电机四象限运行
电机四象限运行
电机四象限运行电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
直流他励电动机四象限运行
直流电动机四象限机械特性测试一.实验目的本实验通过对直流电动机四象限机械特性的测试时学生对直流电动机的基本特性以及四象限工作状态有更深入的了解,进而掌握直流电动机的认为特性及其在调速国策和那个中的应用方式,同时锻炼学僧的分析问题解决问题能力和独立工作的能力。
二.实验内容测试直流电动机四个象限的机械特性,包括设备选择,拖动及负载电动机的选择,调速方式,参数调整,接线以及数据测试和曲线的绘制等。
三.实验要求1)第一象限固有特性电动状态测量4个稳定工作点2)第二象限回馈状态(电压可适当降低)测量4个稳定工作点3)第二象限电动势反接制动(最大电流设为1.5倍的In)测量3个工作点4)第二象限能耗制动(最大电流设1.5In)测量三个工作点,可以接反抗性负载5)第三象限反向电动状态(类同一象限)6)第四象限能耗制动测量4个稳定工作点7)第四象限倒拉反转测量4个稳定工作点8)要求写清实验步骤,并记录数据四.实验步骤1 第一象限的固有特性1.1 实验原理在电源电压U =Un,气隙磁通Ф=ФN,电枢外串电阻RΩ=0时,n =ƒ(T )的机械特性,其数学表达式为:特性表达式 T n TC C R C U n N T e a N e N ⋅-=Φ-Φ=β02机械转速N e N C U n Φ=0 斜率2N T e aC C R Φ=β空载1.2 实验步骤(1)按照实验接线图连接号电路,R1:电枢调节电阻(MEL-09)Rf :磁场调节电阻(Mel-09) M:直流并励电动机M03 G:涡流测功机U1:可调直流稳压电源 U2:直流电机励磁电源V1:可调直流稳压电源自带电压表V2:直流电压表,量程为360v档,位于MEL-6(有的时候其实不用这个表,为了 实验的安全性和调速还是加上) A:测电枢电流的安培表,mA:毫安表,位于直流电机励磁电源部(2)检查M ,G 之间是否用联轴器接好,电机导轨和MEL-13的连线是否接好,电动机励磁回路接线是否牢靠,仪表的量程,极性是否正确。
电动机四象限运行
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
电机的四象限运行
1、什么是四象限运行?2、我们把电机的运行速度方向用一条数轴Y来表示,数轴的正方向代表正转的转数,反方向表示反转的转速;3、我们把电机的电磁转矩方向用一条数轴X来表示,数轴的正方向代表电磁转矩的正向和运动方向相同即电动状态,反方向表示电磁转矩的反向和运动方向相反即发电状态;4、将上面提到的2、3构成一个平面坐标系XOY,那么抽油机的电动机正常电动状态处在第一象限(正转、电动),发电制动运行在第二象限(正转、发电);5、当然到底在第几象限,与2、3规定定义有关;6、电梯电动机由于正常状态就不断正、反转,上、下都有可能电动或发电,处于四象限运行状态,各个状态能量转换方向不同,控制方向不同;7、用四象限来描述电机运行状态,是一种方法;不具有其它任何意义;8、不用四象限的方法描述,而用大家熟悉的正、反转,电动、发电描述是一样,你习惯用什么方法描述都一样;并没有先进、落后的差别,只是方法不同而已!===================================================================== ==========单独对于电机来说,所谓四象限是指其运行机械特性曲线在数学轴上的四个象限都可运行。
第一象限正转电动状态,第二象限回馈制动状态,第三象限反转电动状态,第四象限反接制动状态。
能够具有使得电机工作在四象限的变频器才称得上四象限变频器。
在上个世纪80年代末,交流变频调速逐渐登上了工业传动调速方式的历史舞台。
变频调速在调速范围、调速精度、控制灵活、工作效率、使用方便等方面都有很大的优点,使变频调速成为最有发展前途的一种交流调速方式。
普通的变频器大都采用二极管整流桥将交流电转化成直流,然后采用IGBT 逆变技术将直流转化成电压频率皆可调整的交流电控制交流电动机。
这种变频器只能工作在电动状态,所以称之为两象限变频器。
由于两象限变频器采用二极管整流桥,无法实现能量的双向流动,所以没有办法将电机回馈系统的能量送回电网。
四象限变频调速
四象限变频调速在工业生产中,电机系统的控制和调速是十分重要的。
传统的电机驱动系统往往采用电阻调压、变频调速等方式,而四象限变频调速技术正是一种效率更高、响应更快的电机调速方法。
一、什么是四象限变频调速四象限变频调速是一种电机调速控制方法,可以实现正转、反转、减速、加速等功能。
这种调速方法可以让电机在四个象限内任意运动,极大地提高了电机的控制精度和灵活性。
二、四象限变频调速的原理四象限变频调速通过改变电机的频率和电压来控制电机的转速和扭矩。
其原理是通过变频器改变输入电压和频率,调整电机的转速。
通过反馈控制系统实时监测电机的运行状态,使得电机可以在任意速度下平稳运行。
三、四象限变频调速的优势1.高效节能:通过提高电机效率和减小功耗,节能效果显著。
2.运行稳定:调速精度高,可以保证电机在各种工况下稳定运行。
3.响应迅速:电机可以快速响应控制指令,加速和减速迅速。
4.可实现自动化控制:结合PLC、仪表等控制器,可以实现电机的自动化控制。
5.减小电机损耗:通过降低电机运行过程中的损耗,延长电机寿命。
四、四象限变频调速的应用四象限变频调速技术在各个领域均有广泛的应用,主要包括以下几个方面:1.工业生产:在食品加工、化工生产、机械加工等行业中,电机调速是必不可少的。
2.电梯和输送设备:电梯、输送机等场合中,四象限变频调速可以实现平稳运行、高效运输。
3.空调系统:通过变频调速技术可以实现空调系统的节能运行,提高空调系统的效率。
4.风电、水泵等领域:风电、水泵等需要根据外部条件调整转速的设备,也可以采用四象限变频调速实现。
五、结语四象限变频调速技术作为电机调速领域的一种创新技术,具有较高的应用价值和实用性。
通过合理的调速控制,可以提高电机的效率、稳定性和寿命,为工业生产和生活带来便利和效益。
微型电网功率调节系统的四象限运行动态特性研究
微型电网功率调节系统的四象限运行动态特性研究微型电网是指由分布式能源资源(如太阳能、风能等)和能源储存装置(如电池、超级电容等)组成的小型电力系统。
微型电网功率调节系统是控制微型电网内发电、负荷和储能之间的能量匹配与交换,以实现电网功率的平衡和稳定。
在微型电网运行中,由于天气条件的变化、负荷需求的波动等原因,微型电网的功率调节系统需要能够快速、准确地调节系统的功率输出,以保持电网的稳定性。
因此,对微型电网功率调节系统的四象限运行动态特性进行研究具有重要意义。
首先,四象限运行指的是微型电网功率调节系统能够在不同的功率需求条件下实现正负功率调节。
具体来说,第一象限是指发电机输出功率和负载功率都为正值,第二象限是指发电机输出功率为正值,负载功率为负值,第三象限是指发电机输出功率为负值,负载功率为正值,第四象限是指发电机输出功率和负载功率都为负值。
研究微型电网功率调节系统的四象限运行动态特性,可以提高系统的适应性和可靠性。
其次,研究微型电网功率调节系统的四象限运行动态特性需要考虑以下几个方面。
首先,需要分析系统在不同负载条件下的响应速度和稳定性,以确定系统的动态特性。
其次,需要考虑微型电网内部的能量匹配与交换机制,探讨不同功率调节模式下系统的效率和能量损耗情况。
此外,还需要综合考虑微型电网中各个组件的特性,如发电机、负载和储能装置等,以确定系统的整体性能和可靠性。
最后,需要开展实验验证,验证微型电网功率调节系统的四象限运行动态特性。
可以建立微型电网的实验平台,模拟实际的运行环境,并进行不同负载和天气条件下的实验。
通过测量和分析实验数据,可以评估系统的响应速度、稳定性和效率,验证研究成果的可行性和有效性。
综上所述,对微型电网功率调节系统的四象限运行动态特性进行研究,对于提高微型电网的运行效率和稳定性具有重要意义。
通过深入研究系统的动态特性、能量匹配与交换机制以及整体性能和可靠性,可以为微型电网的优化设计和实际应用提供理论支持和技术指导。
电动机四象限运行
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
左半部是众所周知的可逆变频器原理图,各位同行一看便知。
而右半部分电机分别处于四象限运行的转矩方向和转速方向(也是旋转方向)图。
现简单分析如下:当电机通常是处于处于第一象限运行,我们称其为正转(顺时针反向)电动状态,电动机通过变频器以不同的转速从电网吸收电能,并将其转换为机械能。
电动机的电动转矩和旋转反向一致,也是顺时针方向。
负载机械转矩和电动机电动转矩相反,当电动转矩大于负载转矩时,电动机升速,当电动转矩等于负载转矩时,电机匀速运转。
当我们电机处于某一转速运行在第一象限运行时,当变频器的给定频率突然变小,不管变频器的减速参数如何设定,只要是频率下降减速度大于电动机带负载的惯性减速速率,那么电机由电动状态变为发电状态,它将机械动能通过逆变模块的续流二极管并由制动单元控制向制动电阻放电,将机械能通过制动电阻发热耗掉,这时电机运转方向仍为正转(顺时针),而电机的电动转矩方向和第一象限相反,也就是和转动方向相反(逆时针),电动机对机械负载起制动作用,使得电机运转减速度加快。
我们称其为发电能耗制动状态,如果具有回馈制动单元的话,它可以将机械能通过回馈制动单元向电网回馈。
第三象限和第一象限过程相同,只不过电动转矩和旋转方向分别相反。
而第四象限和第二象限过程相同,也只不过是电动转矩和旋转方向分别相反。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限工作特性与原理
���������ሶ ���
Q
������ሶ
������ሶ������ ���������ሶ ���
P0
Q Us(Us U1) X
电流从STATCOM流向系统且电流相 位滞后系统电压90°,装置吸收感 性无功。
当U1=Us, 0 时,
P
���������ሶ ���
Q
������ሶ������ ���������ሶ ���
Ke
K e
K e
✓ 电机的转矩方程为:
Te KT I AB
转矩大小由电枢电流 的大小决定,转矩方 向由电枢电流的方向
决定。
✓ 转矩方向与电机转向相同为电动状态,反之为制动状态
直流电机的四象限运行
四象限直流—直流变换器
T1
VS A
T2
D2 T4
四象限的工作特性与控制原 理
——电气1310班“六个核桃” 小组电力电子研讨
四象限DC—DC变换器
STATCOM PWM整流器
四象限直流—直流变换器
Ud
第二象限: Ud>0, Id<0
第三象限: Ud < 0, Id < 0
第一象限: Ud>0, Id>0
Id
第四象限: Ud < 0, Id>0
STATCOM的控制方式
间接电流控制 直接电流控制 分相不对称控制 模糊PI控制 鲁棒非线性控制
STATCOM的控制方式
间接电流控制
间接电流控制是指对STATCOM 装置中逆变器所产生 的交流电压基波的相位和幅值的控制,以此来间接 控制STATCOM交流侧电流。
间接电流控制分为单δ控制和δ 与θ 配合控制。 采用单δ 控制时,虽然简单有效,但忽略了对θ 的控制,使得直流侧电容电压稳定困难、损耗增加。
电机四象限
电机四象限电机四象限是指在电机运行过程中,根据电机的转速和负载转矩的正负关系,将电机运行状态划分为四个象限。
每个象限代表了不同的运行情况和特点,对于电机的控制和运行参数的选择具有重要意义。
第一象限:正转负载区第一象限是指电机以正转速运行,同时承受正向转矩负载的区域。
在这个区域中,电机输出功率为正,表示电机正在正常工作。
这种情况下,电机承受的负载转矩与电机输出转速呈正相关关系,负载转矩越大,电机输出转速越低。
第二象限:反转负载区第二象限是指电机以反转速运行,同时承受正向转矩负载的区域。
在这个区域中,电机输出功率为负,表示电机正在反转运行。
和第一象限类似,电机承受的负载转矩与电机输出转速呈正相关关系,负载转矩越大,电机输出转速越低。
第三象限:反转正载区第三象限是指电机以反转速运行,同时承受负向转矩负载的区域。
在这个区域中,电机输出功率为正,表示电机正在反转运行。
这种情况下,电机承受的负载转矩与电机输出转速呈负相关关系,负载转矩越大,电机输出转速越高。
第四象限:正转正载区第四象限是指电机以正转速运行,同时承受负向转矩负载的区域。
在这个区域中,电机输出功率为负,表示电机正在正常工作。
和第三象限类似,电机承受的负载转矩与电机输出转速呈负相关关系,负载转矩越大,电机输出转速越高。
电机四象限的划分对于电机的控制和运行具有重要意义。
根据不同象限的特点,可以选择合适的控制策略和运行参数,以实现电机的高效工作和稳定运行。
例如,在第一象限中,可以根据负载转矩的大小来调整电机的输出转速,以保持电机的工作在最佳点上;在第二象限中,可以通过改变电机的运行方向来满足不同的工作需求;在第三象限中,可以根据负载转矩的变化来调整电机的输出转速,以实现精确的运动控制;在第四象限中,可以通过改变电机的运行方向和负载转矩的大小来实现不同的工作任务。
电机四象限是电机运行状态的划分,代表了不同的运行情况和特点。
了解和理解电机四象限的意义,可以帮助我们选择合适的控制策略和运行参数,以实现电机的高效工作和稳定运行。
四象限工作特性与原理
STATCOM的根本原理
电网电压用Us表示,STATCOM电压用U1表示,那么电抗器上的电压为Us和 U1的差,STATCOM从电网吸收的电流用 I 表示。
当不考虑等效阻抗R时:
当U1>Us, 0 时,
P
Q
P0
Q U s(U1 Us) X
电流从系统流向STATCOM且电流相 位超前系统电压90°,装置输出 感性无功。
四象限的工作特性与控制原 理
——电气1310班“六个核桃〞小 组电力电子研讨
四象限DC—DC变换器
STATCOM PWM整流器
四象限直流—直流变换器
Ud
第二象限: Ud>0, Id<0
第三象限: Ud < 0, Id < 0
第一象限: Ud>0, Id>0
Id
第四象限: Ud < 0, Id>0
四象限直流—直流变换器 第三、四象限运行等效电路
VS
T1
A
断 T3 La Ra Ea
B
D3
T2 通 IAB T4
D4
(c)第三 第四两象限变换电路
四象限直流—直流变换器
第三象限工作
工作模式:
降压〔T3 D4构成 Buck降压变换器〕
输出电压方向: 反向〔VAB<0〕
四象限工作特性与原理
对STATCOM吸收的无功电流进行反馈控制,其原理图如下:
STATCOM的控制方式 间接电流控制方式(δ与θ 配合控制)
可以证明在感性工况下 STATCOM在电
网中吸收的电流同样满足上式,不过此时吸
收的是感性电流, δ的值是U1超前Us的角
度。
从上式可见δ的值与有、无功电流基波
电压的幅值都是以一对应的。
IQ
STATCOM的控制方式
通过以上分析,我们可以得到最简单的电流间接控制方法,即将我们想要的、补偿的无功电流的参考值Iref 作为指令值,通过上面的公式转换的δ的值,然后δ来控制 STATCOM变流器的触发脉冲,使STATCOM交 流侧输出的电流跟随参考值动态变化。其示意图和相关波形如下:
图中用无穷大系统电压的有效值为v频率为50hz额定负荷为s9000j90002203上面是家补偿器之前的下面的是加补偿器之系统模型搭建及仿真结果分析补偿器之后的可见功率因数提高明显pwm整流器拓扑结构单相pwm整流电路三相pwm整流电路26pwm整流器的分类?按直流储能形式
四象限工作特性与原理
四象限的工作特性与控制原理
VS A
A
输出电压方向:
正向
La Ra Ea
iAB
D3
B
T4
输出电压大小: 输出电流方向:
Vs
1
1 D
VAB
VAB
反向
电机运行于反向制动状态,能量由负载供 向直流输入电源。
STATCOM 静止同步补偿器( Static Synchronous compensator STATCOM )是柔性交流输电系统(FACTS)的重要设 备之一,在稳定系统电压、提高功率因数、增加传送容量等方面发挥着重要的作用,代表着无功补偿技术 的发展方向。
电机四象限运行
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
四象限运行电机及变频器简介
四象限运行电机:把电机的运行速度方向用一条数轴X来表示,数轴的正方向代表正转的转速,反方向表示反转的转速;把电机的电磁转矩方向用一条数轴Y来表示,数轴的正方向代表正的电磁转矩,反方向表示负的电磁转矩;构成一个平面坐标系XOY,对于电机来说,所谓四象限是指其运行机械特性曲线在数学轴上的四个象限都可运行。
第一象限正转电动状态,第二象限回馈制动状态,第三象限反转电动状态,第四象限反转制动状态。
能够具有使得电机工作在四象限的变频器才称得上四象限变频器。
简单的说,两象限普通变频器只能拖动电动机正转或者反转。
工作于一和三象限。
电动机惰走时的动能只能浪费掉。
(指电动机的制动)。
四象限变频器不仅能拖动电动机正反转,并且能把电动机惰走时的动能转换成电能回馈到电网。
使电动机工作在发电机状态。
四象限变频器:普通变频器大都采用二极管整流桥将交流电转换成直流,然后采用IGBT逆变技术将直流转化成电压频率皆可调整的交流电控制交流电动机。
这种变频器只能工作在电动状态,所以称之为两象限变频器。
由于两象限变频器采用二极管整流桥,无法实现能量的双向流动,所以没有办法将电机回馈系统的能量送回电网。
在一些电动机要回馈能量的应用中,比如电梯、提升机、离心机系统、抽油机等,只能在两象限变频器上增加电阻制动单元,将电动机回馈的能量消耗掉。
另外,二极管整流桥会对电网产生严重谐波污染。
IGBT功率模块可以实现能量的双向流动,如果采用IGBT做整流桥,用高速度、高运算能力的DSP产生SVPWM控制脉冲。
一方面可以调整输入的功率因数,消除对电网的谐波污染,让变频器真正成为“绿色产品”。
另一方面可以将电动机回馈产生的能量反送到电网,达到节能的效果。
四象限变频器传动方案:四象限变频器满足各种工业应用需求,特别适用在起重提升设备等大惯量位能负载,设备的转动惯量GD较大,属反复短时连续工作制,从高速到低速的减速降幅较大,制动时间又较短,又要强力制动效果的场合或者需要长时重载电气制动的场合。
变频器的四象限运行
1、四象限,用两个正交的数轴把平面分成四个部分,分别为四象限。
2、两个数轴分别赋予不同的意义,或者代表不同意义的参数,这时四象限就分别表示参数变化时物体运动或变化的四个状态;3、凡是运动或变化的状态可以用两个独立的具有相反意义的参数描述的,其状态都可以用四象限来描述;如果是三个参数就不是四象限,而是8象限了;4、比如,用4象限描述电机的运行状态:首先确定两个参数,一个是转子受的电磁转矩m用Y轴,一个是运转方向n用X轴,那么四象限分别描述电机的四个运行状态分别是:①象限为正转电动状态;②象限为反转制动发电状态;③象限为反转电动状态;④象限为正转制动发电状态;5、比如,用4象限描述整流器的运行状态:首先确定两个参数,一个是变流方向用Y轴,一个是直流电压的极性用X轴,那么四象限分别描述整流器的四个运行状态分别是:①象限为正极性整流状态;②象限为反极性整流状态;③象限为反极性逆变状态;④象限为正极性逆变状态;6、比如,用4象限描述变频器的运行状态:首先确定两个参数,这时你发现有问题了,变频器的运行状态指什么,变流方向?还是电机的四个状态?整流器的四个状态?逆变器的四个状态?所以定义不同,四象限的意义不同。
如果结合电动机的状态,确定两个参数,一个是变流方向用Y轴,一个是电机运转方向n用X轴,那么变频器的四象限分别描述是:①象限为正转电动状态;②象限为反转电动状态;③象限为反转发电回馈状态;④象限为正转发电回馈制动状态。
7、两个坐标数轴的意义不同,四象限描述的状态意义不同。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
什么是电机的四象限运行
什么是电机的四象限运行单独对于电机来说,所谓四象限是指其运行机械特性曲线在数学轴上的四个象限都可运行。
第一象限正转电动状态,第二象限回馈制动状态,第三象限反转电动状态,第四象限反接制动状态。
能够具有使得电机工作在四象限的变频器才称得上四象限变频器。
在上个世纪80年代末,交流变频调速逐渐登上了工业传动调速方式的历史舞台。
变频调速在调速范围、调速精度、控制灵活、工作效率、使用方便等方面都有很大的优点,使变频调速成为最有发展前途的一种交流调速方式。
普通的变频器大都采用二极管整流桥将交流电转化成直流,然后采用IGBT逆变技术将直流转化成电压频率皆可调整的交流电控制交流电动机。
这种变频器只能工作在电动状态,所以称之为两象限变频器。
由于两象限变频器采用二极管整流桥,无法实现能量的双向流动,所以没有办法将电机回馈系统的能量送回电网。
在一些电动机要回馈能量的应用中,比如电梯,提升,离心机系统,只能在两象限变频器上增加电阻制动单元。
将电动机回馈的能量消耗掉。
另外,在一些大功率的应用中,二极管整流桥对电网产生严重的谐波污染。
IGBT功率模块可以实现能量的双向流动,如果采用IGBT做整流桥,用高速度、高运算能力的DSP产生PWM控制脉冲。
一方面可以调整输入的功率因数,消除对电网的谐波污染,让变频器真正成为“绿色产品”。
另一方面可以将电动机回馈产生的能量反送到电网,达到彻底的节能效果。
四象限变频器的典型应用是具有位势负载特性的场合,例如提升机,机车牵引,油田磕头机,离心机等。
在一些大功率的应用中,也需要四象限变频器以减小对电网的谐波污染。
以提升机的应用为例,当提升重物时,四象限变频器拖动电机克服重力做工,电动机处于电动状态。
当下放重物时,逆变侧产生励磁电流,重力牵引电机发电,电动机处于发电状态。
势能转化为电能通过整流侧回馈的电网。
四象限工作特性与原理
T1
VS A
T2
D1
T3 断
La Ra Ea B
I AB
通
D2
T4
输出电压方向: 输出电压大小: 输出电流方向:
正向
T
on
V V AB
D
TS
正向
电机运行于正向电动状态,能量由输入直 流电源供向负载。
(b)降压变换电路
第二象限工作
四象限直流—直流变换器
工作模式:
升压(将负载的电压升高后向Vd回馈电能)
第四象限工作
工作模式:
升压(T4 D3构成Boost升压变换器)
VS A
A
输出电压方向:
正向
La Ra Ea
iAB
D3
B
T4
输出电压大小: 输出电流方向:
Vs
1
1 D
VAB
VAB
反向
电机运行于反向制动状态,能量由负载供 向直流输入电源。
STATCOM 静止同步补偿器( Static Synchronous compensator STATCOM )是柔性交流输电系统(FACTS)的重要设 备之一,在稳定系统电压、提高功率因数、增加传送容量等方面发挥着重要的作用,代表着无功补偿技术 的发展方向。
当电路在逆变状态运行时,Uab超前Is一定角度, 此时,Us和Is反向。此时电源吸收有功。PWM整流器的 通过整流运行和逆变运行可实现能量的双向传输
29
PWM整流的原理
PWM整流器在无功补偿状态运行时,Is超前Us90°。此时
发出无功。同理当Is滞后于
于Us90°时又相当于无功补偿器。
通过对Uab幅值和相位的控制,可以使Is超前或滞后Us 任意角度。也就是说电源向负荷发出的有功和无功可大可小 可正可负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
4、怎样实现变频器的4象限驱动功能?采用英国CT的Unidriver系列交流驱动器、还有ABB、西门子的变频器都可以实现四象限驱动功能。
使用时,电机要换成交流电机,同时,变频器要配能耗单元,有两种方式可选。
⑴采用制动单元+制动电阻,将电机反相时产生的方向再生电流消耗掉,否则易烧毁变频器或引起变频器跳闸。
⑵采用逆变器,将逆变器接在变频器的直流母线上,当产生方向再生电流时,变频器直流母线电压升高,通过逆变器将直流母线的直流高电压变成和交流电网同步的交流电,反馈回电网,实现了节能作用。
该方式常用于多台大功率变频驱动。
5、关于直流电机传动设备的4象限运行:开卷和收卷这样的恒功率负载,卷的半径小的时候,力臂短,扭矩小,电机的转速高;卷的半径大的时候,力臂长,扭矩大,电机的转速低,这样也能实现收放卷线速度的恒定,当然要检测卷的半径。
对于这样的恒功率负载,我认为应该选择基速(就是定子最高电压所对应的速度)较小的电机,更大的速度范围为弱磁升速,这样才能充分发挥电机的效能。
同样,交流异步电机的变频调速也有基速上下之分,只不过基速之下是变频变压(φ恒定)恒扭矩调速;基速之上为恒压升频(φ减小)恒功率调速.四象限变频器的工作原理当电机工作在电动状态的时候,整流控制单元的DSP产生6路高频的PWM脉冲控制整流侧的6个IGBT的开通和关断。
IGBT的开通和关断与输入电抗器共同作用产生了与输入电压相位一致的正弦电流波形,这样就消除了二极管整流桥产生的6K±1谐波。
功率因数高达99%。
消除了对电网的谐波污染。
此时能量从电网经由整流回路和逆变回路流向电机,变频器工作在第一、第三象限。
当电动机工作在发电状态的时候,电机产生的能量通过逆变侧的二极管回馈到直流母线,当直流母线电压超过一定的值,整流侧能量回馈控制部分启动,将直流逆变成交流,通过控制逆变电压相位和幅值将能量回馈到电网,达到节能的效果。
此时能量由电机通过逆变侧、整流侧流向电网。
变频器工作在二、四象限。
输入电抗器的主要功能是电流滤波。
四象限变频器的系统构成主回路的构成:预充电电路,输入电抗、智能功率模块,电解电容和输出电抗。
各部分的功能列举如下:预充电电路:由交流接触器、功率电阻组成及相应的控制回路。
主要功能是系统上电时,完成对直流母线电容的预充电。
避免上电时强大的冲击电流烧坏功率模块。
输入电抗器:电动状态下起储能作用,形成正弦电流波形。
回馈状态下,起滤波作用,滤掉电流波形的高频成分。
智能功率模块(SkiiP):整流侧和逆变侧IGBT、隔离驱动、电流检测以及各种保护监测功能。
电解电容:储能,滤波。
输出电抗:降低输出dv/dt,对电机起到一定的保护作用。
控制部分组成:系统辅助电源模块,预充电控制,功率接口板,DSP控制板及人机接口板。
系统辅助电源产生系统控制所需的5V, 15V 和24V 电源。
预充电控制用于控制预充电交流接触器的动作。
功率接口板反馈系统控制所需的电流信号,电压信号及温度信号,并且传递PWM控制波形到驱动板。
接口板要对信号进行滤波处理。
DSP控制板完成整流,逆变PWM控制算法,系统的大脑。
人机接口板显示变频器运行的各种状况以及用户参数输入。
四象限运行无论是两象限的变频器还是四象限的变频器,都是变频器本身所具有的特性,它是针对变频器而言的。
而我们所说的四象限运行是针对电机的,它和四象限变频器是完全不同的两个概念。
只不过是两象限变频器要想使电机四象限运行必须添加相应的功能模块,即制动单元和制动电阻,而四象限变频器则不需要添加任何外围硬件就可以满足电机四象限运行。
备注:现有的一些变频器厂商声称他们的变频器配以回馈单元就能够成为四象限变频器,满足电机的四象限运行,并且是能量回馈电网,实际上真正意义上的四象限变频器是不需要配以任何外围的部件就能够满足电机的四象限运行,并且还能消除电网的谐波污染,使功率因数基本接近于1,而仅仅能够将能量回馈电网的变频器是不能够称其为四象限的变频器。
1、3象限功率为正(转速和转矩的乘积),所以电机输出功率,电机工作于电动状态,而电机的旋转方向相反;2、4象限功率为负(转速和转矩的乘积),所以电机吸收功率,电机工作于发电状态,而电机的旋转方向相反。
把电机的运行速度方向用一条数轴X来表示,代表电磁转矩方向。
把电机的电磁转矩方向用一条数轴Y来表示,代表电机转速的旋转方向。
构成一个平面坐标系XOY,那么第一象限是正转电动,此时转速与转矩旋转方向相同,这是正常的电动模式(假设电机正转)。
第二象限是电机正转,但转矩相反,电机处于发电状态,即回馈制动。
第三象限是反转电动,此时转速与转矩的方向相同,这是电动模式(反转)。
第四象限转速与转矩方向相反,电机处于发电状态,即回馈制动。
四象限把电机的运行速度方向用一条数轴X来表示,数轴的正方向代表正转的转速,反方向表示反转的转速;把电机的电磁转矩方向用一条数轴Y来表示,数轴的正方向代表正的电磁转矩,反方向表示负的电磁转矩;构成一个平面坐标系XOY,那么电动机正常电动状态处在第一象限(正转、电动),发电(制动)再生运行在第二象限(正转、发电).电梯曳引电动机由于正常状态就不断正、反转,上、下行都有可能电动或发电,处于四象限运行状态,各个状态能量转换方向不同.用四象限来描述电机运行状态,和用熟悉的正、反转,电动、发电描述是一样的道理。
四象限变频器原理图单独对于电机来说,所谓四象限是指其运行机械特性曲线在数学轴上的四个象限都可运行。
第一象限正转电动状态,第二象限回馈制动状态,第三象限反转电动状态,第四象限反接制动状态。
能够具有使得电机工作在四象限的变频器才称得上四象限变频器。
在上个世纪80年代末,交流变频调速逐渐登上了工业传动调速方式的历史舞台。
变频调速在调速范围、调速精度、控制灵活、工作效率、使用方便等方面都有很大的优点,使变频调速成为最有发展前途的一种交流调速方式。
普通的变频器大都采用二极管整流桥将交流电转化成直流,然后采用IGBT逆变技术将直流转化成电压频率皆可调整的交流电控制交流电动机。
这种变频器只能工作在电动状态,所以称之为两象限变频器。
由于两象限变频器采用二极管整流桥,无法实现能量的双向流动,所以没有办法将电机回馈系统的能量送回电网。
在一些电动机要回馈能量的应用中,比如电梯,提升,离心机系统,只能在两象限变频器上增加电阻制动单元。
将电动机回馈的能量消耗掉。
另外,在一些大功率的应用中,二极管整流桥对电网产生严重的谐波污染。
IGBT功率模块可以实现能量的双向流动,如果采用IGBT做整流桥,用高速度、高运算能力的DSP产生PWM控制脉冲。
一方面可以调整输入的功率因数,消除对电网的谐波污染,让变频器真正成为“绿色产品”。
另一方面可以将电动机回馈产生的能量反送到电网,达到彻底的节能效果。
四象限变频器的典型应用是具有位势负载特性的场合,例如提升机,机车牵引,油田磕头机,离心机等。
在一些大功率的应用中,也需要四象限变频器以减小对电网的谐波污染。
以提升机的应用为例,当提升重物时,四象限变频器拖动电机克服重力做工,电动机处于电动状态。
当下放重物时,逆变侧产生励磁电流,重力牵引电机发电,电动机处于发电状态。
势能转化为电能通过整流侧回馈的电网。