市一模)把抛物线y=x2+bx+c向右平移4个单位,再向下平移3个单位,得到抛物线y=x2﹣4x+3,则b、c的值分别为()A.b=﹣12,c=32B.b=4,c=﹣3C.b=0,c=6D.b=4,c=614.(2023•阳泉二模)某抛物线向右平移1个单位,再向上平移4个单位后得到的表达式为y=x2﹣6x+14,则原抛物线的表达式为()A.y=x2﹣4x+1B.y=x2﹣4x+5C.y=x2﹣8x+25D.y=x2﹣8x+17 15.(2023•宁波模拟)将抛物线y=x2+4x+3向右平移n(n>0)个单位得到一条新抛物线,若点A(2,y1),B(4,y2)在新抛物线上,且y1>y2,则n 的值可以是()A.3B.4C.5D.6 16.(2023•涡阳县模拟)将二次函数y=x2﹣2x+2的图象向上平移2个单位长度,再向左平移2个单位长度,得到的抛物线的表达式为()A.y=x2﹣2x+3B.y=x2﹣2x+4C.y=x2+2x+4D.y=x2+2x+3 17.(2023•宛城区校级模拟)将抛物线y=x2﹣2x+1向上平移2个单位长度,再向左平移3个单位长度,得到抛物线y=x2+bx+c,则b,c的值为()A.b=﹣8,c=18B.b=8,c=14C.b=﹣4,c=6D.b=4,c=6 18.(2023•坪山区一模)把二次函数y=x2+2x+1先向右平移2个单位长度,再向上平移1个单位长度,新二次函数表达式变为()A.y=(x+3)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2+1 D.y=(x+3)2﹣1【题型3:二次函数y=ax2+bx+c的性质】19.(2022秋•巩义市期末)已知抛物线y=x2﹣2x+3,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=1C.抛物线的顶点坐标为(1,2)D.当x>1时,y随x的增大而减小20.(2022秋•西湖区期末)已知二次函数y=ax2+bx+c,函数值y与自变量x的部分对应值如表:x…﹣10123…y…188202…则当y>8时,x的取值范围是()A.0<x<4B.0<x<5C.x<0或x>4D.x<0或x>5 21.(2023•碑林区校级模拟)已知二次函数y=x2﹣2x﹣2,当y>1时,则x的取值范围为()A.﹣1<x<3B.﹣3<x<1C.x<﹣1或x>3D.x<﹣3或x>1 22.(2023•成都模拟)下列关于抛物线y=x2+4x﹣5的说法正确的是()①开口方向向上;②对称轴是直线x=﹣4;③当x<﹣2时,y随x的增大而减小;④当x<﹣5或x>1时,y>0.A.①③B.①④C.①③④D.①②③④23.(2022秋•绵阳期末)抛物线y=ax2+bx+c(a≠0)中,y与x的部分对应值如表:x…1346…y…8182018…下列结论中,正确的是()A.抛物线开口向上B.对称轴是直线x=4C.当x>4时,y随x的增大而减小D.当x<4.5时,y随x的增大而增大24.(2022秋•巩义市期末)已知抛物线y=x2﹣2x+3,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=1C.抛物线的顶点坐标为(1,2)D.当x>1时,y随x的增大而减小25.(2022秋•苏州期末)若抛物线y=x2+ax+2的对称轴是y轴,则a的值是()A.﹣2B.﹣1C.0D.2 26.(2023•会昌县模拟)已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣10123…y…30﹣1m3…则以下结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=﹣1C.m的值为0D.抛物线不经过第三象限27.(2022秋•槐荫区期末)下列关于抛物线y=x2+2x﹣3的说法正确的是①开口方向向上;②对称轴是直线x=﹣2;③当x<﹣1时,y随x的增大而减小;④当x<﹣1或x>3时,y>0.()A.①③B.①④C.①③④D.①②③④28.(2023•青白江区模拟)已知二次函数y=﹣2x2+8x﹣7,下列结论正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,﹣1)C.当x<0时,y随x的增大而增大D.与x轴只有一个交点【题型4:二次函数y=ax2+bx+c的y值大小比较】29.(2023•天宁区模拟)已知点A(m,y1)B(m+2,y2)、C(x0,y0)在二次函数y=ax2+2ax+c(a≠0)的图象上,且C为抛物线的顶点.若y0≥y2>y1,则m的取值范围是()A.m<﹣3B.m>﹣3C.m<﹣2D.m>﹣2 30.(2023•碑林区校级模拟)已知抛物线:y=mx2﹣2mx+8(m≠0),若点A (x1,y1),B(x2,y2),C(4,0)均在该抛物线上,且x1<﹣2<x2<4,则下列结论正确的是()A.y1>y2>0B.0>y2>y1C.0>y1>y2D.y2>0>y1 31.(2022秋•盐湖区期末)抛物线y=a(x﹣2)2+k的开口向上,点A(﹣1,y1),B(3,y2)是抛物线上两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法比较32.(2023•碑林区校级模拟)已知二次函数y=﹣x2+2x﹣3,点A(x1,y1)、B (x2,y2)在该函数图象上,若x1+x2>2,x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法判断33.(2023•灞桥区校级模拟)已知点A(n,y1)、B(n+2,y2)、C(x,y0)在二次函数y=ax2+4ax+c(a≠0)的图象上,且C为抛物线的顶点,若y0≥y1>y2,则n的取值范围是()A.n>﹣3B.n<﹣3C.n<﹣2D.n>﹣2 34.(2023•莲池区二模)已知点A(n﹣2,y1),B(n,y2)在二次函数的y=﹣x2+2x+3图象上,若y1<y2,则n的取值范围为()A.n≤1B.n<2C.1<n<2D.n>2【题型5:二次函数y=ax2+bx+c的最值问题探究】35.(2023•山丹县模拟)二次函数y=2x2﹣8x﹣2的最小值是()A.﹣2B.﹣10C.﹣6D.6 36.(2022秋•汝阳县期末)二次函数y=ax2+bx的图象如图所示,当﹣1<x<m时,y随x的增大而增大,则m的取值范围是()A.m>1B.﹣1<m≤1C.m>0D.﹣1<m<2 37.(2022秋•蔡甸区校级月考)已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣638.(2023•碑林区校级模拟)已知二次函数y=mx2﹣2mx+2(m≠0)在﹣2≤x<2时有最小值﹣2,则m=()A.﹣4或﹣B.4或﹣C.﹣4或D.4或39.(2022秋•沈河区校级期末)二次函数y=﹣x2﹣4x+c的最大值为0,则c 的值等于()A.4B.﹣4C.﹣16D.1640.(2022秋•桥西区校级期末)已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣4,则m等于()A.5B.﹣5或C.5或D.﹣5或41.(2022秋•长安区期末)若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4B.b=﹣2,c=﹣4C.b=2,c=﹣4D.b=﹣2,c=4 42.(2022秋•宜阳县期末)当x=﹣时,二次函数y=2x2+3x﹣1的函数值最小.43.(2022秋•东丽区期末)当m≤x≤m+1,函数y=x2﹣2x+1的最小值为1,则m的值为.44.(2022秋•天河区校级期末)当a﹣2≤x≤a+1时,函数,y=﹣x2+2x+3的最大值为3,则a的值为.【题型6: 二次函数y=ax2+bx+c的图像问题】45.(2023•大观区校级二模)二次函数y=ax2+bx+c的图象如图所示,则一次函数的图象可能是()A.B.C.D.46.(2023•老河口市模拟)二次函数y=mx2+2x+n(m≠0)与一次函数y=mx+mn 在同一平面直角坐标系中的图象可能是()A.B.C.D.47.(2023•全椒县一模)如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)与一次函数y=acx+b的图象可能是()A.B.C.D.48.(2023•莱芜区模拟)一次函数y=ax+bc与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.49.(2023•莱芜区模拟)一次函数y=ax+bc与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【题型7: 二次函数y=ax2+bx+c中a,b,c系数间的关系】50.(2023•顺庆区校级三模)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc>0.②2a+b<0.③4a+2b+c<0.④4ac﹣b2>8a.⑤a≤﹣1.其中,结论正确的个数有()A.2个B.3个C.4个D.5个51.(2023•兴庆区模拟)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a ≠0)的图象如图所示,个结论:①abc>0;②2a+b=0;③9a+3b+c>0;④b2>4ac;⑤当x=1数有最大值;⑥当0<x<1时,函数y的值随x的增大而减小;其中正确的序号有()A.①②④B.②③⑤C.④⑤⑥D.②④⑤52.(2023•潮南区模拟)如图,二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象经过点A(1,0),其对称轴为直线x=﹣1,有下列结论:①abc>0:②2a+c>0;③函数的最大值为﹣4a;④当﹣3≤x≤0时,0≤y≤c.其中正确结论的个数是()A.4B.1C.2D.3。
二次函数图像与性质完整归纳

二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
2020年中考数学二次函数压轴题核心考点突破06瓜豆原理

A
D
F
G
B
E
C
【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求 CG 最小值,可以将 F 点看成是由点 B 向点 A 运动,由此作出 G 点轨迹:
考虑到 F 点轨迹是线段,故 G 点轨迹也是线段,取起点和终点即可确定线段位置,
初始时刻 G 点在 G1 位置,最终 G 点在 G2 位置( G2 不一定在 CD 边),G1G2 即为 G
引例 2:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,作 AQ⊥AP 且 AQ=AP. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
Q
A
P
O
【分析】Q 点轨迹是个圆,可理解为将 AP 绕点 A 逆时针旋转 90°得 AQ,故 Q 点轨迹与 P 点轨迹都是圆.接下来确定圆心与半径.
A
D
E
F
B
O
C
【分析】E 是主动点,F 是从动点,D 是定点,E 点满足 EO=2,故 E 点轨迹是以 O 为圆心,2 为半径的圆.
A
D
E
F
B
O
C
考虑 DE⊥DF 且 DE=DF,故作 DM⊥DO 且 DM=DO,F 点轨迹是以点 M 为圆心, 2 为半径的圆.
A
D
E
B
O
C
M F
专题06 二次函数最小值问题(解析版)

∴△QEF周长的最小值为 ,此时Q( , ).
4.如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且AO:BN=1:7.
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的任意一点,过点P作直线l的垂线,垂足为M.求证:点P在线段FM的垂直平分线上;
(3)点E为线段OA的中点,在抛物线上是否存在点Q,使△QEF周长最小?若存在,求点Q的坐标和△QEF周长的最小值;若不存在,请说明理由.
【解答】解:(1)∵y=ax2+bx+c(a≠0)过原点O和点A(3,﹣3),
=(m﹣1)4+ (m﹣1)2+ ,
∴PM2=PF2,
∴PM=PF,
∴点P在MF的垂直平分线上,
(3)如图,E( ),EF= ,
作QN⊥l于N,由(2)知:QN=QF,
∴要想△QEF的周长最小,只要使EQ+QN最小,
作EN'⊥l于N',交抛物线于Q',
∵EQ+QN≥EN',
∴E、Q、N三点共线时,EQ+QN最小,
∴PE×PF最大时,PE×PD也最大,
∴PE×PD=(k+1)(3﹣ k)=﹣ k2+ k+3,
∴当k= 时,PE×PD最大,即:PE×PF最大,
此时G(5, ),
∵△MNB是等腰直角三角形,过B作x轴的平行线,
∴ BH=B1H,GH+ BH的最小值转化为求GH+HB1的最小值,
专题06二次函数的图象与性质(1)(5个知识点4种题型1个易错点)原卷版-初中数学北师大版9年级上册

专题06二次函数的图象与性质(1)(5个知识点4种题型1个易错点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.二次函数2x y =与2x y -=的图象及性质知识点2.二次函数)0(2≠=a ax y 的图象及性质(重点)知识点3.二次函数)0(2≠+=a k ax y 的图象及性质(重点)知识点4.二次函数)0()(2≠-=a h x a y 的图象与性质(重点)知识点5.二次函数)0()(2≠+-=a k h x a y 的图象与性质(重点)【方法二】实例探索法题型1.判断二次函数图象的开口大小题型2.二次函数与一次函数的综合题型3.画二次函数的图象题型4.二次函数与几何图形的综合【方法三】差异对比法易错点:忽略了二次函数二次项系数a 的作用【方法四】成果评定法【学习目标】1.掌握二次函数)0(),0(,222≠+=≠==a c ax y a ax y x y 图象的画法及性质,并了解三个函数之间的关系。
2.掌握二次函数)0()(),0()(22≠+-=≠-=a k h x a y a h x a y 图象的画法及性质,并了解)0()()0(22≠+-=≠=a k h x a y a ax y 与图象之间的关系。
3.能灵活运用二次函数)0(2≠=a ax y 与)0()(2≠+-=a k h x a y 图象之间的关系解决问题。
4.重点:二次函数)0()(2≠+-=a k h x a y 图象的画法及性质5.难点:二次函数)0()(2≠+-=a k h x a y性质的应用【倍速学习四种方法】【方法一】脉络梳理法知识点1.二次函数2x y =与2x y -=的图象及性质二次函数y =±x 2的图象与性质抛物线y =x 2y =-x2顶点坐标(0,0)(0,0)对称轴y 轴y 轴开口方向向上向下增减性在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x 的增大而增大在对称轴的左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小最值当x =0时,有最小值0当x =0时,有最大值0【例1】已知二次函数y =x 2的图象与直线y =x +2的图象如图所示.(1)判断y =x 2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标;(2)设直线y =x +2与抛物线y =x 2的交点分别为A ,B ,如图所示,试确定A ,B 两点的坐标;(3)连接OA ,OB ,求△AOB 的面积.【变式】已知二次函数y =x 2,当-1≤x ≤2时,求函数y 的最小值和最大值.小王的解答过程如下:解:当x=-1时,y=1;当x=2时,y=4;所以函数y的最小值为1,最大值为4.小王的解答过程正确吗?如果不正确,写出正确的解答过程.【例2】观察二次函数y=-x2的图象,请问:(1)什么时候y随x的增大而增大?什么时候y随x的增大而减小?(2)什么时候函数有最大值或最小值?其最大值或最小值是多少?【变式】函数y=ax2(a≠0)与直线y=x-2交于点(1,b).(1)求a,b的值.(2)x取何值时,y随x的增大而增大?知识点2.二次函数)0axy的图象及性质(重点)=a(2≠二次函数y=ax2(a≠0)的图象的性质,见下表:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.│a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大, 图象两边越靠近x 轴.【例3】.(2023秋•普陀区期末)下列关于抛物线y =2x 2和抛物线y =﹣2x 2的说法中,不正确的是()A .对称轴都是y 轴B .在y 轴左侧的部分都是上升的C .开口方向相反D .顶点都是原点【变式】.(2023秋•琼山区校级期中)已知抛物线y =(3m ﹣1)x 2的开口向下,则m 的取值范围是()A .B .C .D .知识点3.二次函数)0(2≠+=a k ax y 的图象及性质(重点)关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>>2(0,0)y ax c a c =+<>图象开口方向向上向下顶点坐标(0,c)(0,c)对称轴y轴y轴函数变化当0x>时,y随x的增大而增大;当0x<时,y随x的增大而减小.当0x>时,y随x的增大而减小;当0x<时,y随x的增大而增大.最大(小)值当0x=时,y c=最小值当0x=时,y c=最大值【例4】.(2023秋•日喀则市期末)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.知识点4.二次函数)0()(2≠-=ahxay的图象与性质(重点)一般地,二次函数()2y a x m=+的图像是抛物线,称为抛物线()2y a x m=+,它可以通过将抛物线2y ax=向左(0m>时)或向右(0m<时)平移m个单位得到.抛物线()2y a x m=+(其中a、m是常数,且0a≠)的对称轴是过点(-m,0)且平行(或重合)于y轴的直线,即直线x=-m;顶点坐标是(-m,0).当0a>时,开口向上,顶点是抛物线的最低点;当0a<时,开口向下,顶点是抛物线的最高点.【例5】.(2023秋•西昌市校级期末)y=ax+b与y=a(x+b)2在同一坐标系中的图象可能是()A .B .C .D .知识点5.二次函数)0()(2≠+-=a k h x a y 的图象与性质(重点)二次函数()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的图像即抛物线()2y a x m k =++,可以通过将抛物线2y ax =进行两次平移得到.这两次平移可以是:先向左(0m >时)或向右(0m <时)平移m 个单位,再向上(0k >时)或向下(0k <时)平移k 个单位.利用图形平移的性质,可知:抛物线()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的对称轴是经过点(m -,0)且平行于y 轴的直线,即直线x =m -;抛物线的顶点坐标是(m -,k ).抛物线的开口方向由a 所取值的符号决定,当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点.【例6】.(2022秋•环江县期末)二次函数y =2(x +2)2﹣1的图象是()A .B .C .D .【变式1】.(2023•长兴县一模)抛物线y =2(x +9)2﹣3的顶点坐标是()A .(9,3)B .(9,﹣3)C .(﹣9,3)D .(﹣9,﹣3)【变式2】.(2023秋•西山区校级月考)在直角坐标系中,将抛物线y =﹣2x 2先向下平移1个单位长度,再向左平移2个单位长度,所得新抛物线的解析式为()A .y =﹣2(x +1)2﹣2B .y =﹣2(x ﹣1)2+2C .y =﹣2(x +2)2﹣1D .y =﹣2(x ﹣2)2+1【方法二】实例探索法题型1.判断二次函数图象的开口大小1.(1)在同一平面直角坐标系中,画出函数212y x =、22y x =的图像;(2)函数212y x =、22y x =的图像与函数2y x =的图像,有何异同?2.(1)在同一平面直角坐标系中,画出函数2y x =-、212y x =-、22y x =-的图像;(2)函数2y x =-、212y x =-、22y x =-的图像与函数2y x =、212y x =、22y x =的图像有何异同?题型2.二次函数与一次函数的综合3.已知直线423y x =+上有两个点A 、B ,它们的横坐标分别是3和-2,若抛物线2y ax =也经过点A ,试求该抛物线的表达式.该抛物线也经过点B 吗?请说出你的理由.4.物线2=与直线23y ax=-交于点(1,b).y x(1)求a和b的值;(2)求抛物线的解析式,并求顶点坐标和对称轴;(3)当x取何值时,二次函数的y值随x的增大而增大.题型3.画二次函数的图象(1)根据已知的图像部分画出这个函数图象的另一部分(直接在网格中作图即可)--,是否在这个函数图象上,说明理由.(2)判断点(24)y=时对应的函数图象在第一象限的点的坐标.(3)求当4题型4.二次函数与几何图形的综合6.有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.【方法三】差异对比法易错点:忽略了二次函数二次项系数a 的作用7.抛物线2y ax =与225y x =的形状相同,则a 的值为______.【方法四】成果评定法一.选择题(共9小题)1.(2023秋•长春期末)若点A 在二次函数2(5)4y x =--图象的对称轴上,则点A 的坐标可能是()A .(5,0)-B .(5,0)C .(0,4)D .(0,4)-2.(2023秋•新宾县期末)抛物线221y x =-+通过变换可以得到抛物线22(1)3y x =-++,以下变换过程正确的是()A .先向右平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向下平移2个单位D .先向左平移1个单位,再向上平移2个单位3.(2023秋•西城区校级月考)已知点1(3,)A y -,2(1,)B y ,3(4,)C y 在抛物线2(2)y x k =--+上,则1y ,2y ,3y 的大小关系是()A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<4.(2023秋•绿园区期末)二次函数24(2)5y x =---的顶点坐标是()A .(2,5)-B .(2,5)C .(2,5)--D .(2,5)-5.(2022秋•上虞区期末)已知二次函数22y ax c =+,当2x =时,函数值等于8,则下列关于a ,c 的关系式中,正确的是()A .28a c +=B .24a c +=C .28a c -=D .24a c -=6.(2022秋•东阿县期末)已知1a >,点1(1,)A a y -,2(,)B a y ,3(1,)C a y +都在二次函数22y x =-的图象上,则()A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y <<7.(2022秋•柯城区期末)将抛物线23y x =-向右平移1个单位,再向上平移2个单位后,得到的新的抛物线的解析式为()A .23(1)2y x =-++B .23(1)2y x =---C .23(1)2y x =-+-D .23(1)2y x =--+8.(2023秋•明光市期中)抛物线23y x =--的顶点坐标为()A .(3,1)--B .(1,3)--C .(0,3)-D .(2,3)-9.(2022秋•抚松县期末)已知二次函数2()1y x a =-+,当12x -时,y 的最小值为1a +,则a 的值为()A .0或1B .0或4C .1或4D .0或1或4二.填空题(共8小题)10.(2023秋•日喀则市期末)抛物线2(1)2y x =++的顶点坐标为.11.(2023秋•西城区校级月考)将二次函数y =2x 2的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是.12.(2023秋•普陀区期末)如图,抛物线24y x x =-+的顶点为P ,M 为对称轴上一点,如果PM OM =,那么点M 的坐标是.13.(2023秋•普陀区期末)已知点A 在抛物线2(1)2y x =-+上,点A '与点A 关于此抛物线的对称轴对称,如果点A 的横坐标是1-,那么点A '的坐标是.14.(2023秋•徐汇区期末)将抛物线2y x =-向右平移后,所得新抛物线的顶点是B ,新抛物线与原抛物线交于点A (如图所示),联结OA 、AB ,如果AOB ∆是等边三角形,那么点B 的坐标是.15.(2023秋•宣化区期中)如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(1,1)、(1,4)、(4,4).若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是.16.(2022秋•松北区校级期末)二次函数2(1)5y x =-++的最大值是.17.(2022秋•凤山县期末)如图,把抛物线22y x =向左平移2个单位长度,再向下平移8个单位长度得到抛物线l ,抛物线l 的顶点为P ,它的对称轴与抛物线22y x =交于点Q ,则图中阴影部分的面积为.三.解答题(共5小题)18.(2022秋•东阿县期末)如图,A ,B ,C ,D 四点在抛物线2y ax =上,且////AB CD x 轴,与y 轴的交点分别为E ,F ,已知20AB =,10CD =,3EF =,求a 的值及OF 的长.19.(2023秋•琼山区校级期中)已知如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,且AOP ∆的面积为4.(1)求直线AB 的表达式;(2)求a 的值.20.(2023秋•安庆期中)平移抛物线212y x =,使顶点坐标为2(,)t t ,并且经过点(2,4),求平移后抛物线对应的函数表达式.21.(2022秋•运城期末)探究二次函数22(3)1y x =--及其图象的性质,请填空:①图象的开口方向是;②图象的对称轴为直线;③图象与y 轴的交点坐标为;④当x =时,函数y 有最小值,最小值为.22.(2022秋•霍邱县期末)已知抛物线2(1)y a x h =-+,经过点(0,3)-和(3,0).(1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.。
专题06 二次函数中三角形存在性问题(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×∵S△ABD4×4=﹣t2﹣4t=﹣(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△OPG+S△EPG∴S△OPE=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y 轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M 1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M 4(1,1).13.(2023•三亚一模)如图,抛物线y =ax 2+3x +c (a ≠0)与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C (0,8),顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的解析式和直线BC 的解析式;(2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =S △ABC 时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得△BEM 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+3x +c (a ≠0)过点A (﹣2,0)和C (0,8),∴,解得,∴抛物线的解析式为y =﹣x 2+3x +8.令y =0,得.解得x 1=﹣2,x 2=8.∴点B 的坐标为(8,0).设直线BC 的解析式为y =kx +b .把点B (8,0),C (0,8)分别代入y =kx +b ,得,解得,∴直线BC 的解析式为y =﹣x +8.(2)如图1,设抛物线的对称轴l 与x 轴交于点H .∵抛物线的解析式为,∴顶点D 的坐标为.∴S 四边形ABDC =S △AOC +S 梯形OCDH +S △BDH ===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).41。
二次函数及其图象在高考数学中的应用

二次函数及其图象在高考数学中的应用二次函数是高中数学中比较重要的一部分,也是高考数学中必考的内容。
二次函数的图象不仅是高中数学重点难点,而且具有广泛应用。
本文将以二次函数及其图象在高考数学中的应用作为主题,对二次函数的基本概念、性质及其在高考数学中的应用进行详细的探讨。
一、二次函数的基本概念和性质1. 二次函数的定义二次函数的定义是:f(x) = ax²+bx+c(a ≠0),其中a,b,c为常数。
2. 二次函数的图象二次函数的图象为一条抛物线,其开口方向取决于常数a的正负。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的对称轴二次函数的对称轴为一条垂直于x轴,通过抛物线顶点的直线。
对称轴的方程为x = -b/2a。
4. 二次函数的顶点二次函数的顶点为抛物线的最高点或最低点,它是抛物线的最值点。
当抛物线开口向上时,顶点为最小值点;当抛物线开口向下时,顶点为最大值点。
5. 二次函数的焦点和准线当a>0时,二次函数的焦点在y轴上,焦距为1/4a;当a<0时,二次函数的焦点在x轴上,焦距为-1/4a。
其准线为y=-1/4a。
二、二次函数在高考数学中的应用1. 二次函数的解析式及应用在高考数学中,二次函数的解析式是必须掌握的。
通过解析式,我们可以求出二次函数的顶点、对称轴、最值点等重要信息。
同时,我们还可以利用二次函数的解析式解决一些实际问题,如利用二次函数求解运动问题、利用二次函数求解面积和体积问题等等。
2. 二次函数的图象及应用二次函数的图象在高考数学中也有很多应用。
例如,在函数拐点处可以求解最值问题,在对称轴处可以求解交点问题,在焦点处可以解决轨迹问题。
此外,利用图象也可以帮助我们更加直观地理解和解决二次函数相关的问题。
3. 二次函数的相关知识及应用在高考数学中,除了掌握二次函数的基本概念和性质以外,还需要掌握一些相关的知识和技巧,如配方法、完全平方公式、二次函数的基本变形等等。
专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)

专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1 为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
2017年浙江中考数学真题分类汇编 二次函数(解析版)

2017年浙江中考真题分类汇编(数学):专题06 二次函数一、单选题(共6题;共12分)1、(2017•宁波)抛物线(m是常数)的顶点在()A、第一象限B、第二象限C、第三象限D、第四象限2、(2017·金华)对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是( )A、对称轴是直线x=1,最小值是2B、对称轴是直线x=1,最大值是2C、对称轴是直线x=−1,最小值是2D、对称轴是直线x=−1,最大值是23、(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A、若m>1,则(m﹣1)a+b>0B、若m>1,则(m﹣1)a+b<0C、若m<1,则(m﹣1)a+b>0D、若m<1,则(m﹣1)a+b<04、(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+35、(2017·嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是()A、①B、②C、③D、④6、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位二、填空题(共1题;共2分)三、解答题(共12题;共156分)8、(2017•绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。
压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。
二次函数的七种形式

二次函数的七种形式所谓二次函数,是指函数中自变量最高次指数为2的函数,其标准形式为:y=ax^2+bx+c (a,b,c为常数).二次函数的基本表示形式为y=ax²+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y 轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。
如果说函数的表达形式共有7种,有开放型,一般式,平移型,定义型,顶点式,两格式,翻折式(对称式)。
01开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以答案不唯一。
例2:经过点A(0,3)的抛物线的解析式可能是。
解:设该抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线的函数图象经过点A(0,3),∴c=3,且a≠0,∴函数解析式可能为y=x2+x+3。
(注:答案不唯一,只需满足a≠0,c=3即可)02一般式当题目给出函数图象上的三个点时,设为一般式,代入三个点的坐标,将问题转化成求三元一次方程组,以求得a,b,c的值。
例4:已知函数图象经过点(1,-4),(-1,0),(-2,5),求该二次函数的解析式。
解:设二次函数的解析式为y=ax2+bx+c,根据题意得图片解得图片∴二次函数的解析式为y=x2-2x-3。
03 平移型将一个二次函数的图象经过上下左右的平移得到一个新的抛物线。
要解此类题目,应先将已知函数的解析式写成顶点式y=a(x–h)2+k,当图象向左(右)平移n个单位长度时,在x–h上加上(减去)n;当图象向上(下)平移m个单位长度时,在k上加上(减去)m.其平移的规律是:左加右减(对x而言);上加下减。
由于经过平移的函数图象形状、大小和开口方向都没有改变,所以a的值不变。
例3:二次函数y=x2+6x+5的图象是由y=x2的图象先向平移个单位长度,再向平移个单位长度得到的。
二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式
2022年中考数学二次函数压轴突破 专题06 铅垂法求三角形面积最值问题(学生版)

知识导航求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:()111222ABCACDBCDSSSCD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离. 由题意得:AE +BF =6. 下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4, 将4代入直线AB 解析式得D 点纵坐标为2, 故D 点坐标为(4,2),CD =5,165152ABCS =⨯⨯=.【方法总结】 作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABCS⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似: 【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高, =2ABCABDBCDSSS⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.例一、如图,已知抛物线25=++经过(5,0)y ax bxA-,(4,3)B--两点,与x轴的另一个交点为C.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为m.当点P在直线BC的下方运动时,求PBC∆的面积的最大值.【分析】(1)265=++,y x x(2)取BC两点之间的水平距离为水平宽,过点P作PQ⊥x轴交直线BC于点Q,则PQ即为铅垂高.根据B、C两点坐标得B、C水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1), 得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高. 例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.EDC BAy【分析】(1)抛物线解析式:21322y x x =--; 一次函数解析式:1122y x =+. (2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了, 对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y , 按铅垂法思路,可得:12233121321312ABCSx y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -. (1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点. (1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点. (1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当PBC∆的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD x⊥轴于点D,在直线MD上是否存在点N,使点N到直线MC 的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.5.如图,抛物线过点(0,1)A和C,顶点为D,直线AC与抛物线的对称轴BD的交点为(3B,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为433,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当PAB∆面积最大时,求点P的坐标及PAB∆面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.6.在平面直角坐标系xOy中,等腰直角ABC∆的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=,抛物线经过A,B,C三点,如图1所示.4(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l交抛物线于M,N两点,如图2所示.①求CMN∆面积的最小值.②已知3(1,)Q-是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,2求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.。
第06讲 二次函数的应用-实际应用(原卷版)-【暑假预习课堂】2024年新九年级数学【赢在暑假】同步

第06讲 二次函数的应用-实际应用一、列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。
(5)检验所得解是否符合实际:即是否为所提问题的答案.(6)写出答案.要点:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.二、建立二次函数模型求解实际问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.要点:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题:①首先必须了解二次函数的基本性质;②学会从实际问题中建立二次函数的模型;③借助二次函数的性质来解决实际问题.例1.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+例2.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为cm x 的小正方形,然后把四边折起来,作成底面为2cm y 的无盖的长方体盒子,则y 与x 的关系式为( )A .(10)(20)(05)y x x x =--<<B .210204(05)y x x =⨯-<<C .(102)(202)(05)y x x x =--<<D .22004(05)y x x =+<<例3.重装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系250500y x x =-+-,则要想获得最大利润每天必须卖出( )A .25件B .20件C .30件D .40件例4.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x (米)之间的关系式为21381055y x x =-++,由此可知小宇此次实心球训练的成绩为( )A .85米B .8米C .10米D .2米例5.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m ,门宽为2m .若饲养室长为x m ,占地面积为y 2m ,则y 关于x 的函数表达式为( )A .y =﹣12x 2+26x (2≤x <52)B .y =﹣12x 2+50x (2≤x <52)C .y =﹣x 2+52x (2≤x <52)D .y =﹣12x 2+27x ﹣52(2≤x <52)例6.下表所列为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化.如果售价为500元时,日销量为( )件.降价(元)5 10 15 20 25 30 35 日销量(件)780 810 840 870 900 930 960A .1200B .750C .1110D .1140例7.一位运动员在距篮筐正下方水平距离4m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐.如图所示,建立平面直角坐标系,已知篮筐中心到地面的距离为3.05m ,该运动员身高1.9m ,在这次跳投中,球在头顶上方0.25m 处出手,球出手时,他跳离地面的高度是( )A .0.1mB .0.2mC .0.3mD .0.4m例8.如图,花坛水池中央有一喷泉,水管OP=3m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m ,P 距抛物线对称轴1m ,则为使水不落到池外,水池半径最小为( )A .1B .1.5C .2D .3例9.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度(m)y 与旋转时(s)x 之间的关系可以近似地用2140y x bx c =-++来刻画.如图记录了该摩天轮旋转时(s)x 和离地面高度(m)y 的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为( )A .172sB .175sC .180sD .186s例10.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+例11.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A .60B .65C .70D .75例12.某公司销售一种藜麦,成本价为30元/千克,若以35元/千克的价格销售,每天可售出450千克.当售价每涨0.5元/千克时,日销售量就会减少15千克.设当日销售单价为x (元/千克)(30x ≥,且x 是按0.5的倍数上涨),当日销售量为y (千克).有下列说法:①当36x =时,420y =②y 与x 之间的函数关系式为301500y x =-+③若使日销售利润为2880元,且销售量较大,则日销售单价应定为42元/千克④若使日销售利润最大,销售价格应定为40元/千克其中正确的是( )A .①②B .①②④C .①②③D .②④一、单选题 1.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( ) A .2100(1)y x =- B .100(1)y x =- C .2100y x =- D .2100(1)y x =+ 2.重装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系250500y x x =-+-,则要想获得最大利润每天必须卖出( )A .25件B .20件C .30件D .40件3.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为cm x 的小正方形,然后把四边折起来,作成底面为2cm y 的无盖的长方体盒子,则y 与x 的关系式为( )A .(10)(20)(05)y x x x =--<<B .210204(05)y x x =⨯-<<C .(102)(202)(05)y x x x =--<<D .22004(05)y x x =+<<4.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系式为21381055y x x =-++,由此可知小宇此次实心球训练的成绩为( )A .85米 B .8米 C .10米 D .2米 5.某市新建一座景观桥.如图,桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),则与CD 的距离为5米的景观灯杆MN 的高度为( )A .13米B .14米C .15米D .16米6.西安大雁塔音乐喷泉是西安的一张名片,许多人慕名前往.若其中一组喷泉水型可近似看成抛物线族,如图出立坐标系后,可由函数()221120y t x tx =-++确定,其中1为实数.若其中某个喷泉水柱的最大高度是4,则此时对应的t 值为( )A .2B .4C .2或2-D .4成4-7.如图,一个滑道由滑坡(AB 段)和缓冲带(BC 段)组成,如图所示,滑雪者在滑坡上滑行的距离1y (单位:m )和滑行的时间1t (单位:s )满足二次函数关系,并测得相关数据:滑雪者在缓冲带上滑行的距离2y (单位:m ),和在缓冲带上滑行时间2t (单位:s )满足:2222562y t t =-,滑雪者从A 出发在缓冲带BC 上停止,一共用了24s ,则滑坡AB 的长度为( )滑行时间 0 1 2 3 4滑行距离 0 4.5 14 28.5 48A .275米B .384米C .375米D .270米8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 ……h 0 8 14 18 20 20 18 14 ……下列结论:①足球距离地面的最大高度为20.25m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出8s 时落地;④足球被踢出1.5s 时,距离地面的高度是45m 4,其中正确的结论有( )个A .1B .2C .3D .49.根据防疫的相关要求,学生入校需晨检,体温超标的同学须进入临时隔离区进行留观.某校要建一个长方形临时隔离区,隔离区的一面利用学校边墙(墙长5米),其它三面用防疫隔离材料搭建,但要开一扇1米宽的进出口(不需材料),共用防疫隔离材料10米搭建的隔离区的面积最大为( )平方米.A .252B .25C .1218D .15 10.某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①24m AB =; ②池底所在抛物线的解析式为21545y x =-; ③池塘最深处到水面CD 的距离为1.8m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的14. 其中结论正确的是( )A .①②B .②④C .③④D .①④二、填空题11.加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .12.如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.13.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米14.在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t 秒离水面的高度为h 米,且2255106h t t =-++.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.15.如图所示,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB 为20m ,顶点M 距水面6m (即6m MO =),小孔顶点N 距水面4m (即4m NC =).当水位上涨到刚好淹没小孔时,借助图中的直角坐标系,可以得出此时大孔的水面宽度EF 是_________m .16.小刚家装有一种可调节淋浴喷头高度的淋浴器,完全开启后,水流近似呈抛物线状,升降器AB 和淋浴喷头BC 所成∠ABC =135°,其中AB =10cm ,BC =102cm .刚开始时,OA =140cm ,水流所在的抛物线恰好经过点A ,抛物线落地点D 和点O 相距70cm .为了方便淋浴,淋浴器仍需完全处于开启的状态,且要求落地点和点O 的距离增加10cm ,则小刚应把升降器AB 向上平移____________cm .17.一个玻璃杯竖直放置时的纵向截面如图1所示,其左右轮廓线AD ,BC 为同一抛物线的一部分,AB ,CD 都与水平地面平行,当杯子装满水后4cm AB =,8cm CD =,液体高度12cm ,将杯子绕C 倾斜倒出部分液体,当倾斜角=45ABE ∠︒时停止转动,如图2所示,此时液面宽度BE =________cm ,液面BE 到点C 所在水平地面的距离是________cm .18.“水晶晶南浔”的美食文化中以特有的双交画出名,盛面的瓷碗截面图如图1所示,碗体DEC 呈抛物线状(碗体厚度不计),点E 是抛物线的顶点,碗底高EF =1cm ,碗底宽AB =23cm ,当瓷碗中装满面汤时,液面宽CD =83cm ,此时面汤最大深度EG =6cm ,将瓷碗绕点B 缓缓倾斜倒出部分面汤,如图2,当∠ABK =30°时停止,此时液面CH 宽 _____cm ;碗内面汤的最大深度是 _____cm .三、解答题 19.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,请根据要求解答下列问题:(1)在飞行过程中,小球从飞出到落地所用时间是多少?(2)在飞行过程中,小球飞行高度何时最大?最大高度是多少?20.某架飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )近似满足函数关系()20y ax bx a =+≠.由电子监测获得滑行时间x 与滑行距离y 的几组数据如下:滑行时间x/s0 2 4 6 8 10 滑行距离y/m 0 114 216 306 384 450(1)根据上述数据,求出满足的函数关系式()20y ax bx a =+≠;(2)飞机着陆后滑行多远才能停下来?此时滑行的时间是多少?21.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同。
小学数学二次函数的基本概念与图像课件

二次函数的图像
二次函数图像的形状:抛物线 二次函数图像的顶点:最低点或最高点 二次函数图像的对称性:关于x轴对称 二次函数图像与x轴的交点:求根公式或因式分解法
二次函数的性质
二次函数的一般
形
式
为
y=ax^2+bx+c,
其中a、b、c为
常数且a≠0
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的极值问题
二次函数的极值条件 极值点的计算方法 极值与函数图像的关系 极值在实际问题中的应用
二次函数的实际应用价 值
在数学竞赛中的应用
二次函数在数学竞赛中常作为压轴题出现,考察学生的综合解题能力。 通过解决二次函数问题,学生可以锻炼数学思维能力,提高数学素养。 二次函数在数学竞赛中具有较高的区分度,能够选拔出优秀的学生。 掌握二次函数的基本概念和图像是解决数学竞赛中相关问题的关键。
二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, c-b^2/4a)
二次函数的开口方向由系数a决定,当a>0时,抛物线开口向上;当a<0时,抛物线 开口向下
二次函数的对称轴为x=-b/2a
二次函数的表达式
二次函数的一般形式为y=ax^2+bx+c a、b、c为常数,且a≠0 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 b和c决定了抛物线的位置
图像的对称性
二次函数图像的对称轴是直线x=-b/2a 二次函数图像的顶点坐标为(-b/2a, f(-b/2a)) 二次函数图像的对称性可以根据对称轴和顶点进行判断 二次函数图像的对称性对于理解函数的性质和解决实际问题具有重要意义
二次函数动点问题解答方法技巧(含例解标准答案)

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是
,
则
解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).
二次函数知识点总结

二次函数知识点总结在数学中,二次函数的最高阶必须是二次的。
在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。
二次函数知识点总结有哪些?一起来看看二次函数知识点总结,欢迎查阅!数学二次函数知识点归纳计算方法1.样本平均数:⑴ ;⑵若,,…, ,则(a―常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若, ,…, ,则(a―接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:三、应用举例(略)初三数学知识点:第四章直线形重点相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
二次函数的变换(热考题型)-解析版

专题06 二次函数的变换【思维导图】◎考点题型1二次函数的平移(1) 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:(2) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2例.(2021·内蒙古通辽·九年级期末)将抛物线y =﹣3x 2+1向左平移2个单位长度,再向下平移1个单位长度,所得的抛物线解析式为( ) A .y =﹣3(x +2)2 B .y =﹣3(x ﹣2)2﹣1 C .y =﹣3(x +1)2﹣1 D .y =﹣3(x ﹣1)2+3【答案】A 【解析】 【分析】根据二次函数图象平移的规律进行解答即可. 【详解】解:抛物线y =﹣3x 2+1向左平移2个单位长度得y =﹣3(x+2)2+1, 抛物线y =﹣3(x+2)2+1向下平移1个单位长度得y =﹣3(x +2)2. 故选:A . 【点睛】本题考查二次函数图象的平移,掌握平移规律:左加右减,上加下减是解题关键.变式1.(2021·山东烟台·九年级期中)将二次函数2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为223y x x =--,则b 、c 的值为( ) A .2b =,6c =- B .6b =-,8c = C .6b =-,2c = D .2b =,0c【答案】D 【解析】 【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【详解】由题意可得新抛物线的顶点为(1,4)-, ∴原抛物线的顶点为(1,1)--,设原抛物线的解析式为2()y x h k =-+, 代入得:22(1)12y x x x =+-=+,∴2b =,0c . 故选:D . 【点睛】主要考查了函数图象的平移,抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.变式2.(2022·广西·南宁市天桃实验学校八年级期末)将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是( ) A .22(8)2y x =-+ B .22(8)6y x =-- C .22(2)6y x =+- D .22(2)2y x =++【答案】D 【解析】 【分析】根据左加右减,上加下减的规律,可得答案. 【详解】解:将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是22(35)24y x =-+-+,即22(2)2y x =++.故选:D . 【点睛】本题考查了二次函数图像与几何变换,主要考查的是函数图像的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.变式3.(2022·河北邢台·九年级期末)怎么样才能由22y x =的图像经过平移得到函数22(6)7y x =-+的图像呢?小亮说:先向左平移6个单位长度,再向上平移7个单位长度; 小丽说:先向上平移7个单位长度,再向右平移6个单位长度. 对于上述两种说法,正确的是( ) A .小亮对 B .小丽对C .小亮、小丽都对D .小亮、小丽都不对【答案】B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:小亮:由y=2x2的图象先向左平移6个单位长度,再向上平移7个单位长度后得到抛物线解析式为:y=2(x+6)2+7,则小亮说法错误;小丽:由y=2x2的图象先向上平移7个单位长度,再向右平移6个单位长度后得到抛物线解析式为:y=2(x-6)2+7,则小丽说法正确;故选:B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.◎考点题型2 二次函数图象的对称(1)关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;(2)关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;(3)关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca =--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.例.(2022·河南周口·九年级期末)已知抛物线21y x mx =+-经过(1,)n -和(2,)n 两点,则n 的值为( ) A .1- B .1 C .2 D .3【答案】B 【解析】 【分析】根据(1,)n -和(2,)n 可以确定函数的对称轴1x =,再由对称轴的12mx =-=,即可求解. 【详解】解:抛物线21y x mx =+-经过(1,)n -和(2,)n 两点, 可知函数的对称轴12122x -+==, 122m ∴-=, 1m ∴=-;21y x x ∴=--,将点(1,)n -代入函数解析式,可得1n =; 故选:B . 【点睛】本题考查二次函数图象上点的坐标,解题的关键是熟练掌握二次函数图象上点的对称性. 变式1.(2020·黑龙江·勃利县大四站镇中学九年级期中)已知4a -2b +c =0,9a +3b +c =0,则二次函数y =ax 2+bx +c 的图象顶点可能在( ) A .第一或第四象限 B .第三或第四象限 C .第一或第二象限 D .第二或第三象限【答案】A 【解析】 【分析】首先由已知条件4a-2b+c=0,9a+3b+c=0,得出此二次函数过点(-2,0),(3,0),然后根据二次函数的对称性求出抛物线的对称轴,进而得出二次函数y=ax2+bx+c图象的顶点可能所在的象限.【详解】解:∴4a-2b+c=0,9a+3b+c=0,∴此二次函数过点(-2,0),(3,0),∴抛物线的对称轴为直线x=12,∴二次函数y=ax2+bx+c图象的顶点可能在第一或第四象限.故选:A.【点睛】此题考查了二次函数的性质,二次函数图象的对称性,掌握二次函数图象与性质求出对称轴为直线x=12是解题的关键.变式2.(2022·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)已知二次函数y=ax2+bx +c,函数y与自变量x的部分对应值如表:x……﹣11234……y (10521)25……若A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,则当m满足()时,y1<y2A.m≤2B.m≥3C.m52<D.m52>【答案】C【解析】【分析】根据表格中的数据先确定抛物线的对称轴为直线x=2,开口向下,然后根据二次函数图象的性质,列出m 的不等式,解不等式即可.【详解】解:由表格可知,该函数图象开口向上,对称轴为直线x042+==2,∴A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,y1<y2,∴2﹣(m ﹣1)>m ﹣2, 解得:m 52<,故C 正确.故选:C . 【点睛】本题主要考查了二次函数图象的性质,根据表格中的数据确定二次函数图象的对称轴,列出关于m 的不等式,是解题的关键.变式3.(2020·辽宁铁岭·九年级期中)点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y =>B .312y y y >=C .123y y y >>D .23y y y <<【答案】A 【解析】 【分析】已知函数表达式里面二次项系数和一次项系数,可以求出该函数图像的对称轴2ba-,结合对称轴,分析函数的增减性即可.当a <0,x >2b a -时,y 随x 的增大而减小;当a <0,x <2ba-时,y 随x 的增大而增大. 【详解】 对称轴:x =2ba-=212(1)-=⨯- 11(1)P y -,到对称轴有1-(-1)=2个单位长度; 22(3)P y ,到对称轴有3-1=2个单位长度;∴12y y = ∴a =-1<0 ∴当x >2ba-时,y 随x 的增大而减小 ∴33(5)P y ,,5>3>2b a- ∴32<y y综上:321y y y <= 故选:A【点睛】本题主要考查了二次函数的增减性,结合函数表达式求出函数图像的对称轴,根据二次项系数的正负和对称轴分析函数的增减性是解题的关键.◎考点题型3 二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上 ,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c ⏹ 二次项系数a二次函数y =ax 2+bx +c 中,a 作为二次项系数,显然a ≠0.⑴ 当a >0时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑴ 当a <0时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.【总结起来】a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,|a |的大小决定开口的大小. ⏹ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在a >0的前提下,当b >0时,−b2a <0,即抛物线的对称轴在y 轴左侧(a 、b 同号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a >0,即抛物线对称轴在y 轴的右侧(a 、b 异号). ⑵ 在a <0的前提下,结论刚好与上述相反,即当b >0时,−b2a >0,即抛物线的对称轴在y 轴右侧(a 、b 异号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a <0,即抛物线对称轴在y 轴的左侧(a 、b 同号). 【总结起来】在a 确定的前提下,b 决定了抛物线对称轴的位置.常数项c⑴ 当c >0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当c =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当c <0时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 【总结起来】c 决定了抛物线与y 轴交点的位置.总之,只要a , b , c 都确定,那么这条抛物线就是唯一确定的.例.(2021·山东烟台·九年级期中)在同一平面直角坐标系内,二次函数()20y ax bx c a =++≠与一次函数y ax b =+的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】逐图分析系数a ,b 的符号,即可判断. 【详解】A .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b >,此选项错误;B .由()20y ax bx c a =++≠的图象可知,0a <,0b <,由y ax b =+的图象可知,0a >,0b <,此选项错误;C .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b <,此选项正确;D .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a <,0b =,此选项错误. 故选:C . 【点睛】本题考查了一次函数与二次函数的图象,解题关键是会根据图象判断系数a ,b 的符号.变式1.(2022·云南玉溪·九年级期末)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论中不正确的是( )A .abc <0B .b =-4aC .4a +2b≥m (am +b )D .a -b +c >0【答案】D 【解析】 【分析】先根据抛物线的开口向下可知a <0,与y 轴的交点在y 轴的负半轴可知c <0,由抛物线的对称轴x =2可得出a 、b 的关系,再对四个选项进行逐一分析. 【详解】∴抛物线的开口向下, ∴a <0,∴抛物线与y 轴的交点在y 轴的正半轴, ∴c >0,∴抛物线的对称轴为直线2x =, ∴22ba-=,即4b a =- ∴4a +b =0,故B 正确,不符合题意;; ∴0b >,∴abc <0,故A 正确,不符合题意; ∴抛物线的对称轴为直线2x =,a <0, ∴当2x =时,y 取得最大值为42a b c ++ ∴对于任意实数m ,242a a c am bm c ++≥++∴4a +2b +c≥m (am +b )+ c ∴4a +2b ≥m (am +b ), 故C 正确,不符合题意;当x =﹣1时,抛物线与y 轴的交点在x 轴上,即a ﹣b +c =0,故D 错误, 符合题意.故选D . 【点睛】本题考查的是二次函数的图象与系数的关系,数形结合是解题的关键,二次函数y = ²+bx +c (a ≠0)的图象,当a <0时,抛物线向下开口,当a 与b 同号时(即ab >0,对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.变式2.(2022·湖北恩施·九年级期末)抛物线2y ax bx c =++的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:∴240b ac -<;∴当1x >-时,y 随x 增大而减小;∴0a b c ++<;∴若方程20ax bx c m ++-=没有实数根,则2m >;∴0b c -+>.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】 【分析】利用图象信息,以及二次函数的性质即可一一判断. 【详解】解:根据题意得:二次函数与x 轴有两个交点, ∴b 2-4ac >0,故∴错误;∴抛物线2y ax bx c =++的顶点为D (-1,2), ∴抛物线的对称轴为直线x =-1, ∴抛物线开口向下,∴当x >-1时,y 随x 增大而减小,故∴正确;∴抛物线与x 轴的一个交点A 在点(-3,0)和-2,0)之间,对称轴为直线x =-1, ∴抛物线与x 轴的另一个交点为在(0,0)和(1,0)之间,∴x =1时,y =a +b +c <0,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴函数的最大值为2,∴当m >2时,抛物线与直线y =m 没有交点, ∴方程ax 2+bx +c -m =0没有实数根,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴当x =-1时,2a b c -+=,0a <, ∴20b c a -+=->,故∴正确, ∴正确的有4个. 故选:C 【点睛】本题考查二次函数图象与系数的关系,根的判别式、抛物线与x 轴的交点等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合思想解答,属于中考常考题型.变式3.(2022·湖北武汉·中考真题)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【解析】 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限. 【详解】解:∴抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0, ∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限, 故选:D . 【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.◎考点题型4二次函数与一次函数的综合判断例.(2022·全国·九年级课时练习)如图,一次函数1y x =与二次函数22y x bx c =++的图像相交于P 、Q 两点,则函数()21y x b x c =+-+的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】根据函数图象和二次函数的性质判断即可. 【详解】解: 由2y =x 2+bx +c 图象可知,对称轴x =2b->0,0c <,0b ∴<,抛物线21y x b x c =+-+()与y 轴的交点在x 轴下方,故选项B ,C 错误,抛物线21y x b x c =+-+()的对称轴为1122b bx --=-=, ∴102b->, ∴抛物线y =x 2+(b -1)x +c 的对称轴在y 轴的右侧,故选项D 错误, 故选:A . 【点睛】本题考查二次函数图像和性质,明确二次函数2y ax bx c =++ 中各项系数的意义及利用数形结合的思想是解答本题的关键.变式1.(2022·全国·九年级课时练习)已知,在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】题干中二次函数2y ax =的图象开口向下,可以判断出a 的符号为负,一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,可以据此判断出b 、c 的符号皆为正,再去判断各选项哪个符合二次函数2y ax bx c =++的图象. 【详解】∴二次函数2y ax =的图象开口向下, ∴a <0,又∴一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,∴b >0,c >0, 则2ba->0, 可知二次函数2y ax bx c =++开口方向向下,对称轴在y 轴右侧,且与y 轴交点在y 的正半轴,选项B 图象符合, 故选:B . 【点睛】本题考查了一次函数、二次函数图象与系数的关系,题目比较简单,解决题目需要熟练掌握图象与系数的关系.变式2.(2021·河南驻马店·九年级期中)函数1y ax =+与()210y ax ax a =++≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由一次函数图象可确定a 的符号,再确定二次函数图象的大致形状和位置即可. 【详解】解:根据四个选项中一次函数图象在一、二、三象限,可以确定a >0时, ∴a >0,函数y =ax 2+ax +1(a ≠0)的图象开口向上, 对称轴为直线122a x a =-=-; 在y 轴左侧, 只有C 选项符合题意. 故选:C . 【点睛】本题一次函数和二次函数图象与系数的关系,解题关键是明确函数图象与系数的关系,树立数形结合思想,准确进行判断推理.变式3.(2021·北京市第六十六中学九年级期中)如图,在同一坐标系中,二次函数2y ax c =+与一次函数y ax c =+的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数图象,逐项判断,a c 符号,即可求解. 【详解】解:A 、由二次函数图象,可得0a < ,一次函数图象,可得0a > ,相矛盾,故本选项错误,不符合题意;B 、由二次函数图象,可得0a > ,一次函数图象,可得0a < ,相矛盾,故本选项错误,不符合题意;C 、由二次函数图象,可得0c > ,一次函数图象,可得0c < ,相矛盾,故本选项错误,不符合题意;D 、由二次函数图象,可得0a > ,0c <,一次函数图象,可得0a > ,0c <,故本选项正确,符合题意; 故选:D 【点睛】本题主要考查了二次函数和一次函数的图象和性质,根据函数图象,得到,a c 符号是解题的关键.◎考点题型5 根据图像判断式子符号例.(2021·广东湛江·九年级期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:∴ac <0;∴a -b +c =0;∴4ac -b 2<0;∴当x >-1时,y 随x 的增大而减小,其中正确的有( )A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【详解】∴∴抛物线开口向上,且与y轴交于负半轴,∴a> 0,c< 0∴ac<0故结论∴正确;∴从图中可以看出,抛物线经过点(-1,0),当x=-1时,y=0,∴a-b+c=0,故∴正确;∴∴抛物线与x轴有两个交点∴b2- 4ac> 0即4ac- b2< 0故结论∴正确;∴∴抛物线开口向上,且抛物线对称轴为直线x =1所以当x < 1时,y随x的增大而减小故结论∴错误故正确的结论有∴∴∴共3个;故选:B.【点睛】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.变式1.(2022·河北唐山·九年级期末)如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面四条信息:∴c>0;∴b2﹣4ac>0;∴a+b+c<0;∴对于图象上的两点(﹣5,m)、(1,n),有m<n.其中正确信息的个数有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】由抛物线与y轴交点在x轴上方可判断∴,由抛物线与x轴交点个数可判断∴,由图象可得x=1时y>0可判断∴,根据(-5,m)、(1,n)与对称轴的距离可判断∴.【详解】解:∴抛物线与y轴交点在x轴上方,∴c>0,∴正确.∴抛物线与x轴有2个交点,∴b2-4ac>0,∴正确.由图象可得x=1时y>0,∴a+b+c>0,∴错误.∴抛物线开口向上,对称轴为直线x=-3,且1-(-3)>-3-(-5),∴n>m,∴正确.故选:D.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.变式2.(2022·山东德州·九年级期末)1.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x…﹣3﹣2﹣101…y…﹣3010﹣3…下列结论正确的是()∴ab>0;∴a+b+c<0;∴若点(﹣7,y1),点(7,y2)在二次函数图象上,则y1<y2;∴方程ax2+bx+c=﹣3有两个不相等的实数根.A.∴∴∴B.∴∴∴C.∴∴∴D.∴∴∴【答案】B【解析】【分析】根据表格中的数据,可以得到此二次函数具有最大值,对称轴为x=1,再根据二次函数的性质,即可判断题目中的各个小题是否正确.【详解】解:由表格可知,该二次函数有最大值,开口向下,对称轴为直线x=-1,顶点坐标为(-1,1),∴a<0,b<0,∴ab>0,故∴正确;由表格可知,当x=1时,y=a+b+c=-3<0,故∴正确;∴点(-7,y1)到对称轴x=-1的距离小于点(7,y2)到对称轴的距离,∴y1>y2,故∴错误,∴图象经过(-3,-3)和(1,-3)两个点,∴方程ax2+bx+c=-3有两个不相等的实数根,故∴正确,故选:B.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.变式3.(2020·黑龙江·北安市教育局九年级期中)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:∴当x>3时,y<0;∴3a+b>0;∴﹣1≤a≤23;∴3≤n≤4中,其中正确的结论有()A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】∴由抛物线的对称轴为直线x =1,一个交点A (-1,0),得到另一个交点坐标,利用图象即可对于选项∴作出判断;∴根据抛物线开口方向判定a 的符号,由对称轴方程求得b 与a 的关系是b =-2a ,将其代入(3a +b ),并判定其符号;∴利用一元二次方程根与系数的关系可得3c a =-,然后根据c 的的取值范围利用不等式的性质来求a 的取值范围;∴把顶点坐标代入函数解析式得到43n a b c c =++=,利用c 的取值范围可以求得n 的取值范围. 【详解】解:∴抛物线的顶点坐标为(1,n ), ∴对称轴直线是x =1,∴抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0), ∴该抛物线与x 轴的另一个交点的坐标是(3,0), 观察图象得:当x >3时,y <0,故∴正确; ∴观察图象得:抛物线开口方向向下, ∴a <0, ∴对称轴12bx a=-=, ∴.2b a =-,∴3320a b a a a +=-=<,即3a +b <0,故∴错误; ∴抛物线y =ax 2+bx +c 与x 轴交于点(-1,0),(3,0), ∴方程ax 2+bx +c =0的两根为-1,3, ∴133c a =-⨯=-,即3ca =-, ∴抛物线与y 轴的交点在(0,2)、(0,3)之间(包含端点),∴23c ≤≤, ∴2133c -≤-≤-,即213a -≤≤-,故∴正确; ∴.2b a =-,3c a =-, ∴223c b a =-=, ∴顶点坐标为(1,n ),∴当x =1时,43n a b c c =++=, ∴23c ≤≤, ∴84433c ≤≤,即843n ≤≤,故∴错误; 综上所述,正确的有∴∴,共2个.故选:B【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定是解题的关键.◎考点题型6 抛物线y =ax 2+bx +c 最值抛物线y =ax 2+bx +c 的三要素:开口方向、对称轴、顶点.求抛物线的顶点、对称轴的方法(难点)⏹ 公式法:y =ax 2+bx +c =a (x +b 2a )2+4ac−b 24a , ∴顶点是(−b 2a ,4ac−b 24a ),对称轴是直线x =−b 2a . ⏹ 配方法:运用配方的方法,将抛物线的解析式化为y =a (x −h )2+k 的形式,得到顶点为(h ,k ),对称轴是直线x =h .【抛物线的性质】由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.例.(2022·浙江金华·九年级期末)飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米【解析】【分析】先根据滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,求出函数的解析式,然后求出函数的最大值即可.【详解】解:∴10t =时,450s m =;20t =时,600s m =,∴1001045040020600a b a b +=⎧⎨+=⎩,解得:3260a b ⎧=-⎪⎨⎪=⎩, ∴23602S t t =-+, ∴()2233602060022S t t t =-+=--+, ∴当20t =时,S 最大,且最大值为600,即飞机的最大滑行距离为600米,故A 正确.故选:A .【点睛】本题主要考查了求二次函数解析式和最大值,根据题意求出二次函数解析式,是解题的关键.变式1.(2022·全国·九年级课时练习)某商场降价销售一批名牌衬衫,已知所获利润y (元)与降价x (元)之间的关系是y =-2x 2+60x +800,则利润获得最多为( )A .15元B .400元C .800元D .1250元【答案】D【解析】【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y =-2x 2+60x +800=-2(x -15)2+1250∴-2<0故当x =15时,y 有最大值,最大值为1250即利润获得最多为1250元故选:D .此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.变式2.(2022·广西贺州·中考真题)已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.4【答案】D【解析】【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.【详解】解:∴二次函数y=2x2-4x-1=2(x-1)2-3,∴抛物线的对称轴为x=1,顶点(1,-3),∴1>0,开口向上,∴在对称轴x=1的右侧,y随x的增大而增大,∴当0≤x≤a时,即在对称轴右侧,y取得最大值为15,∴当x=a时,y=15,∴2(a-1)2-3=15,解得:a=4或a=-2(舍去),故a的值为4.故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.变式3.(2022·全国·九年级课时练习)已知抛物线y=x2+(2a﹣1)x﹣3,当﹣1≤x≤3时,函数最大值为1,则a值为()A.12-B.13-C.12-或13-D.﹣1或13-【答案】D 【解析】【分析】根据顶点的位置分两种情况讨论即可.【详解】解:2(21)3y x a x =+--,∴图象开口向上,对称轴为直线212a x -=-, ∵﹣1≤x ≤3, ∴当2112a --时,即12a -,3x =时有最大值1, 9(21)331a ∴+-⨯-=,13a ∴=-, 当2112a --时,即12-a ,1x =-时有最大值1, 1(21)(1)31a ∴+-⨯--=,1a ∴=-,1a ∴=-或13-, 故选:D .【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.◎考点题型7 待定系数法求函数解析式例.(2022·全国·九年级课时练习)在平面直角坐标系xOy 中,二次函数225y x mx m =-+的图象经过点()1,2-.(1)求二次函数的表达式;(2)求二次函数图象的对称轴.【答案】(1)1m =-;(2)直线1x =-【解析】【分析】(1)利用待定系数法求解析式即可;(2)利用对称轴公式2b x a=-求解即可. 【详解】解:(1)∴二次函数y =x 2-2mx +5m 的图象经过点(1,-2),∴-2=1-2m +5m ,解得1m =-;∴二次函数的表达式为y =x 2+2x -5.(2)二次函数图象的对称轴为直线2122b x a =-=-=-; 故二次函数的对称轴为:直线1x =-;【点睛】本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式.变式1.(2022·全国·九年级课时练习)已知二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5),求这个二次函数的表达式.【答案】二次函数的表达式为24y x =+.【解析】【分析】将点(﹣2,8)和(﹣1,5)代入二次函数表达式,列出二元一次方程组,进行求解即可.【详解】 解:二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5), ∴485a c a c +=⎧⎨+=⎩,解得:14a c =⎧⎨=⎩. ∴二次函数的表达式为24y x =+.【点睛】本题主要是考查了待定系数法求解二次函数表达式,将已知点代入表达式,再解方程,然后确定二次函数的表达式.变式2.(2022·全国·九年级课时练习)已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式【答案】245y x x =-++【解析】【分析】利用待定系数法设出抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入求解即可.【详解】解:∴抛物线经过点()1,0A -,()5,0B ,()0,5C ,∴设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,∴()()21545y x x x x =-+-=-++.∴该抛物线的函数关系式为245y x x =-++.【点睛】此题考查了待定系数法求二次函数表达式,解题的关键是熟练掌握待定系数法求二次函数表达式. 变式3.(2022·全国·九年级课时练习)已知二次函数2y x bx c =-++的图象与x 轴的一个交点坐标为()1,0-,与y 轴的交点坐标为()0,3.(1)求此二次函数的解析式;(2)用配方法求此抛物线的顶点坐标.【答案】(1)223y x x =-++;(2)()1,4 .【解析】【分析】(1)利用待定系数法,将(1,0)-,(0,3)两个点代入函数解析式求解即可确定函数解析式;(2)根据配方法将函数解析式化为顶点式,即可得出顶点坐标.【详解】解:(1)把(1,0)-,(0,3)代入2y x bx c =-++得:103b c c --+=⎧⎨=⎩, 解得:23b c =⎧⎨=⎩, 所以抛物线解析式为:2y x 2x 3=-++;(2)()222232113(1)4=-++=--+-+=--+y x x x x x ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012—2013学年九年级数学(下)周末辅导资料(06)理想文化教育培训中心 学生姓名: 得分:一、选择题:1、(2012湖南郴州)抛物线2y x 12=-+()的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)2、(2012黑龙江牡丹江)抛物线2y ax bx c =++与x 轴的交点坐标是(-l ,0)和(3,0),则这条抛物线的对称轴是( )A .直线x=-1 8.直线x=0 C .直线x=1 D .直线x= 33、(2012青海西宁)如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是( )A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C .当x =1时,y 的值大于1D .y 的最大值小于04、(2012宜昌)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限5、(2012山东枣庄)抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为( )A .3B .9C .15D .15-6、(2012甘肃白银)二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是( )A .x 1<-B .x >3C .-1<x <3D .x 1<-或x >3 7、(2012四川巴中) 对于二次函数y 2(x 1)(x 3)=+-,下列说法正确的是( )A. 图象的开口向下B. 当x>1时,y 随x 的增大而减小C. 当x<1时,y 随x 的增大而减小D. 图象的对称轴是直线x=-1 8、(2012山东泰安)如图,设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( ) A .213y y y >> B .312y y y >> C .321y y y >> D .312y y y >>二、填空题:9、(2012广东深圳)二次函数622+-=x xy 的最小值是 .10、(2012黑龙江牡丹江)若抛物线2y ax bx c =++经过点(-1,10),则a b c -+= . 11、(2012湖北襄阳)某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是y=60x ﹣1.5x 2,该型号飞机着陆后滑行 m 才能停下来. 12、(2012辽宁营口)二次函数n x x y +-=62的部分图像如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解2x = .三、解答题:13、(2012黑龙江牡丹江)如图,抛物线y=x 2+bx+c 经过点(1,-4)和(-2,5),请解答下列问题: (1)求抛物线的解析式;(2)若与x 轴的两个交点为A ,B ,与y 轴交于点C .在该抛物线上是否存在点D,使得△ABC 与△ABD 全等?若存在,求出D 点的坐标;若不存在,请说明理由。
14、(2012浙江嘉兴)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车的日租金为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?15、(2012江苏扬州)已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.16、(2012湖南郴州)如图,已知抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M ,使得MA+MB 的值最小,并求出点M 的坐标.(3)在抛物线上是否存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.17、(2012内蒙古赤峰)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.18、(2012辽宁朝阳)已知,如图,在平面直角坐标系中,Rt△ABC 的斜边BC 在x 轴上,直角顶点A 在y 轴的正半轴上,A (0,2),B (-1,0)。
(1)求点C 的坐标;(2)求过A 、B 、C 三点的抛物线的解析式和对称轴;(3)设点P (m ,n )是抛物线在第一象限部分上的点,△PAC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标;(4)在抛物线对称轴上,是否存在这样的点M ,使得△MPC(P 为上述(3)问中使S 最大时点)为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
一、知识点梳理:1、二次函数的性质:设)0(2≠++=a c bx ax y①开口方向:当a >0时,抛物线开口向_____,当a <0时,抛物线开口向_______; ②对称轴:直线__________; ③顶点坐标(________,___________);④增减性:当a >0时,如果a b x 2-≤,那么y 随x 的增大而减小,如果2b x a≥-,那么y 随x 的增大而增大;当a <0时,如果a b x 2-≤,那么y 随x 的增大而增大,如果2bx a≥-,那么y 随x 的增大而减小.2、最大值与最小值:(1)当a >0时,抛物线)0(2≠++=a c bx ax y 有最小值:=y 最小___________,此时x=_______; (2)当a <0时,抛物线)0(2≠++=a c bx ax y 有最大值:=y 最大____________,此时x=_________.3、抛物线)0(2≠++=a c bx ax y 的三种特殊点:(1)顶点:(_______,_______)或者将y =ax 2+bx +c 配方成y =a(x-h)2+k 的形式,则顶点坐标为(____ , ____)。
(2)与y 轴交点:(____ ,_____ ); (3)与x 轴交点:方程02=++c bx ax 的两根为x x 21、,则与x 轴的交点坐标为:( ___,0 ),(____, 0 ) 4、抛物线)0(2≠++=a c bx ax y 与x 轴的交点个数由△=___________的符号来决定:(1)当24ac b->0时,_______交点;(2)当24ac b -=0时,_______交点(顶点);(3)当24ac b-〈0时,________交点;5、抛物线)0(2≠++=a c bx ax y 的a 、b 、c 的符号如何通过函数图象来确定:(1)先确定a , 开口向上时,a______0;开口向下时,a_____0;(2)再确定c ,二看抛物线与y 轴交点为(___,_____) ,当交点在x 轴上方时,c______0;当交点在x 轴上方时,c___0;当抛物线经过原点时,c_____0.(3)最后确定b ,根据________的位置来确定b 的符号.当对称轴在y 轴的左边,a 、b 同号;当对称轴在y 轴的右边,a 、b 异号;简称:“左同右异”。
6、顶点式:()()20y a x h k a =-+≠①开口方向: a >0,向上; a <0,向下;②对称轴:直线_______;③顶点坐标:(____,______ );④增减性:增减性:当a >0时,如果x h ≤,那么y 随x 的增大而减小,如果x h ≥,那么y 随x 的增大而增大;当a <0时,如果x h ≤,那么y 随x 的增大而增大,如果x h ≥,那么y 随x 的增大而减小. 9、用待定系数法求二次函数解析式:15、【答案】解:(1)∵A(-1,0)、B(3,0)经过抛物线y =ax 2+bx +c ,∴可设抛物线为y =a (x +1)(x -3)。
又∵C(0,3) 经过抛物线,∴代入,得3=a (0+1)(0-3),即a=-1。
∴抛物线的解析式为y =-(x +1)(x -3),即y =-x 2+2x +3。
(2)连接BC ,直线BC 与直线l 的交点为P 。
则此时的点P ,使△PAC 的周长最小。
设直线BC 的解析式为y =kx +b , 将B(3,0),C(0,3)代入,得:3k+b=0b=3⎧⎨⎩,解得:k=1b=3-⎧⎨⎩。
∴直线BC 的函数关系式y =-x +3。
当x -1时,y =2,即P 的坐标(1,2)。
(3)存在。
点M 的坐标为(1,(1,(1,1),(1,0)。
。
16、【答案】解:(1)∵抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点,∴ 16a 4b c 04a 2b c 3 c 3++=⎧⎪++=⎨⎪=⎩,解得3a 83b 4c 3⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩。
∴抛物线的解析式为:233y x x 384=-++,其对称轴为:bx 12a=-=。
(2)由B (2,3),C (0,3),且对称轴为x=1,可知点B 、C 是关于对称轴x=1的对称点。
如图1所示,连接AC ,交对称轴x=1于点M ,连接MB ,则MA +MB=MA +MC=AC ,根据两点之间线段最短可知此时MA +MB 的值最小。
设直线AC 的解析式为y=kx +b ,∵A(4,0),C (0,3),∴ 4k b 0 b 3+=⎧⎨=⎩ ,解得3k 4b 3⎧=-⎪⎨⎪=⎩。
∴直线AC 的解析式为:y=34-x +3。