逻辑门实现组合电路
组合逻辑电路实验报告
组合逻辑电路实验报告实验目的:本实验旨在通过实际操作,加深对组合逻辑电路的理解,掌握组合逻辑电路的设计与实现方法,提高实际动手能力和解决问题的能力。
实验原理:组合逻辑电路是由多个逻辑门组成的电路,其输出仅取决于当前输入的状态,与前一状态或时间无关。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在实验中,我们将重点研究加法器和译码器的设计与实现。
实验内容:1. 加法器的设计与实现。
首先,我们将学习并掌握半加器和全加器的设计原理,然后利用逻辑门实现半加器和全加器电路。
通过实际搭建电路并进行测试,我们将验证加法器的正确性和稳定性。
2. 译码器的设计与实现。
其次,我们将学习译码器的工作原理和应用场景,并利用逻辑门实现译码器电路。
通过实际操作,我们将验证译码器的功能和性能,并探讨其在数字系统中的应用。
实验步骤:1. 硬件搭建。
根据实验要求,准备所需的逻辑门芯片、连接线、示波器等硬件设备,按照电路图进行搭建。
2. 逻辑设计。
根据实验要求,进行逻辑设计,确定逻辑门的连接方式和输入输出关系。
3. 电路测试。
将输入信号输入到电路中,观察输出信号的变化,记录并分析测试结果。
4. 数据处理。
对测试结果进行数据处理和分析,验证电路的正确性和稳定性。
实验结果与分析:经过实验操作和数据处理,我们成功设计并实现了加法器和译码器电路。
通过测试,我们验证了电路的正确性和稳定性,加深了对组合逻辑电路的理解和掌握。
实验总结:通过本次实验,我们进一步加深了对组合逻辑电路的理解,掌握了加法器和译码器的设计与实现方法,提高了实际动手能力和解决问题的能力。
同时,也发现了实验中存在的问题和不足之处,为今后的学习和实践提供了宝贵的经验和教训。
实验改进:在今后的实验中,我们将进一步完善实验方案,加强实验前的理论学习和准备工作,提高实验操作的规范性和准确性,以及加强实验结果的分析和总结,不断提升实验质量和效果。
结语:通过本次实验,我们深刻认识到了组合逻辑电路在数字系统中的重要性和应用价值,也认识到了实验操作的重要性和必要性。
巧用一片CD4011组装七种逻辑门电路
巧用一片CD4011组装七种逻辑门电路陕西汉中宇星电力电子学校郭秦汉笔者用一块CD4011(四2与非门)和少量的外围元件,用三组电路分别制作了与非门、非门、与门、或非门、或门以及与或非门和异或门电路,经实验效果很好。
后来用此方法辅导学生制作,使学生对逻辑门电路应用有了初步的认识,对门电路的变通使用有了新的理解,增强了学生用学过的知识解决问题的能力,提高了学习兴趣。
现把制作方法介绍给大家,供参考。
一、五种基本门电路制作CD4011内部结构如图1所示。
此IC工作电压范围宽(3V~18V),且不易损坏。
笔者在做试验时,将一块IC反复拆装测试数次,依然完好。
1.组装与非门电路只要将电源接通,给输入端加上高电平或低电平,就可以直接测量其逻辑状态。
2.要组成与门电路,根据上述原理只需在输入端加一级非门。
在实际运用中,把与非门两个输入端并联,就把与非门改成了非门如图2所示。
3.或非门用两只二极管和一个电阻,组成或门电路,用两个与非门改装的非门,用来对小信号进行放大,组成或非门电路。
表达式为:逻辑图见图3所示。
具体电路如图4所示。
&1、&2组成与门电路,VD2、VD3和&3、&4组成或门电路,IC工作电压为DC9V,○14脚接电源正极,⑦脚接负极,VD1用于防止电源极性接反。
C为滤波电容,R3、R4为下拉电阻。
为了简化测试操作过程,将A、B端直接置0,即A=0、B=0,R1、R2为高电平输入信号源,如将其输出端接A或B,都可以使原来的状态发生改变,成为高电平。
与门、或门的输出端Y都接有发光二极管和限流电阻,用来显示输出状态。
输出高电平时,LED亮,输出低电平时,LED灭。
在测试中,可按照真值表要求,在A、B端输入电平,根据对应的LED亮为1,灭为0填入表格,完成对门电路的测试。
如需测试非门电路,可以将IC的④脚与LED的连接点断开而改接到或门电路⑩、⑥、⑩脚的连接处,在VD2、VD3输入高电平,便可以在检测或非门和或门的逻辑功能的同时,观察到&4的输入和输出电平,总是一高一低,两只LED一亮一灭,其逻辑功能符合逻辑函数表达式:如要测试与非门和或非门的逻辑功能,只需将与门端接④脚LED1正端拆下,改接到③脚上。
实验报告组合逻辑电(3篇)
第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路实验报告
组合逻辑电路实验报告引言:组合逻辑电路是数字电路的重要组成部分,广泛应用于计算机、通信等领域。
本实验旨在通过设计和实现一个基本的组合逻辑电路,加深对数字电路的理解,同时掌握实验的步骤和方法。
一、实验目的本次实验的主要目的是设计并实现一个4位二进制加法器,通过对二进制数进行加法运算,验证组合逻辑电路的正确性。
二、实验原理1. 二进制加法二进制加法是指对两个二进制数进行相加的运算。
在这个过程中,我们需要考虑进位问题。
例如,对于两个4位二进制数A和B,加法的规则如下:- 当A和B的对应位都是0时,结果位为0;- 当A和B的对应位有一个位是1时,结果位为1;- 当A和B的对应位都是1时,结果位为0,并需要将进位加到它们的下一位。
2. 组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,根据输入信号的组合条件决定输出信号的状态。
在本实验中,我们将使用与门、或门、非门等基本逻辑门设计加法器电路。
三、实验步骤1. 设计电路根据二进制加法的原理,我们可以通过组合逻辑电路来实现一个4位二进制加法器。
设计原理如下:- 使用四个与门分别对应四个位的相加;- 使用四个异或门进行无进位相加;- 使用一个或门将各位相加后的进位输出;- 最后将四个位的和和进位进行合并得到最终结果。
2. 搭建电路实验装置根据设计步骤,将与门、异或门、或门等集成电路以及电阻、导线等连接在面包板上,搭建出电路实验装置。
3. 验证电路正确性输入两个4位的二进制数A和B,并将结果与预期结果进行对比,验证电路的正确性。
重复进行多组实验,确保电路的可靠性和稳定性。
四、实验结果与分析通过多次实验,我们得到了实验结果。
将结果与预期结果进行对比,并计算误差,可以得出结论。
在实验中,我们还观察到了实验结果的稳定性和可靠性,并对实验结果的波形进行了分析。
五、实验总结通过本次实验,我们了解了组合逻辑电路的基本原理和设计方法,并通过设计和搭建4位二进制加法器电路,实践了电路设计的过程。
组合逻辑电路实验报告
组合逻辑电路实验报告引言组合逻辑电路是由与门、或门和非门等基本逻辑门组成的电路,它的输出仅仅依赖于当前的输入。
在本实验中,我们将学习如何设计和实现组合逻辑电路,并通过实验验证其功能和性能。
实验目的本实验的目的是让我们熟悉组合逻辑电路的设计和实现过程,掌握基本的逻辑门和组合逻辑电路的基本原理,并能够通过实验验证其功能和性能。
实验器材与预置系统本实验使用以下器材和预置系统:•模型计算机实验箱•功能切换开关•LED指示灯•逻辑门芯片实验内容1. 初级组合逻辑电路设计首先,我们将设计一个简单的初级组合逻辑电路。
根据实验要求,该电路需要实现一个2输入1输出的逻辑功能。
1.1 逻辑设计根据逻辑功能的要求,我们可以先用真值表来表示逻辑关系,然后根据真值表来进行逻辑设计。
假设我们需要实现的逻辑功能是“与门”(AND gate),其真值表如下:输入A输入B输出000010100111根据真值表,我们可以得到逻辑方程为:输出 = 输入A AND 输入B。
1.2 逻辑电路设计根据逻辑方程,我们可以得到逻辑电路的设计图如下:+--------------+------ A ---| || AND Gate |--- Output------ B ---| |+--------------+在这个设计图中,A和B为输入引脚,Output为输出引脚,AND Gate表示与门。
1.3 实验验证在实验过程中,我们可以通过观察LED指示灯的亮灭来验证逻辑电路是否正确实现了目标功能。
通过设置不同的输入A 和B,我们可以观察输出是否符合预期结果。
2. 高级组合逻辑电路设计接下来,我们将设计一个更复杂的高级组合逻辑电路。
这个电路由多个逻辑门连接而成,实现多个输入和多个输出的逻辑功能。
2.1 逻辑设计根据实验要求,我们可以先确定需要实现的逻辑功能,并用真值表来表示逻辑关系。
假设我们需要实现的逻辑功能是“四位全加器”(4-bit full adder),其真值表如下:输入A输入B输入C输出S进位输出Cout0000000110010100110110010101011100111111根据真值表,我们可以得到逻辑方程为:输出S = 输入A XOR 输入B XOR 输入C 进位输出Cout = (输入A AND 输入B) OR (输入C AND (输入A XOR 输入B))2.2 逻辑电路设计根据逻辑方程,我们可以使用多个逻辑门来实现四位全加器电路。
电路-门电路和组合逻辑电路
03
门电路的特性
门电路具有输入和输出两个端子,输入信号通过内部逻辑运算得到输出
信号。门电路的特性包括逻辑功能、输入电阻、输出电阻和扇入扇出能
力等。
组合逻辑电路设计
组合逻辑电路
组合逻辑电路由门电路组成,用于实现一组特定的逻辑功能。常见 的组合逻辑电路有编码器、译码器、多路选择器等。
组合逻辑电路设计步骤
波形图分析法
总结词
通过观察信号波形的变化,分析电路的 输入输出关系和信号处理过程。
VS
详细描述
波形图分析法主要用于模拟电路的分析。 通过观察信号波形的形状、幅度、频率等 参数,分析电路对信号的处理过程,如放 大、滤波、调制等。同时,通过比较输入 输出信号的波形,可以理解电路的输入输 出关系和工作原理。
态图等描述电路功能的工具。
04
电路设计方法
BIG DATA EMPOWERS TO CREATE A NEW
ERA
门电路设计
01
门电路
门电路是数字电路的基本单元,用于实现逻辑运算。常见的门电路有与
门、或门、非门等。
02
门电路设计步骤
根据逻辑需求,选择合适的门电路类型,确定输入和输出信号,然后根
据逻辑关系连接门电路。
逻辑关系
每种类型的门电路都有特定的逻辑关系,例如与门在所有输入为 高电平时输出为高电平,否则输出为低电平。
门电路的应用
01
基本逻辑运算
门电路是实现基本逻辑运算的电 子元件,广泛应用于数字电路和 计算机中。
控制电路
02
03
信号转换
门电路可以用于控制其他电路的 工作状态,实现复杂的控制逻辑。
门电路可以将模拟信号转换为数 字信号,或者将数字信号转换为 模拟信号。
门电路设计组合逻辑电路的方法
门电路设计组合逻辑电路的方法门电路是数字电路中最基础的电路之一,它由若干个逻辑门组成,用于实现各种逻辑功能。
组合逻辑电路是由多个门电路按照一定的规则连接而成的电路,它的输出仅取决于当前输入的状态,与之前的输入状态无关。
在本文中,将介绍一种常用的方法来设计组合逻辑电路。
在设计组合逻辑电路之前,首先需要明确电路的功能需求,即确定电路的输入和输出信号的关系。
然后,根据这个关系,可以使用逻辑门来实现所需的功能。
常用的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
其中,与门将两个输入信号都为1时输出为1,否则输出为0;或门则是两个输入信号中有一个为1时输出为1,否则输出为0;非门是对输入信号取反;异或门是两个输入信号相同时输出为0,不同时输出为1。
在设计组合逻辑电路时,可以将问题分解为几个较小的子问题,然后分别设计解决。
例如,要设计一个加法器电路,可以将它分解为一个半加器和多个全加器的组合。
半加器用于计算两个输入位的和与进位,而全加器则可以将多个半加器连接起来,实现多位数的加法运算。
在具体设计电路时,可以使用逻辑图来表示电路的结构和信号的传输。
逻辑图使用逻辑门和线连接来表示电路中的元件和信号传输路径。
在逻辑图中,每个逻辑门都有一个标识符,用于表示该门的类型,例如AND、OR等。
线则表示信号的传输路径,可以用直线或弯曲的线段表示。
在设计组合逻辑电路时,还需要考虑电路的延迟和时序问题。
电路的延迟是指输入信号改变后,输出信号发生变化所需要的时间。
时序问题则是指在电路中的不同部分之间有一定的时间差,可能导致错误的结果。
为了解决这些问题,可以使用触发器和时钟信号来同步电路的运行。
总结起来,设计组合逻辑电路的方法包括确定功能需求、选择适当的逻辑门、使用逻辑图表示电路、解决延迟和时序问题等。
通过合理的设计和组合,可以实现各种复杂的逻辑功能。
这种方法不仅适用于门电路,也可以应用于其他类型的数字电路设计。
组合逻辑电路实验原理
组合逻辑电路实验原理
组合逻辑电路的实验原理基于布尔代数和逻辑运算。
布尔代数是一种数学工具,用于描述逻辑运算的规则和性质。
逻辑运算包括与、或、非、异或等运算,这些运算可以用逻辑门实现。
逻辑门是一种基本的数字电路元件,可以用于实现逻辑运算,并将输入信号转换为输出信号。
在组合逻辑电路实验中,通常需要遵循以下步骤:
1. 确定输入和输出信号的类型和数量。
输入信号可以是数字信号、模拟信号或混合信号,而输出信号通常是数字信号。
2. 根据逻辑运算的规则和性质,确定所需的逻辑门的类型和数量。
常见的逻辑门包括与门、或门、非门、异或门等。
3. 根据逻辑门的输入和输出特性,设计电路的结构,确定逻辑门的连接方式和电路的配置。
逻辑门的输入和输出可以是单个信号或多个信号,可以串联或并联连接。
4. 进行逻辑电路的仿真和测试,验证电路的正确性和可靠性。
可以使用数字电路仿真软件进行仿真测试,并使用数字信号发生器和示波器等测试仪器进行实际测试。
以数据选择器为例,数据选择器也称多路开关,通过改变地址输
入信号,可以在多个数据输入中选择一个传送到输出。
例如,74151是一种常见的8选1数据选择器,具有3位地址输入、8路数据输入、一个使能信号以及一对互补的输出。
如需了解更多信息,可以查阅数字逻辑或计算机组织相关教材,或者咨询相关专业的老师或工程师。
集成组合逻辑电路
CONTENTS
PRT ONE
PRT TWO
集成组合逻辑电路:由多个逻辑门电路组合而成的电路可以实现各种逻辑功能。
基本概念:包括逻辑门、逻辑表达式、逻辑函数、逻辑电路等。
分类:根据逻辑功能的不同可以分为加法器、减法器、乘法器、除法器、比较器、编码器、译 码器等。
应用:广泛应用于计算机、通信、电子等领域。
确定设计目标:明确电路的功能和性能要 求
电路设计:根据设计目标进行电路设计包 括逻辑表达式、电路图等
仿真验证:使用仿真软件对电路进行仿真 验证确保电路功能正确
电路优化:根据仿真结果对电路进行优化 提高电路性能和可靠性
制作PCB:根据电路设计制作PCB包括布 线、焊接等
测试验证:对制作完成的电路进行测试验 证确保电路功能正确和性能稳定
采用流水线设计 提高处理速度和 吞吐量
采用并行处理技 术提高处理速度 和吞吐量
采用低功耗设计 降低功耗和成本
提高电路性能: 优化设计可以提 高电路的运行速 度和稳定性
降低功耗:优化 设计可以降低电 路的功耗提高能 源利用率
减小体积:优化 设计可以减小电 路的体积提高集 成度
提高可靠性:优 化设计可以提高 电路的可靠性减 少故障率
确定设计 目标:如 提高速度、 降低功耗 等
电路分析: 分析现有 电路存在 的问题和 瓶颈
优化方案 设计:根 据分析结 果设计优 化方案
仿真验证: 使用仿真 工具验证 优化方案 的有效性
实施优化: 根据验证 结果对电 路进行优 化
测试验证: 优化后进 行测试验 证优化效 果
采用模块化设计 提高可重用性和 可维护性
功能:将二进制代码转换为十 进制代码
应用:数字显示、数据传输、 信号处理等领域
组合逻辑电路设计实验报告
组合逻辑电路设计实验报告一、实验目的。
本实验旨在通过设计和实现组合逻辑电路,加深学生对组合逻辑电路原理的理解,提高学生的动手能力和实际应用能力。
二、实验内容。
1. 学习组合逻辑电路的基本原理和设计方法;2. 设计和实现一个简单的组合逻辑电路;3. 进行实际电路的调试和测试;4. 编写实验报告,总结实验过程和结果。
三、实验原理。
组合逻辑电路是由多个逻辑门组成的电路,其输出仅依赖于输入信号的组合。
常见的组合逻辑电路包括加法器、译码器、多路选择器等。
在设计组合逻辑电路时,需要根据具体的逻辑功能,选择适当的逻辑门并进行连接,以实现所需的逻辑运算。
四、实验步骤。
1. 确定所需的逻辑功能,并进行逻辑门的选择;2. 根据逻辑功能,进行逻辑门的连接设计;3. 利用数字集成电路芯片,进行实际电路的搭建;4. 进行电路的调试和测试,验证电路的正确性和稳定性;5. 编写实验报告,总结实验过程和结果。
五、实验结果。
经过设计和实现,我们成功搭建了一个4位全加器电路,并进行了测试。
在输入A=1101,B=1011的情况下,得到了正确的输出结果S=11000,C=1。
实验结果表明,我们设计的组合逻辑电路能够正确地实现加法运算,并且具有较高的稳定性和可靠性。
六、实验总结。
通过本次实验,我们深入了解了组合逻辑电路的设计原理和实现方法,提高了我们的动手能力和实际应用能力。
同时,我们也意识到了在实际搭建电路时需要注意的细节问题,如电路连接的稳定性、输入信号的干扰等。
这些经验对我们今后的学习和工作都将具有重要的指导意义。
七、实验感想。
通过本次实验,我们不仅学到了理论知识,还提高了实际操作能力。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提升自己的综合能力。
同时,我们也希望能够将所学知识应用到实际中,为社会做出更大的贡献。
八、参考文献。
[1] 《数字逻辑电路与系统设计》,张三,电子工业出版社,2018年。
[2] 《数字集成电路设计》,李四,清华大学出版社,2019年。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
组合逻辑电路概述
2.或逻辑
图3-4 或逻辑举例
其中,开关A,B是决定逻辑事 件灯L亮还是不亮的两个条件。只要 A,B中有一个合上,灯L就亮,只有 A,B都不合上时,灯L才灭,如表33所示为或逻辑举例的因果关系表。
A
B
L
断
断
灭
断
合
亮
合
断
亮
合
合
亮
表3-3 或逻辑举例的因果关系表
如图3-5所示为或逻辑的逻辑电路符号, 称为或门电路。
Y0 F0 (I0 ,I1 , ,In1) Y1 F1(I0 ,I1 , ,In1) Ym1 Fm1(I0 ,I1 , ,In1)
1.3 3种基本逻辑门及其 表示
1.与逻辑
如图3-2所示为与逻辑事件的举例。
图3-2 与逻辑举例
其中,开关A和B是决定逻辑事件灯L亮还是不亮的两个条件。 只有当A,B都合上时,灯L才会亮,否则灯L就不亮,如表3-1所 示为与逻辑举例的因果关系表。
A
L
断
亮
合
灭
表3-5 非逻辑举例的因果关系表
如图3-7所示为非逻辑的逻辑电路符号, 称为非门电路。
图3-7 非门逻辑符号
如表3-6所示为非逻辑的真值表,表示单值逻辑变量所有 可能取值所对应的逻辑事件的状态。
A
L
0
1
1
0
表3-6 非逻辑真值表
1.4 由3种基本逻辑门导出 的其他逻辑门及其表示
1.与非门
图3-10 与或非门组合电路及逻辑符号
如表3-9所示为与或非门的真值表。
A
B
C
D
L
0
0
0
0
1
0
0
0
逻辑门电路及组合逻辑电路
级推导出输出端的逻辑函数表达式,并依据该表达式,列出真 值表,从而确定该组合电路的逻辑功能。其分析步骤如下:
① 由逻辑图写出各门电路输出端的逻辑表达式;
②化简和变换各逻辑表达式; ③列写逻辑真值表; ④根据真值表和逻辑表达式,确定该电路的功能。
A ≥1
F B
或门
A
或门的波形为:
B
F
第3页/共39页
F 0 有1出1
全0出0
1
1
1
第八章 逻辑门电路及组合逻辑电路 8.1 逻辑代数及逻辑门电路
3.非运算、非逻辑、非门
真值表
A
F
有0出1
0
1 有1出0
逻辑关系:决定事件的条件满足,事 件不会发生;条件不满足时,事件才 发生。这就是非逻辑。
10
非逻辑的逻辑表达式为:F=A
真值表(除与或非运算外)
互为非 逻辑关系
逻辑变量 与非逻辑 或非逻辑 异或逻辑 同或逻辑
AB 00 01 10 11
逻辑门符号:
AB
A+B
A B A• B
1
1
0
1
1
Hale Waihona Puke 0101
0
1
0
0
0
0
1
A
=1
F
B
第5页/共39页
第八章 逻辑门电路及组合逻辑电路 8.1 逻辑代数及逻辑门电路
异或的逻辑式
Y=AB+AB 两个变量取相同值时,输出为0;取不同值时,输出为1
逻辑关系:决定事件的 全部条件都满足时,事 件才发生。这就是与逻 辑。
组合逻辑门电路
2.主要产品系列 . 表11.3.6 数字集成电路的主要产品系列
系列 子系列 TTL HTTL STTL LSTTL ALSTTL 名 称 国际型号 CT54/74 / CT54/74H / CT54/74S / CT54/74LS / CT54/74ALS / 部标型号 T1000 T2000 T3000 T4000 基本型中速TTL 基本型中速 高 速TTL 超 高 速TTL 低 功 耗TTL 先进低功耗TTL 先进低功耗
五、同或门 1.电路组成 . 在异或门的基础上, 在异或门的基础上,最 后加上一个非门。 后加上一个非门。
2.逻辑符号 . 3.逻辑函数式 . 通常写成 ) Y = AB + A B (11.3.6)
Y = A⊙ B
(11.3.7) )
4.真值表 . 表11.3.5 同或门真值表 A 0 0 1 1 B 0 1 0 1 Y 1 0 0 1
TTL
MOS
互补场效应管型 CMOS CC4000 高速CMOS 高速 HCOMS CT54/74HC / 与TTL兼容的高速 兼容的高速 HCMOST CT54/74HCT / CMOS
C000
3.数字集成电路外形举例 . •数字集成电路目前大量采用双列直插式外形封装。 数字集成电路目前大量采用双列直插式外形封装。 数字集成电路目前大量采用双列直插式外形封装
四、异或门 1.电路组成 . 2.逻辑符号 .
3.逻辑函数式 . 通常写成: 通常写成:
Y = A B + AB
Y = A⊕ B
(11.3.4) (11.3.5)
4.真值表 .
表11.3.4 异或门真值表 . .
A 0 0 1 1 5.逻辑功能 .
B 0 1 0 1
门电路和组合逻辑电路
首先假设逻辑变量、逻辑函数取“0”、“1”的 含义。
设:A、B、C分别表示三个车间的开工状态:
开工为“1”,不开工为“0”; G1和 G2运行为“1”,不运行为“0”。
(1) 根据逻辑要求列状态表 逻辑要求:如果一个车
间开工,只需G2运行即可 满足要求;如果两个车间 开工,只需G1运行,如果 三个车间同时开工,则G1 和 G2均需运行。
12. 3.1 加法器
二进制
十进制:0~9十个数码,“逢十进一”。 在数字电路中,为了把电路的两个状态 (“1”
态和“0”态)与数码对应起来,采用二进制。 二进制:0,1两个数码,“逢二进一”。
12. 3.1 加法器
加法器: 实现二进制加法运算的电路
如:
00 0 1
+ 00 1 1
进位
11
01 0 0
输入
X1
X2
组合逻辑电路
Xn
组合逻辑电路框图
...
Y1
Y2 输出
Yn
12. 2. 1 组合逻辑电路的分析
已知逻辑电路 确定 逻辑功能
分析步骤:
(1) 由逻辑图写出输出端的逻辑表达式 (2) 运用逻辑代数化简或变换 (3) 列逻辑状态表 (4) 分析逻辑功能
例 1:分析下图的逻辑功能
. . & Y2 A A B
2. 或门电路
逻辑表达式: Y=A+B+C
(3) 逻辑关系:“或”逻辑
即:有“1”出“1”, 全“0”出“0”
逻辑符号:
A B C
>1
Y
“或” 门逻辑状态表
A B CY
00 00 01 01 10 10 11 11
实验二-组合逻辑电路设计与实现-
思考题: 1. 采用74LS151八选一的数据选择器,重新设计实验内容2中的
②题 。 2. 通过具体的设计体验后,你认为组合逻辑电路设计的关键点 或关键步骤是什么?
13
输入
输出
s A1 A0
1×× 00 0 00 1 01 0 01 1
Q
0
D0
D1
D2
D3
7
实验二 组合逻辑电路设计与实现
(3)采用数据选择器实现逻辑函数 1)将双 4选1 数据
选择器 CT74LS153 扩 展成 8选1 数据选择器:
8
实验二 组合逻辑电路设计与实现
将双 4选1 数据选择器 CT74LS153 扩展成 8选1 数据选择器:
如使 F=1Y ,则令
A1A,A0=B
比较得:
V cc
+5V
B
16 15 14 13 12 11 10
9
V cc 2S A 0 2D 3 2D 2 2D 1 2D 0 Q
D0=0,D1=C,D2=C,D3=1
74LS153
1S A 1 1D 3 1D 2 1D 1 1D 0 Q G N D
12
345
9
实验二 组合逻辑电路设计与实现
2)用双4选1数据选择器 CT74LS153 实现逻辑函数
F A B C A B C AC B ABC 解: CT74LS153输出函数为:
1 Y A 1 A 0 1 D 0 A 1 AD 3
1
实验二 组合逻辑电路设计与实现
三. 实验原理
1、二进制译码器
如:2-4线译码器74LS139、 3-8线译码器74LS138 和 4-16线译码器74LS154。
数字逻辑实验 门电路组合逻辑设计
VCC
&
:
&
GND
1 23 45 6 7
图1-1 74LS20逻辑框图、逻辑符号及引脚排列
1、与非门的逻辑功能 与非门的逻辑功能为:当输入端中有一个或一个以上是低电平时,输出 端为高电平;只有当输入端全部为高电平时,输出端才是低电平。
逻辑表达式为: Y=ABCD
2.与非门的逻辑功能测试 1)逻辑电路及74LS20芯片逻辑功能测试的连接方法如图1-3所示。
一、实验目的
1、掌握中规模集成芯片数据选择器和译码器的逻辑功能和使 用方法
2、熟悉组合功能器件的应用
二、实验原理
1、数据选择器 数据选择器又叫多路选择器或多路开关,它是多输入,单输
出的组合逻辑电路。由地址码控制器多个数据通道。实现单 个通道数据输出,还可以实现数据传输与并串转换等多种功 能。 它基本是由三部分组成:数据选择控制(或称地址输入)、 数据输入电路和数据输出电路,它的种类多样有原码形式输 出、反码形式输出,现以74LS153为例进行应用设计。
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 01111111 10111111 11011111 11101111 11110111 11111011 11111101 11111110 11111111 11111111
SY70
VCC Y0 Y1 Y2 Y3 Y4 Y5 Y6
YS1357026432
E
1
0
A B F1 F2
F2 = ABE = ABE
南北 东西 3、电路图:
╳╳ 0 0 A 0010
B
&
&&
& F1
0 0 1 0 1 E
门电路的组合逻辑电路
真值表
A3 A 2 A1 A0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
D1 D2 导通 导通
F=AB
A
导通 截止 截止 导通 截止 截止
&
B
F
与门的逻辑功能可概括为:输入有0,输出为0; 与门的逻辑功能可概括为:输入有0 输出为0 输入全1 输出为1 输入全1,输出为1。
F=AB
逻辑与(逻辑乘)的运算规则为:
0⋅0 = 0
0 ⋅1 = 0
1⋅ 0 = 0
1⋅1 = 1
F=A+B
逻辑或(逻辑加)的运算规则为:
0+0=0
0 +1= 0
1+ 0 = 0
1+1=1
或门的输入端也可以有多个。下图为一个三输入或门电 路的输入信号A、B、C和输出信号F的波形图。
A B C F
8.1.3非门 8.1.3非门
决定某事件的条件只有一个,当条件出现时事件不发生,而 条件不出现时,事件发生,这种因果关系叫做非逻辑。 实现非逻辑关系的电路称为非门,也称反相器。 +3V
对数字信号进行传输、 处理的电子线路称为 数字电路。
8.1 逻辑门电路
逻辑门电路:用以实现基本和常用逻辑 运算的电子电路。简称门电路。 基本和常用门电路有与门、或门、非门 (反相器)、与非门、或非门、与或非门和 异或门等。 逻辑0和1: 电子电路中用高、低电平来 表示。 获得高、低电平的基本方法:利用半导 体开关元件的导通、截止(即开、关)两种 工作状态。
门电路及组合逻辑电路
由元器件老化、温度变化等引起的时好时坏的故障。
瞬态故障
由电磁干扰、静电放电等引起的短暂性故障。
故障诊断方法和技术
直观检查法
通过直接观察电路元器 件、连接线等是否异常
来判断故障。
逻辑笔测试法
利用逻辑笔测试电路各 点的逻辑状态,通过对
比分析找出故障。
替换法
用好的元器件替换怀疑 有问题的元器件,观察
寄存器传输控制电路设计
寄存器选择电路设计
根据控制信号选择相应的寄存器进行数据传输。
数据传输控制电路设计
控制数据的输入、输出以及寄存器之间的数据 传输。
时序控制电路设计
产生时序信号,控制寄存器传输操作的时序关系。
06 故障诊断与可靠性考虑
常见故障类型及原因
永久故障
由元器件损坏、电路连接错误等引起的不可恢复的故障。
门电路及组合逻辑电路
contents
目录
• 门电路基本概念与原理 • 基本门电路分析与设计 • 组合逻辑电路分析方法 • 常见组合逻辑功能模块介绍 • 组合逻辑电路设计实例分析 • 故障诊断与可靠性考虑
01 门电路基本概念与原理
门电路定义及作用
门电路定义
门电路是数字逻辑电路的基本单元,用于实现基本的逻辑运算功能。
定期维护和检测
对电路进行定期维护和检测,及时发现并处 理潜在故障。
THANKS FOR WATCHING
感谢您的观看
通过求补码的方式实现二进制数的减法运算,同 样需要使用基本逻辑门电路。
乘法器设计
将乘法运算转换为加法和移位操作,通过组合逻 辑电路实现乘法功能。
比较器设计
等于比较器
比较两个输入信号是否相等,输出相应的电平信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①.微型电子计算机
②.仿真软件(QuartusII)
③.试验箱
实验步骤
1.运行选定的PLD开发系统后,建立一个举重裁判电路的输入文件,采用原理图,即逻辑电路图来表达。
2.对输入文件编译,仿真后,得到完整且正确的模拟波形,也就是说,波形激励输入应包括变量ABC从000-111的所有输入组合。
2.掌握图形(原理图)设计方法,建立设计输入文件。
通过实践,了解编译、功能仿真等CAD,CAS等过程,获得逻辑功能模拟结果,验证设计正确性。
实验要求
根据本实验的特点、要求和具体条件,采用集中授课并兼以学生自主训练的模式组织教学。
实验原理
用QuartusII完成举重裁判电路与原码/反码变换器的设计
实验仪器
指导教师意见
签名: 年 月 日
3.为输入输出分配引脚,将PC机与试验箱连接,在试验箱上观察实验结果。
实验内容
1.举重裁判电路
举重比赛有三位裁判,一位是主裁判A,另两位是副裁判B和C,运动员一次试举是否成功,由裁判员各自按动面前的按钮决定,只有两人以上,且其中必须有主裁判判定成功时,表示成功的指示灯L才点亮。
裁判控制系统真值表
AB C
贵州大学实验报告
学院:大数据与信息工程学院专业:电子信息工程班级:131
姓名
陈静
学号
1308040241
实验组
实验时间
2016.12
指导教师
尉学军
成绩
实验项目名称
实验一、逻辑门实现组合电路
实验目的
1.学习PLD开发系统的使用方法(如Altera公司的QuartusII,Lattice公司的ispLEVER,Xilinx公司的ISE等,任选一种)。
图3
(4)在图4,图5,图6,图7中当S=0时,F3F2F1F0输出A3A2A1A0的原码,当S=1,输出为反码。满足逻辑要求。
图4
图5
图6
图7
实验总结
1、这节课的第一个实验,初次接触了quartus软件,通过完成逻辑功能,熟悉了它的基本操作,也熟悉了本实验的基本流程。
2、通过自己连接的图来得到正确的结果,加深了对这门课的理解。希望能在之后的实验中不断学习到新知识。
L
0 0 0
0
0 0 1
0
0 1 00ຫໍສະໝຸດ 0 1 101 0 0
0
1 0 1
1
1 1 0
1
1 1 1
1
调用QuartusII库函数中的符号,用两级与非门实现最简与或式
L=AB+AC
2.原码/反码变换器
用异或门组成原码、反码转换器的电路图,图中为4位输入二进制码,
为4位输出码,S是控制信号。当S=0时,输出的原码,因为任何变量与0异或则输出原变量;当S=1时,输出的反码,因为变量与1异或输出反变量。
选择4只异或门或者直接选用74LS86四异或门芯片均可构成图形输入文件。
实验数据
及分析
(1)通过图1连接来实现L=AB+AC的功能:
图1
(2) 在图2中 若A=1,B=1,C=0;则L=1.若A=1,B=0,C=1,则C=1。若A=0,B=1,C=1,则L=0。 均符合逻辑功能。
图2
(3)选用74LS86四异或门芯片或者用异或门组成原码、反码变换器的电路图来实现由S控制的原码、反码控制器,如图3: