003反比例函数增减性练习#优选.

合集下载

反比例函数练习题及答案6套

反比例函数练习题及答案6套

反比例函数练习(1)一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________; 5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成_______; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________;三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21 D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A )12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).¥②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.。

第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册

第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册

第二十六章反比例函数同步练习一、选择题1.下列函数中,当x>0时,y随x增大而增大的是()A.y=−1xB.y=−x+1C.y=x2−2x D.y=−12.若点A(1,y1),B(−2,y2),C(−3,y3)都在反比例函数y=6x的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y23.在同一平面直角坐标系中,函数y=x−k与y=kx(k为常数,且k≠0)的图象大致( ) A.B.C.D.4.如图,在平面直角坐标系中,P是反比例函数y=kx的图像上一点,过点P作PQ⊥x轴于点Q,若△OPQ的面积为2,则k的值是( )A.-2 B.2 C.-4 D.45.如图,点A在反比例函数y=3x (x>0)的图象上,点B在反比例函数y=kx(x>0)的图象上,AB⊥x轴于点M,且AM:MB=2:3,则k的值为()A.4.5 B.−4.5C.7 D.−76.如图,抛物线y=-13(x-t)(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m、n.双曲线y=mnx的两个分支分别位于第二、四象限,则t的取值范围是()A.t<0 B.0<t<6 C.1<t<7 D.t<1或t>67.如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.58.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“杠杆原理”的意义和价值,“杠杆原理”在实际生产和生活中,有着广泛的运用,比如:小明用撬棍撬动一块大石头,运用的就是“杠杆原理”,已知阻力F1(N)和阻力臂L1(m)的函数图象如图所示,若小明想使动力F2不超过120N,则动力臂L2(单位:m)需满足()A.L2<5B.L2>5C.L2≥5D.0<L2≤5二、填空题的图象经过点(−2,3),则函数的解析式为.9.反比例函数y=kx10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y (x<0)的图象经过菱形OABC中心E点,则k的值为.=kx的图象交于点A(−4,4),11.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mxB(n,−2).则△AOB的面积是(k≠0)的图象相交于12.如图,已知抛物线y=ax2+bx−1(a、b均不为0)与双曲线y=kx+1的解是.A(−2,m),B(−1,n),C(1,2)三点.则不等式ax2+bx<kx13.当温度不变时,某气球内的气压P(kPa)与气体体积V(m3)成反比例函数关系(其图象如图所示),已知当气球内的气压P>120kPa时,气球将爆炸,为了安全起见,气球内气体体积V应满足的条件是m3.三、解答题14.如图,一次函数y=12x−m的图象与反比例函数y=kx(k≠0)的图象交于A(a,1),B(−2,b)两点,与x轴相交于点C(2,0).(1)求反比例函数的表达式;(2)观察图象,直接写出不等式12x−m<kx的解集.15.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.16.如图,直线AB:y=kx+b分别交坐标轴交于A(−1,0)、B(0,1)两点,与反比例函数y=mx(x>0)的图象交于点C(2,n).(1)求反比例函数的解析式;<0的解集;(2)在如图所示的条件下,直接写出关于x的不等式kx+b−mx(x>0)交于点P,使得S△PAC=6S△ABO.求点P的横坐标.(3)将直线AB沿y轴平移与反比例函数y=mx17.某气球内充满了一定质量的气体,当温度不变时,气球内的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的解析式.(2)求当气球的体积是0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于160kPa时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.18.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?。

(完整版)反比例函数练习题含答案

(完整版)反比例函数练习题含答案

1 测试1 反比例函数的概念一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别..写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数;函数; 当S =18时,a 与h 的关系式为____________,是____________函数.函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x ky =、②xk y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24x y =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m xy (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 二、选择题 6.已知函数xk y =,当x =1时,y =-3,那么这个函数的解析式是(). (A)xy 3=(B)xy 3-=(C)xy 31=(D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于(). (A)4 (B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.的值.9.若函数522)(--=k xk y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为(). (A)y =100x (B)x y 100= (C)xy 100100-= (D)y =100-x12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是().三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系;函数关系;(2)如果S =3cm 2时,h =16cm ,求:,求:①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.的值.14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x=1时,y 的值都是1.求y 关于x 的函数关系式.的函数关系式.测试2 反比例函数的图象和性质(一)一、填空题1.反比例函数xk y =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线x ky =上,那么该双曲线在第______象限.象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的().7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)x y 1= (C)x y 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ). (A)xm y =(B)xm y 1+=(C)xm y 12+=(D)xm y -=9.反比例函数y =221)(2--m xm ,当x >0时,y 随x 的增大而增大,则m 的值是(). (A)±1(B)小于21的实数的实数 (C)-1(D)1 10.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数x ky =(k >0)的图象上的两点,若x 1<0<x 2,则有(). (A)y 1<0<y 2(B)y 2<0<y 1(C)y 1<y 2<0(D)y 2<y1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题:的图象,并根据图象解答下列问题:(1)当x =4时,求y 的值;(2)当y =-2时,求x 的值;(3)当y >2时,求x 的范围.的范围.一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.象限.13.已知一次函数y =kx +b 与反比例函数xk b y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数x ky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是(). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则(). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3 (C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大的增大而增大 (B)当x <0时,y 随x 的增大而减小的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大的增大而增大17.一次函数y =kx +b 与反比例函数x ky =的图象如图所示,则下列说法正确的是( ). (A)它们的函数值y 随着x 的增大而增大(B)它们的函数值y 随着x 的增大而减小的增大而减小 (C)k <0 (D)它们的自变量x 的取值为全体实数的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答:的图象,结合图象回答:(1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围;(3)当1≤y <4时,x 的取值范围.的取值范围.19.已知一次函数y =kx +b 的图象与反比例函数x my =的图象交于A (-2,1),B (1,n )两点.两点.(1)求反比例函数的解析式和B 点的坐标;点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)一、填空题 1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),x y 42=(x >0)的图象如图所示,则结论:的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2);②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数x ky =和一次函数y =kx +2的图象大致是().(A) (B)(C) (D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,B C ∥x 轴,A C ∥y 轴,△ABC 的面积记为S ,则( ). (A)S =2 (B)S =4(C)2<S <4 (D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为(). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xk y =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.数的解析式.一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______. 10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在(). (A)第一、三象限第一、三象限 (B)第二、四象限第二、四象限 (C)第一、二象限第一、二象限 (D)第三、四象限第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是()(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x x y (D))0(6>=x x y15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x轴于D ,则四边形ACBD 的面积为(). (A)S >2 (B)1<S <2 (C)1 (D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xk y =2(k为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标;的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.的取值范围.17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC=3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;函数的解析式;(3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.的面积.测试4 反比例函数的图象和性质(三)一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B点坐标是______. 2.观察函数x y 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线x ky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______).4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xk y 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限.象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是().(A)长方形BCFG 和长方形GAEP 的面积相等(B)点B 的坐标为(4,4)(C)x y 4=的图象关于过O 、B 的直线对称的直线对称 (D)长方形FOEP 和正方形COAB 面积相等面积相等7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是(). (A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数x m y 3+=的图象上.的图象上.(1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xk y =的图象的一个交点为A (a ,2),求k 的值.的值.一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______. 11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______. 12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与x ky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xm y ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x增大而增大的是(). (A)①④①④ (B)② (C)①②①②(D)③④③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是().三、解答题16.如图,A 、B 两点在函数)0(>=xxm y 的图象上.的图象上. (1)求m 的值及直线AB 的解析式;的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.标.18.如图,如图,函数函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xm y =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x轴、y 轴于D 、C 两点.两点.(1)求上述反比例函数和一次函数的解析式;求上述反比例函数和一次函数的解析式; (2)求CDAD的值.的值.测试5 实际问题与反比例函数(一)一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围).3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是().4.下列各问题中两个变量之间的关系,不是反比例函数的是(). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系之间的关系(B)长方形的面积为24,它的长y 与宽x 之间的关系之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:汽缸壁所产生的压强,如下表:体积x /ml100 80 60 40 20 压强y /kPa 60 75 100 150 300 则可以反映y 与x 之间的关系的式子是( ). (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______.7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________. 二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是().三、解答题9.一个长方体的体积是100cm 3,它的长是y (cm),宽是5cm ,高是x (cm). (1)写出长y (cm)关于高x (cm)的函数关系式,以及自变量x 的取值范围;的取值范围; (2)画出(1)中函数的图象;(3)当高是3cm 时,求长.时,求长.测试6 实际问题与反比例函数(二)课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V 的反比例函数,当V =8m 3时,ρ=1.5kg/m 3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20Ω时,电流强度I =0.25A .则.则 (1)电压U =______V ;(2)I 与R 的函数关系式为______; (3)当R =12.5Ω时的电流强度I =______A ; (4)当I =0.5A 时,电阻R =______Ω.3.如图所示的是一蓄水池每小时的排水量V /m 3·h -1与排完水池中的水所用的时间t (h)之间的函数图象.之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m 3; (2)此函数的解析式为____________;(3)若要在6h 内排完水池中的水,那么每小时的排水量至少应该是______m 3;(4)如果每小时的排水量是5m 3,那么水池中的水需要______h 排完.排完.二、解答题4.一定质量的二氧化碳,当它的体积V =4m 3时,它的密度p =2.25kg/m 3.(1)求V 与ρ的函数关系式;的函数关系式;(2)求当V =6m 3时,二氧化碳的密度;时,二氧化碳的密度;(3)结合函数图象回答:当V ≤6m 3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?5.下列各选项中,两个变量之间是反比例函数关系的有(). (1)小张用10元钱去买铅笔,购买的铅笔数量y (支)与铅笔单价x (元/支)之间的关系(2)一个长方体的体积为50cm 3,宽为2cm ,它的长y (cm)与高x (cm)之间的关系之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y (亩/人)与该村人口数量n (人)之间的关系之间的关系(4)一个圆柱体,体积为100cm 3,它的高h (cm)与底面半径R (cm)之间的关系之间的关系(A)1个 (B)2个 (C)3个 (D)4个6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.其图象如图所示. (1)写出这一函数的解析式;写出这一函数的解析式;(2)当气体体积为1m 3时,气压是多少?(3)当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V 时,回答下列问题:时,回答下列问题:(1)写出电路中的电流强度I (A)与电阻R (Ω)之间的函数关系式;之间的函数关系式; (2)画出该函数的图象;画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A ,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.试通过计算说明理由.三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:天试销,试销情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天售价售价x (元/千克) 400250 240 200 150 125 120 销售量y /千克千克 304048608096100观察表中数据,发现可以用反比例函数表示这种海产品每天的销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.之间都满足这一关系. (1)写出这个反比例函数的解析式,并补全表格;写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数.的一切实数. 2.(1)x y 8000=,反比例;(2)x y 1000=,反比例;(3)s =5h ,正比例,h a 36=,反比例;,反比例;(4)x wy =,反比例.,反比例.3.②、③和⑧..②、③和⑧.4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=;(2)x =-4. 9.-2,⋅-=xy 4 10.反比例..反比例.11.B . 12.D . 13.(1)反比例;反比例;(2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x x y -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大..双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大..增大.4.二、四..二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11.列表:.列表:x … -6 -5 -4 -3 -2 -1 1 2 3 4 56 … y … -2-2.4-3-4-6-12126432.42…由图知,(1)y =3;(2)x =-6;(3)0<x <6. 12.二、四象限..二、四象限.13.y =2x +1,⋅=x y 114.A . 15.D 16.B 17.C 18.列表:.列表:x … -4 -3 -2 -11 2 3 4 … y…134 2 4-4-2-34 -1 …(1)y =-2;(2)-4<y ≤-1;(3)-4≤x <-1. 19.(1)xy 2-=,B (1,-2); (2)图略x <-2或0<x <1时;时; (3)y =-x . 测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④..①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4).11..221<<y . 12.B .13.D.14.D .15.D . 16.(1)x y 3=,y =x +2;B (-3,-1);(2)-3≤x <0或x ≥1.17.(1))0(3>=x x y ;(2).332+-=x y18.(1)x y x y 9,==;(2)23=m ; ;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三..>;一、三.6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 3 11.5,12. 12.2. 13.<..<.14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个.个.17.A(4,0). 18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ; (2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y xy ;(2).2=CDAD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=xy 90 3.A . 4.D .5.D . 6.反比例;⋅=t V 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略;图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V v ρ 2.(1)5; (2)R I 5=; (3)0.4;(4)10. 3.(1)48; (2))0(48>=t tV ; (3)8;(4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3);(3)ρ有最小值1.5(kg/m 3). 5.C . 6.(1)Vp 96=; (2)96 kPa ;(3)体积不小于3m 3524. 7.(1))0(6>=R R I ; (2)图象略;(3)I =1.2A >1A ,电流强度超过最大限度,会被烧.,电流强度超过最大限度,会被烧.8.(1)x y 43=,0≤x ≤12;y =x 108(x >12);(2)4小时.小时.9.(1)xy 12000=;x 2=300;y 4=50;(2)20天第十七章 反比例函数全章测试一、填空题1.反比例函数x m y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数x k y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:.一个函数具有下列性质: ①它的图象经过点(-1,1); ②它的图象在第二、四象限内;②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数x ky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y =(B 32xy =(C)xy 32=(D)x y -=328.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会().(A)逐渐增大逐渐增大(B)不变不变(C)逐渐减小逐渐减小(D)先增大后减小先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是().(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b(B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是().12.当x <0时,函数y =(k -1)x 与x ky 32-=的y 都随x 的增大而增大,则k 满足(). (A)k >1(B)1<k <2 (C)k >2(D)k <1 13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应().(A)不大于3m 3524 (B)不小于3m 3524 (C)不大于3m 3724(D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数ax ky =的图象如图所示,则有().(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

反比例函数的性质专项练习60题(有答案)ok

反比例函数的性质专项练习60题(有答案)ok

反比例函数的性质专项练习60题(有答案)1.已知正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,则反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.已知函数:①y=2x;②y=2+5x;③y=(x>0);④y=;⑤y=,其中y随着x的增大而增大的有()A.1个B.2个C.3个D.4个3.小明正在研究函数y=的性质,下面他的几种说法中错误的是()A.无论x取何值,xy总是一个定值B.在自变量取值范围内的每一象限,y随着x的增大而减小C.函数y=的图象关于y=﹣x对称D.函数y=的图象与y=x的图象有两个交点4.已知反比例函数(k≠0),当x>0时,y随x的增大而增大,那么该函数的图象经过()A.第一象限;B.第四象限;C.第一、三象限D.第二、四象限5.已知双曲线y=(k≠0)在第二,四象限,则直线y=kx+k一定不经过第()象限.A.一B.二C.三D.四6.已知函数y=的图象经过点(2,3),则下列说法正确的是()A.点(﹣2,﹣3)一定在此函数的图象上B.此函数的图象只在第一象限C.y随x增大而增大D.此函数与x轴的交点的纵坐标为07.已知反比例函数y=(k为常数)的图象在第一、三象限,那么k的取值范围是()A.k>B.k<C.k>D.k<8.已知反比例函数y=的图象经过点(3,﹣4),下列说法正确的是()A.当x<0时,y>0 B.函数的图象只在第四象限C.y随着x的增大而增大D.点(4,3)在此函数的图象上9.下列关于反比例函数y=,y=,y=的共同点的叙述错误的是()C.图象都不与坐标轴相交D.图象在每一个象限内,y随x的增大而减小10.在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则该点一定在()A.直线y=﹣x上B.双曲线y=﹣上C.直线y=x上D.双曲线y=上11.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1B.2C.3D.412.若反比例函数y=m的图象在它所在的象限内,y随x的增大而增大,则m的值是()A.﹣2 B. 2 C.±2 D.以上结论都不对13.若函数y=﹣(m﹣)是反比例函数,且图象在第一,三象限,那么m的值是()A.±1 B.﹣1 C.1D.214.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,则k的取值范围_________ .15.若反比例函数y=(m﹣2)的图象在第一、三象限内,则m= _________ .16.若反比例函数y=(2k﹣1)的图象在二、四象限,则k= _________ .17.若反比例函数y=(1﹣2m)的图象在第一、三象限,则m= _________ .18.已知函数y=的图象的两个分支在第一,三象限内,则m的取值范围是_________ .19.反比例函数y=(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是_________ .20.若函数y=的图象过点(3,﹣7),那么这个反比例函数值在每一个象限内y随x的增大而_________ .21.已知双曲线过点(﹣1,﹣3),则双曲线的两个分支在第_________ 象限.22.如果反比例函数图象经过点(2,1),那么这个反比例函数的图象在第_________ 象限和第_________ 象限.23.若函数y=的图象,当x>0时,y随着x的增大而减小,则m _________ .24.是y关于x的反比例函数,且图象在第二、四象限,则m的值为_________ .25.反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m= _________ .26.若函数是反比例函数,且它的图象在第一、三象限,则m= _________ .27.直线y=kx+b过一、二、三象限,则反比例函数的图象在第_________ 象限内.28.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=2.请写一个符合条件函数的解析式:_________ .(答案不唯一)29.反比例函数y=,当x>0时,其图象位于第一象限,则m的取值范围是_________ ,此时y随x的增大而_________ .30.一般地,函数y=(k是常数,k≠0)是反比例函数,其图象是_________ ,当k<0时,图象两支在第_________ 象限内.31.已知反比例函数y=的图象过点(6,﹣),则函数的图象在第_________ 象限.32.反比例函数(k为常数,k≠0)的图象位于第_________ 象限.33.若函数是反比例函数,且图象在第二、四象限内,则m的值是_________ .34.若y=的图象在第二、四象限,则k的值可以是_________ (填上一个满足条件的k值).35.已知点(﹣3,﹣5)在反比例函数y=的图象上,当x<0时,它的图象在第_________ 象限.36.反比例函数y=(2k+1)在每个象限内y随x的增大而增大,则k= _________ .37.如图,在平面直角坐标系中,过A(0,2)作x轴的平行线,交函数(x<0)的图象于B,交函数(x >0)的图象于C,则线段AB与线段AC的长度之比为_________ .38.已知函数y=﹣,当x<0时,y _________ 0,此时,其图象的相应部分在第_________ 象限.39.若反比例函数y=的图象在第一、三象限内,则m _________ .40.已知y=kx﹣3的值随x的增大而增大,则函数的图象在_________ 象限.41.已知关于x的函数是反比例函数,则m= _________ ,x>0时,y随x的增大而_________ .42.反比例函数y=(k为常数,且k≠0)的图象是_________ ,该图象分布在第_________ 象限.43.对于反比例函数,下列说法:①点(﹣3,﹣5)在它的图象上;②它的图象在第二、四象限;③当x>0时,y随x的增大而减小;④当x<0时,y随x的增大而增大.⑤它的图象不可能与坐标轴相交.上述说法中,正确的结论是_________ .(填上所有你认为正确的序号,答案格式如:“①②③④⑤”).44.如果反比例函数y=的图象位于第二、四象限,则n的取值范围是_________ ;如果图象在每个象限内,y随x的增大而减小,则n的取值范围是_________ .45.函数y=的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ ;函数y=﹣的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ .46.李老师给出了一个函数,甲、乙两学生分别指出这个函数的一个特征.甲:它的图象经过第二、四象限;乙:在每个象限内函数值y随x的增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式_________ .47.点(2,1)在反比例函数的图象上,则当x<0时,y的值随着x的值增大而_________ .48.已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当49.在反比例函数的图象的每一条曲线上,y都随x的增大而减小.(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为6,求k的值.50.如图所示是反比例函数的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数图象经过点(3,1),求n的值;(3)在这个函数图象的某一支上任取点A(a1,b1)和]点B(a2,b2),如果a1<a2,试比较b1和b2的大小.51.已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.52.设函数y=(m﹣2),当m取何值时,它是反比例函数?它的图象位于哪些象限?求当≤x≤2时函数值y的变化范围.53.已知是反比例函数,且y随x值的增大而增大,求k的值.54.如图是三个反比例函数,,在x轴上方的图象,由此观察得到k1,k2,k3的大小关系,并写出比较过程.55.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,求k的取值范围.56.已知反比例函数的图象如图所示(1)则k的值是_________ ;(2)你认为点B(﹣2,4)在这个函数的图象上吗?答:_________ ;(3)在第二象限内,y随x的增大而_________ .(填“增大”或“减小)57.已知反比例函数y=,分别根据下列条件求k的取值范围,并画出草图.(1)函数图象位于第一、三象限;(2)函数图象的一个分支向右上方延伸.58.已知反比例函数,(1)若在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,求m的取值范围值;(2)若点A(2,3)在此反比例函数图象上,求其解析式.59.已知反比例函数的图象在每个象限内y随x的增大而减小,求a的取值范围.60.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.参考答案:1.∵正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,∴k>0,∴反比例函数y=图象位于第一、三象限.故选B2.①y=2x,k=2,y随着x的增大而增大,正确;②y=2+5x是一次函数,k>0,y随着x的增大而增大,正确;③y=(x>0),y随着x的增大而增大,正确;④y=,k=5>0,在每个象限内,y随x的增大而减小,错误;⑤y=,k2+2>0,在每个象限内,y随x的增大而减小,错误.故选C.3.A、无论x取何值,xy总是一个定值,由于x≠0,错误;B、在自变量取值范围内的每一象限,y随着x的增大而减小,正确;C、函数y=的图象关于y=﹣x对称,正确;D、函数y=的图象与y=x的图象有两个交点,正确;故选A4.∵当x>0时,y随x的增大而增大,∴k<0∴其函数图象应经过二、四象限故选D.5.∵双曲线y=(k≠0)在第二,四象限.∴k<0,则直线y=kx+k一定经过二、三、四象限,不经过第一象限.故选A.6.由题意得:k=6,则反比例函数y=;A、点(﹣2,﹣3)一定在此函数的图象上,正确;B、此函数的图象只在第一象限,错误,在一三象限;C、y随x增大而增大,错误,在每一象限,y随x增大而减小;D、此函数与x轴的交点的纵坐标为0,错误,与x轴无交点.故选A.7.∵y=(k为常数)的图象在第一、三象限,∴2﹣3k>0,解得k<.故选B.8.把点(3,﹣4)代入反比例函数y=得,k=﹣12<0,A、因为xy=﹣12<0,故x、y异号,故选项正确;B、函数的图象在第二、四象限,故选项错误;C、在每个象限内,y随着x的增大而增大,故选项错误;D、4,3两数同号,根据A的结论,(4,3)不在函数图象上,故9.A、图象都位于第一三象限,正确;B、自变量的取值范围都是不等于0的实数,而不是全体实数,故本选项错误;C、反比例函数图象都不与坐标轴相交,正确;D、图象在每一个象限内,y随x的增大而减小,正确.故选B②正确,因为此函数中k=6>0,所以函数图象在第一、三象限;③错误,因为反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上;④错误,应为﹣1≤y<0.所以,①②两个正确;故选B.12.根据题意得:,解得m=﹣2.故选A.13.∵y=﹣(m﹣)是反比例函数,∴,解之得m=±1,又∵图象在第一,三象限,∴﹣(m﹣)>0,即m,故m的值是﹣1.故选B.14.∵反比例函数y=图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,解得k>1004.故答案为:k>1004.15.∵y=(m﹣2)是反比例函数,且图象在第一、三象限,∴,解得m=±3且m>2,∴m=3.故答案为:3.16.根据题意,3k2﹣2k﹣1=﹣1,2k﹣1<0,解得k=0或k=且k<,∴k=0.故答案为:017.根据题意m2﹣2=﹣1,解得m=±1,又∵函数的图象在第一、三象限∴1﹣2m>0,m<.所以m=﹣1.故答案为:﹣118.∵反比例函数的图象在一、三象限,∴2m﹣1>0,∴m>.故答案为:m>.19.∵反比例函数y随x的增大而增大,∴1﹣2m<0,∴m>.故答案为:m>.20.将点(3,﹣7)代入解析式可得k=﹣21<0,∴反比例函数值在每一个象限内y随x的增大而增大.故答案为:增大.21.设y=,图象过(﹣1,﹣3),所以k=3>0,故函数图象位于第一、三象限.22.设y=,∵图象过(2,1),23.∵当x>0时,y随着x的增大而减小∴m﹣1>0,则m>1.故答案为:>124.∵是y关于x的反比例函数,∴m2﹣m﹣7=﹣1,解得m=﹣2或3,∵图象在第二、四象限,∴m2﹣5<0,解得:m=﹣2.故答案为:﹣225.由于反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m需满足:m2﹣2=﹣1且3m﹣1<0,则m=﹣1.26.∵是反比例函数,且它的图象在第一、三象限,∴,解得:m=2.故答案为:227.∵直线y=kx+b过一、二、三象限,∴k>0,b>0,∴kb>0,∴反比例函数y=的图象在一、三象限.故答案为:一、三.28.根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=2,代入上式得k=2,符合条件函数的解析式为y=(答案不唯一).29.∵当x>0时,其图象位于第一象限,∴m﹣5>0,则m>5,此时y随x的增大而减小.故答案为:m>5、减小30.函数y=(k是常数,k≠0)是反比例函数,其图象是双曲线,当k<0时,图象两支在第二,四象限内.31.由题意知k=6×(﹣)=﹣2<0,∴函数的图象在第二、四象限.32.∵k≠0,∴k2>0,∴﹣k2<0,∴函数图象位于第二、四象限.故答案为:二、四.33.∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣234.∵若y=的图象在第二、四象限,根据反比例函数的性质k<0,k的值可以是﹣1(答案不唯一).35.根据题意得:﹣5=﹣,解得:k=﹣15,∴函数解析式为y=﹣,因此当x<0时,它的图象在第二象限.故答案为:二36.由于反比例函数y=(2k+1)在每个象限内y随x的增大而增大,37.根据题意,点B、C的纵坐标为2,∴﹣=2,解得x=﹣1,∴AB=|﹣1|=1,=2,解得x=3,∴AC=3,故线段AB与线段AC的长度之比为1:3.故答案为:1:338.∵函数y=﹣,k=﹣<0,∴函数图象位于第二、四象限,∴当x<0时,y>0,其图象的相应部分在第二象限.故答案为:>、二.39.由于反比例函数y=的图象在第一、三象限内,则m﹣1>0,解得:m>1.故答案为:m>1.40.∵y=kx﹣3的值随x的增大而增大,∴k>0,根据反比例函数的性质函数:的图象在二,四象限41.∵关于x的函数是反比例函数,∴,解得m=﹣2.∵m=﹣2,∴m﹣2=﹣2﹣2=﹣4<0,∴此函数的图象在二、四象限,当x>0时,y随x的增大而增大.故答案为:﹣2、增大.42.根据反比例函数的性质,反比例函数y=(k为常数,且k≠0)的图象是双曲线,无论k为何值|k|>0,该图象分布在第一,三象限.43.①把点(﹣3,﹣5)代入上反比例函数中在它的图象上﹣5=﹣成立,正确;②它的图象在第一、三象限,错误;③当x>0时,y随x的增大而减小,正确;④当x<0时,y随x的增大而减小,错误;⑤∵x≠0,∴它的图象不可能与坐标轴相交,正确.故正确的结论是①③⑤.44.反比例函数y=的图象位于第二、四象限,所以有4﹣n<0,即n>4.又函数图象在每个象限内,y随x的增大而减小,可知4﹣n>0,得n<4.故答案为:n>4、n<445.(1)函数y=中,k=10>0,根据反比例函数的性质,在第一,三象限内,在每一个象限内,y随x的增大而减小;(2)函数y=﹣中,k=﹣10<0,根据反比例函数的性质,在第二,四象限内,在每一个象限内,y随x的增大而增大46.由甲乙同学给出的信息可以判断出该函数为在二四象限的反比例函数,系数k<0,写出符合题意的一个函数解析式,如:y=.47.∵点(2,1)在反比例函数的图象上,∴k=2×1=2,∴函数的解析式为y=,∴函数的图象在一、三象限,∴当x<0时,y的值随着x的值增大而减小.故答案为:减小.48.(Ⅰ)这个反比例函数图象的另一支在第三象限.∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(Ⅱ)如图,由第一象限内的点A在正比例函数y=2x的图象上,设点A的横坐标为a,∵点A在y=2x上,∴点A的纵坐标为2a,而AB⊥x轴,则点B的坐标为(a,0)∵S△OAB=4,∴a•2a=4,解得a=2或﹣2(负值舍去)∴点A的坐标为(2,4).又∵点A在反比例函数y=的图象上,∴4=,即m﹣5=8.∴反比例函数的解析式为y=.49.(1)∵y的值随x的增大而减小,∴k>0.(2)由于点A在双曲线上,则S=|k|=6,而k>0,所以k=6.50.(1)图象的另一支在第三象限.由图象可知,2n﹣4>0,解得:n>2(2)将点(3,1)代入得:,解得:n=;(3)∵2n﹣4>0,∴在这个函数图象的任一支上,y随x增大而减小,∴当a1<a2时,b1>b2.51.∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.52.依题意可得:;解得:m=3∴当m=3时,函数y=(m﹣2)是反比例函数;当m=3时,代入函数式可得:;∵k=1>0,∴它的图象位于第一、第三象限.由可得,∵≤x≤2;∴;解得:.53.∵是反比例函数,∴,解之得k=±1.又∵反比例函数的解析式(k≠0)中,k<0时,y随x值的增大而增大,∴k+<0,即k<﹣,∴k=﹣1.54.由反比例函数的图象和性质可估算k1<0,k2>0,k3>0,在x轴上任取一值x0且x0>0,x0为定值,则有,且y1<y2,∴k3>k2,∴k3>k2>k155.∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,k>1004.56.(1)∵A(,﹣4)在反比例函数y=的图象上,∴k=×(﹣4)=﹣2;(2)∵由(1)可知k=﹣2,点B(﹣2,4)中,(﹣2)×4=﹣8≠﹣2,∴点B不在这个函数的图象上;(3)∵k=﹣2,∴此反比例函数的解析式为y=﹣,∴此函数的图象在二、四象限,在第二象限内y随x的增大而增大.故答案为:﹣2、不在、增大57.(1)根据题意,4﹣k>0,k<4;(2)根据题意,4﹣k<0,k>4.58.(1)∵在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,∴m﹣5>0,解得:m>5;(2)∵点A(2,3)在此反比例函数图象上,∴2×3=m﹣5,解得:m=11,故反比例函数解析式为y=59.∵反比例函数的图象在每个象限内y随x的增大而减小,∴5﹣a<0,解得a>5.60.根据题意,得解得m=6,故m的值为:6。

专题. 反比例函数(最值问题)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题. 反比例函数(最值问题)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.27反比例函数(最值问题)(巩固篇)(专项练习)反比例函数中最值问题主要包括两方面内容:一个是利用反比例函数的增减性求最值;另一个是利用几何最短路径(垂线段最短、两点之间线段最短)求最值问题,还有就是利用非负性求最值,本专题以基础、巩固、培优三个梯度精选了部分最值问题供大家选择使用。

一、单选题1.设函数y 1=k x ,y 2=﹣kx(k >0).当﹣3≤x ≤﹣2时,y 1的最大值为a ,y 2的最小值为a +2,则实数a 与k 的值为()A .a =3,k =1B .a =﹣1,k =﹣1C .a =3,k =3D .a =﹣1,k =32.如图,在平面直角坐标系中,反比例函数()0ky x x=>的图象与边长是8的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN 的面积为7.5.若动点P 在x 轴上,则PM +PN 的最小值是()A .15B CD .103.如图,Rt ABC 位于第一象限,22AB AC ==,,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数(0)ky k x=≠的图象与ABC 有交点,则k 的最大值是()A .5B .4C .3D .24.如图,点()11,A x y ,()22,B x y 分别是反比例函数11k y x=与22ky x =在第一象限图象上的动点.①21k k >②当12y y =时,21x x >;③OAB 的面积可能是212k k -;④OA OB +的最.以上结论中正确的有()A .4个B .3个C .2个D .1个5.已知反比例函数5y x=,若5x,则函数y 有()A .最大值1B .最小值1C .最大值0D .最小值06.如图,点A (a ,1),B (b ,3)都在双曲线3y x=-上,点P ,Q 分别是x 轴,y 轴上的动点,则四边形ABQP 周长的最小值为()A .42B .62C .2102+D .827.已知反比例函数(0),ky k x=≠当21x -≤≤-时,y 的最大值是3,则当6x ≥时,y 有()A .最大值12-B .最大值1-C .最小值12-D .最小值1-8.如图所示,已知A (1,y 1),B (2,y 2)为反比例函数y 2=x图象上的两点,动点P(x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大值时,点P 的坐标是()A .(3,0)B .(72,0)C .(53,0)D .(52,0)9.在平面直角坐标系xOy 中,直线y =kx 与双曲线y =4x的图象交于A ,B 两点,点P 在x 轴的正半轴上,若PA ⊥PB ,则OP 的最小值是()A .4B .2C .D .10.如图,(0,1)A ,(1,5)B 曲线BC 是双曲线(0)ky k x=≠的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线".若点()2025,P m ,(,)Q x n 在该“波浪线上,则m 的值及n 的最大值为()A .1m =,1n =B .5m =,1n =C .1m =,5n =D .1m =,4n =二、填空题11.如图,一次函数6y x =与反比例函数(0)ky k x=>的图象交于点A ,B 两点,点C 在x 轴上运动,连接AC ,点Q 为AC 中点,若点C 运动过程中,OQ 的最小值为2,则k =_______________.12.如图,已知点(1)(31)A m m B m m ++-,,,都在反比例函数1(0)k y x x=>的图象上.将线段AB 沿直线2y k x b =+进行对折得到线段11A B ,且点1A 始终在直线OA 上.当线段11A B 与x 轴有交点时,b 的取值的最大值是____.13.设函数1ky x =,2(0)k y k x-=>,当23x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则=a _____.14.如图,矩形OABC 的面积为4,反比例函数ky x=的图象与矩形的两边AB 、BC 分别交于点E 、F ,则四边形OAEF 的面积最大值为_________.15.观察理解:当a >0,b >0时,20≥,∴0a b -≥,由此可得结论:a b +≥.即对于正数a ,b ,当且仅当a =b 时,代数式a b +取得最小值问题解决:如图,已知点P 是反比例函数4y x=(x >0)图象上一动点,A (1-,1),则△POA 的面积的最小值为________.16.如图,在平面直角线坐标系中,点A ,B 在反比例函数5y x=的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度最小值是___________.17.已知直线()0y ax a =>与双曲线2y x=相交于点()11,P x y ,()22,Q x y ,则1212x x x +的最大值是__________.18.如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图象与边长是3的正方形OABC 的两边AB ,BC 分别相交于D ,E 两点,ODE 的面积为52,若动点P 在y 轴上,则PD PE +的最小值是______.三、解答题19.如图1,木匠陈师傅现有一块五边形ABFED 木板,它是矩形ABCD 木板用去CEF △后的余料,4=AD ,5AB =,1DE =,F 是BC 边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD 上.(1)[初步探究]当2BF =时.①若截取的矩形有一边是DE ,则截取的矩形面积的最大值是______;②若截取的矩形有一边是BF ,则截取的矩形面积的最大值是______;(2)[问题解决]如图2,陈师傅还有另一块余料,90BAF AFE ∠=∠=︒,1AB EF ==,3CD =,8AF =,CD AF ∥,且CD 和AF 之间的距离为4,若以AF 所在直线为x 轴,AF 中点为原点构建直角坐标系,则曲线DE 是反比例函数ky x=图象的一部分,陈师傅想利用该余料截取一块矩形MNGH 材料,其中一条边在AF 上,所截矩形MNGH 材料面积是736.求GN 的长.20.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式;(2)结合图象直接写出kmx n x>+的解集;(3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.21.如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()()0420A B -,、,,交反比例函数y mx=()0x >的图象于点()3C a ,,点P 在反比例函数的图象上,横坐标为()03n n PQ y <<,轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD QD 、.(1)求一次函数和反比例函数的表达式;(2)求DPQ 面积的最大值.22.阅读与思考(1)填空:已知0x >,只有当x =______时,4x x+有最小值,最小值为______.(2)如图,P 为双曲线()60y x x=>上的一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,求PC PD +的最小值.23.某企业生产一种必需商品,经过长期市场调查后发现:商品的月总产量稳定在600件.商品的月销量Q (件)由基本销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价工(元/件)(10x ≤)成反比例,且可以得到如下信息:售价x (元/件)58商品的销售量Q (件)580400(1)求Q 与x 的函数关系式.(2)若生产出的商品正好销完,求售价x .(3)求售价x 为多少时,月销售额最大,最大值是多少?24.如图1,矩形OABC 的顶点A 、C 分别落在x 轴、y 轴的正半轴上,点()4,3B ,反比例函数(0)k y x x=>的图象与AB 、BC 分别交于D 、E 两点,1BD =,点P 是线段OA 上一动点.(1)求反比例函数关系式和点E 的坐标;(2)如图2,连接PE 、PD ,求PD PE +的最小值;(3)如图3,当45PDO ∠=︒时,求线段OP 的长.参考答案1.D【分析】先利用反比例函数的增减性分别用含k 的代数式表示y 1的最大值,y 2的最小值,再解方程组即可.解: 函数y 1=kx(k >0),当﹣3≤x ≤﹣2时,y 1的最大值为a ,∴当3x =-时,1y 最大,此时,3ka =- y 2=﹣kx(k >0),y 2的最小值为a +2,∴当3x =-时,2y 最小,此时2,3k a +=2,33k k∴-+=解得:3,k =31,3a ∴=-=-故选D【点拨】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解本题的关键.2.B【分析】作点M 关于x 轴的对称点M ',连接M N ',与x 轴的交点为P ,此时PM +PN 的值最小,根据正方形的边长为8,表示出M ,N 点坐标,再根据△OM N 的面积即可求出k 的值,进一步求出M ,N ,M '的坐标,即可求出PM +PN 的最小值M N '的值.解:如图,作NE ⊥x 轴交OM 于点F ,作点M 关于x 轴的对称点M ',连接M N ',与x 轴的交点为P ,此时PM +PN 的值最小,∵正方形OABC 的边长为8,且M ,N 在反比例函数图象上,∴8,8k M ⎛⎫⎪⎝⎭,,88k N ⎛⎫ ⎪⎝⎭,∵12OEN OAM S k S ==△△,∴OFN AEFM S S =△四边形,∴OMN OFN FMN FMN AEFM S S S S S =+=+△△△△四边形∴1887.5288OMN AENM k k S S ⎛⎫⎛⎫==⨯-+= ⎪⎪⎝⎭⎝⎭△梯形,解得:56k =,∴()8,7M ,()7,8N ,∴()8,7M '-,∴()()227887226M N '=-++=,即PM +PN 226.故选:B .【点拨】本题考查了反比例函数与正方形的综合,根据正方形的性质以及反比例函数图象上点的特征求出点M 和N 的坐标是解决本题的关键.3.B【分析】设直线y =x 与BC 交于E 点,分别过A ,E 两点作x 轴的垂线,垂足为D ,F ,EF 交AB 于M ,求出A ,E 点坐标,即可求出k 的取值范围,进一步可知k 的最大值.解:如图,设直线y =x 与BC 交于E 点,分别过A .E 两点作x 轴的垂线,垂足为D ,F ,EF 交AB 于M ,∵A 点的横坐标为1,A 点在直线y =x 上,∴A (1,1),又∵AB =AC =2,AB x 轴,AC y 轴,∴B (3,1),C (1,3),且ABC 为等腰直角三角形,BC 的中点坐标为3113(,)22++,即为(2,2),∵点(2,2)满足直线y =x ,∴点(2,2)即为E 点坐标,E 点坐标为(2,2),∴k =OD ×AD =1,或k =OF ×EF =4,当双曲线与△ABC 有交点时,1⩽k ⩽4,即k 的最大值为:4故选:B【点拨】本题考查一次函数与双曲线函数的综合,等腰直角三角形性质,中点坐标表示方法,解题的关键是求出E 点坐标为(2,2),利用点A ,E 坐标求出k 的取值范围.4.A【分析】由图象可直接判断①;当y 1=y 2时,作出图形,可直接判断②;在②的基础上可得出△OAB 的面积,进而可判断③;当OA +AB 最小时,需要OA 最小且OB 最小时取得,只需要分别求出OA 和OB 的最小值即可判断④.解:当x 1=x 2=1时,y 1=k 1,y 2=k 2,显然y 2>y 1,则k 2>k 1.故①正确;当y 1=y 2时,x 2=22k y ,x 1=11k y ,由k 2>k 1可得x 2>x 1.故②正确;当y 1=y 2时,如图所示,此时△OAB 的面积可能是212k k -,故③正确;当OA +AB 最小时,需要OA 最小且OB 最小时取得,设点A 的坐标为(m ,n ),∴OA 2=m 2+n 2≥2mn =2k 1,当且仅当m =n 时,OA 12k 同理可得OB 22k∴OA+OB,故④正确.综上可得,正确的有:①②③④,共4个,故选:A.【点拨】本题主要考查反比例函数中k的几何意义,关键是知道当OA+AB最小时,需要OA最小且OB最小时取得.5.A【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的性质解答即可.解:∵k=5>0,∴在每个象限内y随x的增大而减小,又∵当x=5时,y=1,∴当x>5时,y<1;∴函数y有最大值1故选:A.【点拨】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.6.B【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(-3,-1),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形ABPQ的周长最小,然后利用两点间的距离公式求解可得.解:∵点A(a,1),B(b,3)都在双曲线y=-3x上,∴a×1=3b=-3,∴a=-3,b=-1,∴A(-3,1),B(-1,3),作A点关于x轴的对称点D(-3,-1),B点关于y轴的对称点C(1,3),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABPQ 周长=AB+BQ+PQ+PA=AB+CD ,∴CD ==,∴四边形ABPQ 周长最小值为,故选:B .【点拨】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.7.C【分析】由函数经过第二象限,可确定k <0,则在21x --上,y 值随x 值的增大而增大,即可确定函数的解析式为3y x=-,由此可求解.解:∵当21x --时,y 的最大值是3,∴反比例函数经过第二象限,∴k <0,∴在21x --上,y 值随x 值的增大而增大,∴当x =—1时,y 有最大值—k ,∵y 的最大值是3,∴—k =3,∴k =—3,∴3y x=-,当6x 时,3y x=-有最小值12-,故选:C .【点拨】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质,通过所给条件确定k <0是解题的关键.8.A思路引领:求出A 、B 的坐标,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP ﹣BP |<AB ,延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB =AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.解:∵把A (1,y 1),B (2,y 2)代入反比例函数y 2x=得:y 1=2,y 2=1,∴A (1,2),B (2,1),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP |<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB =AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入得:221k b k b +=⎧⎨+=⎩,解得:k =﹣1,b =3,∴直线AB 的解析式是y =﹣x +3,当y =0时,x =3,即P (3,0).故选:A .9.D【分析】由图象的对称性可得OA OB =,从而可得OP OA =,设点A 坐标为4,m m ⎛⎫ ⎪⎝⎭,进而求解.解:如图,直线y kx =与双曲线4y x=的图象关于原点成中心对称,OA OB ∴=,即点O 为AB 中点,PA PB ⊥ ,∴在Rt APB ∆中,12OP AB OA ==,设点A 坐标为4,m m ⎛⎫ ⎪⎝⎭,则OP OA ===∴当4m m=,即2m =时,OP 取最小值为故选:D .【点拨】本题考查反比例函数与一次函数的交点问题,解题关键是掌握反比例函数的性质,掌握函数与方程的关系,掌握直角三角形斜边中线长度等于斜边的一半.10.C【分析】根据题意利用点B 的坐标可以求k 的值,然后根据图象可知每5个单位长度为一个循环,从而可以求得m 的值和n 的最大值.解:∵点(1,5)B 在双曲线(0)k y k x=≠的图象上,∴5k =,∵(0,1)A ,曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一线“波浪线”.∴C 的纵坐标为1,∵点C 在5(0)y k x =≠的图象上,点C 的纵坐标为1,∴点C 的横坐标是5,∴点C 的坐标为()5,1,∵20255405÷=,∴()2025,P m 中1m =,∵(,)Q x n 在该“波浪线”上,∴结合图象,可知n 的最大值是5.综上所述,1m =,5n =.故选:C .【点拨】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.11.83【分析】如图(见分析),先根据一次函数与反比例函数的性质可得点O 是AB 的中点,再根据三角形中位线定理可得12OQ BC =,从而可得BC 的最小值为4,然后根据垂线段最短可得当BC x ⊥轴时,BC 取得最小值,从而可得此时点B 的纵坐标为4-,最后代入一次函数的解析式可得点B 的坐标,将其代入反比例函数的解析式即可得.解:如图,连接BC ,由题意得:点O 是AB 的中点,点Q 为AC 的中点,OQ ∴是ABC 的中位线,12OQ BC ∴=, 点C 运动过程中,OQ 的最小值为2,∴点C 运动过程中,BC 的最小值为4,由垂线段最短得:当BC x ⊥轴时,BC 取得最小值,∴此时点B 的纵坐标为4-,将4y =-代入一次函数6y x =得:64x =-,解得23x =-,即2(,4)3B --,将2(,4)3B --代入反比例函数k y x=得:()28433k =-⨯-=,故答案为:83.【点拨】本题考查了一次函数与反比例函数的综合、三角形中位线定理等知识点,熟练掌握反比例函数的性质是解题关键.12.7916【分析】由题可得m (m +1)=(m +3)(m -1),解这个方程求出m 的值,由于点A 关于直线y =kx +b 的对称点点A 1始终在直线OA 上,因此直线y =kx +b 必与直线OA 垂直,只需考虑两个临界位置(A 1在x 轴上、B 1在x 轴上)对应的b 的值,就可以求出b 的取值范围,再确定b 的最大值.解:∵点A (m ,m +1),B (m +3,m -1)都在反比例函数y=k x的图象上.∴m(m+1)=(m+3)(m-1).解得:m=3.①当点B1落到x轴上时,如图1,设直线OA的解析式为y=ax,∵点A的坐标为(3,4),∴3a=4,即a=4 3.∴直线OA的解析式为y=43x.∵点A1始终在直线OA上,∴直线y=kx+b与直线OA垂直.∴43k=-1.∴k=3 4-.∴直线y=34-x+b,由于BB1∥OA,可设直线BB1解析式为y=43x+c.∵点B的坐标为(6,2),∴43×6+c=2,即c=-6.∴直线BB1解析式为y=43x-6.当y=0时,43x-6=0.则有x=92.∴点B1的坐标为(92,0).∵点C是BB1的中点,∴点C的坐标为(96+22,2+02)即(214,1).∵点C 在直线y =-34x +b 上,∴34-×214+b =1.解得:b =7916.②当点A 1落到x 轴上时,如图2,此时,点A 1与点O 重合.∵点D 是AA 1的中点,A (3,4),A 1(0,0),∴D (32,2).∵点D 在直线y =34-x +b 上,∴34-×32+b =2.解得:b =258.综上所述:当线段A 1B 1与x 轴有交点时,则b 的取值范围为258≤b ≤7916.b 的取值的最大值是7916,故答案为:7916.【点拨】本题考查了反比例函数图象上点的坐标特征,中点坐标公式待定系数法求一次函数解析式,等知识,利用线段A 1B 1与x 轴有交点时,分类讨论A 1、B 1在x 轴上的思想方法,是一道好题.13.2【分析】首先根据k 与x 的取值分析函数1k y x=,()20k y k x =->的增减性,根据增减性确定最值,进而求解.解:∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1取最大值,最大值为2k =a ①;当x =2时,y 2取最小值,最小值为−2k =a −4②;由①②得a =2,k =4,故答案为:2.【点拨】本题考查了反比例函数的性质,关键是能根据反比例函数的增减性确定最值.14.52【分析】设B (a ,b ),则ab =4,根据反比例函数图象上点的坐标特征可得E 点,F 点的坐标,进而可得关于BE ,BF 长度的代数式,根据三角形的面积公式,以及反比例函数系数k 的几何意义,得到关于四边形OAEF 的面积的代数式,利用二次函数的最值求解即可.解:设B (a ,b ),则ab =4,E (k b ,b ),F (a ,k a),则四边形OAEF 的面积为:OCF BEFABOC S S S --△△矩形11=422k k k a b b a ⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭,()215282k =--+,故当k =2时,四边形OAEF 的面积最大,最大面积为:52.故答案为:52.【点拨】本题考查反比例函数,以及反比例函数的系数k 的几何意义,熟练掌握数形结合思想是解决本题的关键.15.2【分析】将△POA 的面积表示出来,再结合材料所给的信息,即可求解.解:过点P 作y 轴的垂线,与过点A 作的x 轴的垂线交于点B ,过点A 作x 轴的垂线交x 轴于点C ,过点P 作x 轴的垂线交x 轴于点D ,如图,∵点P 是反比例函数4y x=(x >0)图象上一动点,设点4()P a a,,其中a >0,∵A (1-,1),∴44111BP a AB BC PD AC CO OD a a a=+=-=====,,,,,∴POA ABP ACO DOPBCDP S S S S S =---△△△△矩形111222BP BC AB BP AC CO OD PD =⋅-⋅-⋅-⋅414114(1)(1)(1)11222a a a a a a=+⋅--+-⨯⨯-⋅22a a =+,∵a >0,∴2002a a >>,,∴222a a +≥=,∴对于正数22a a ,,当且仅当22a a =时,代数式22a a +取得最小值为2.∴△POA 的面积的最小值为2.故答案为:2.【点拨】本题考查了反比例函数与三角形面积的综合应用,解题的关键是读懂材料.16.【分析】如图,当OM AB ⊥时,线段OM 长度的最小.首先证明点A 与点B 关于直线y x =对称,因为点A ,B 在反比例函数5y x =的图象上,AB =,所以可以假设5,A m m ⎛⎫ ⎪⎝⎭,则54,4B m m ⎛⎫+- ⎪⎝⎭,则()5445m m ⎛⎫+-= ⎪⎝⎭,整理得254m m =+,推出()1,5A ,()5,1B ,可得()3,3M ,求出OM 即可解决问题.解:如图,因为反比例函数关于直线y x =对称,观察图象可知:当线段AB 与直线y x =垂直时,垂足为M ,此时AM BM =,OM 的值最小,∵M 为线段AB 的中点,∴OA OB =,∵点A ,B 在反比例函数5y x=的图象上,∴点A 与点B 关于直线y x =对称,∵AB =,∴设5,A m m ⎛⎫ ⎪⎝⎭,则54,4B m m ⎛⎫+- ⎪⎝⎭,∴()5445m m ⎛⎫+-= ⎪⎝⎭,整理得254m m =+,解得:1m =(负值舍去),∴()1,5A ,()5,1B ,∴()3,3M ,∴OM =,∴线段OM 的最小值为故答案为:【点拨】本题主要考查了反比例函数的综合,勾股定理,垂直平分线的性质,轴对称性质,判断OM 取得最小值时A ,B 两点的位置,熟练掌握对称两点坐标的设法,函数解析式代入求值,由坐标计算线段长度的方法是解题的关键.17.1【分析】由题意易得12x x =-,则有()221211112211x x x x x x +=-+=--+,然后问题可求解.解:由直线y ax =与双曲线b y x=相交于点()()1122,,,P x y Q x y 可得:12x x =-,∴()221211112211x x x x x x +=-+=--+,∵()2110x --≤∴当11x =时,()2111x --+有最大值,最大值为1;故答案为1.【点拨】本题主要考查反比例函数及配方法求最值,熟练掌握反比例函数及完全平方公式进行变形是解题的关键.18【分析】由正方形OABC 的边长是3,得到点D 的横坐标和点E 的纵坐标为6,求得33k D ⎛⎫ ⎪⎝⎭,,33k E ⎛⎫ ⎪⎝⎭,根据三角形的面积列方程得到()32D ,,()23E ,,作E 关于y 轴的对称点E ',连接E D '交y 轴于P ,则E D '的长PD PE =+的最小值,根据勾股定理即可得到结论.解:∵正方形OABC 的边长是3,∴点D 的横坐标和点E 的纵坐标为3,∴33k D ⎛⎫ ⎪⎝⎭,,33k E ⎛⎫ ⎪⎝⎭,,∴33k BE =-,33k BD =-,∵ODE 的面积为52,∴21115333332323232k k k ⎛⎫⨯-⨯⨯-⨯⨯-⨯-= ⎪⎝⎭,∴6k =或6-(舍去),∴()32D ,,()23E ,,作E 关于y 轴的对称点E ',连接E D '交y 轴于P ,则E D '的长PD PE =+的最小值,∵2CE CE '==,∴5BE '=,1BD =,∴DE ='.【点拨】本题考查了反比例函数的系数k 的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.19.(1)①4;②10;(2)72【分析】(1)①当DE 为矩形一条边,AD 为矩形另一条边时,截取的矩形面积的最大;②当BF 为矩形一条边,AB 为矩形另一条边时,截取的矩形面积的最大;(2)由题意可知()4,0A -,()4,0F ,()4,1B -,()4,1E ,再由E 点在函数k y x=图象上,求出反比例函数的解析式为4y x=,再求点()1,4D ,()2,4C -,用待定系数法求出直线BC 的解析式,设4,G t t ⎛⎫ ⎪⎝⎭,则214,33H t t ⎛⎫- ⎪⎝⎭,再由方程421473336S t t ⎛⎫=-+⋅= ⎪⎝⎭,求出t 的值即可求GN 的长.(1)解:①当DE 为矩形一条边,AD 为矩形另一条边时,截取的矩形面积的最大,4AD = ,1DE =,414S ∴=⨯=,∴截取的矩形面积的最大值4;故答案为:4;②当BF 为矩形一条边,AB 为矩形另一条边时,截取的矩形面积的最大,5AB = ,2BF =,5210S ∴=⨯=,∴截取的矩形面积的最大值10;故答案为:10;(2)解:8AF = ,()4,0A ∴-,()4,0F ,1AB EF == ,()4,1B ∴-,()4,1E ,E 点在函数k y x=图象上,4k ∴=,∴反比例函数的解析式为4y x =,CD 和AF 之间的距离为4,CD AF ∥,()14D ∴,,3CD = ,()2,4C ∴-,设直线BC 的解析式为y k x b '=+,4124k b k b ''-+=⎧∴⎨-+=⎩,解得327k b ⎧=⎪⎨⎪=⎩',372y x ∴=+,设4,G t t ⎛⎫ ⎪⎝⎭,则214,33H t t ⎛⎫- ⎪⎝⎭,421473336S t t t ⎛⎫∴=-+⋅= ⎪⎝⎭,解得72t =,GN ∴的长为72.【点拨】本题考查了反比例函数的图象及性质,矩形的性质,矩形的面积,熟练掌握知识点是解题的关键.20.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+;(2)2x <-或06x <<;(3)()10,0P 【分析】(1)由AOC 的面积为3,可求出a 的值,确定反比例函数的关系式,把点B 坐标代入可求b 的值.(2)结合图像观察,求一次函数图像位于反比例函数图像的下方时,自变量x 的取值范围即可.(3)作对称点B 关于x 的对称点B ',直线AB '与x 轴交点就是所求的点P ,求出直线与x 轴的交点坐标即可.(1)解:根据题意,3AC =,3AOC S = ,∴2OC =,结合图形,可得()2,3A -,将()2,3A -代入k y x=得6k =-,∴反比例函数的表达式为6y x=-.把()6,B b 代入反比例函数得1b =-,∴()6,1B -,将()2,3A -和()6,1B -代入y kx m =+解得:2m =,12k =-,∴一次函数表达式为122y x =-+.(2)由图象可以看出的k mx n x+>解集为<2x -或06x <<.(3)解:如图,作点B 关于x 轴的对称点B ',连接AB '与x 轴交于P ,此时PA PB -最大.()6,1B -,∴()6,1B ',设直线AP 的关系式为y k x b ''=+,将()2,3A -,()6,1B '代入,解得14k '=-,52b '=,∴直线AP 的关系式为1542y x =-+,当0y =时,解得10x =,∴()10,0P .【点拨】本题考查反比例函数的图像和性质、一次函数、轴对称以及待定系数法求函数关系式等知识,理解轴对称知识作图是解题的关键.21.(1)24y x =-;6y x=;(2)4【分析】(1)利用点()0,4A -、()2,0B 求解一次函数的解析式,再求C 的坐标,再求反比例函数解析式;(2)设6,,P n n ⎛⎫ ⎪⎝⎭则(),24,Q n n -再表示PQ 的长度,列出三角形面积与n 的函数关系式,利用函数的性质可得答案.(1)解:把()()0420A B -,、,代入一次函数y kx b =+得:420b k b -⎧⎨+⎩==,解得:24k b ⎧⎨-⎩==,∴一次函数的关系式为24y x =-,∴把()3C a ,代入得2a =,∴将()32C ,代入k y x=得326k =⨯=,∴6y x =;(2)∵点P 在反比例函数的图象上,点Q 在一次函数的图象上03n ,<<,∴点6,P n n ⎫⎛ ⎪⎝⎭,点Q (),24n n -,∴()624PQ n n=--,∴()()22162423142PDQ S n n n n n n =--ù=-++=-ú-éê犏臌+△,∵10<-,∴当1n =时,4PDQ S = 最大,所以,DPQ V 面积的最大值是4.【点拨】本题考查反比例函数、一次函数的解析式,将面积用函数的数学模型表示出来,利用函数的最值求解是解决问题的基本思路.22.(1)2,4;(2)【分析】(1)利用阅读材料的结论、并仿照阅读材料的例题解答即可;(2)设P 的坐标为6,x x ⎛⎫ ⎪⎝⎭,0x >,可得6,PD x PC x ==,然后根据阅读材料的结论解答即可.(1)解:令a x =,4b x =,由a b +≥44x x +≥=,∴44x x+≥,故当2m =时,4x x +有最小值4.故答案为2,4.(2)解:设P 的坐标为6,x x ⎛⎫ ⎪⎝⎭,0x >∴6,PD x PC x==∴6PC PD x x +=+≥=∴PC PD +的最小值为【点拨】本题主要考查了反比例函数的性质、完全平方公式的应用等知识点,读懂材料、理解a b +≥23.(1)2400100Q x=+;(2)4.8/元件;(3)当10x =时,月销售额最大,最大值为3400元【分析】(1)设k Q m x =+()m 为基本销售量,将()5580,、()8400,代入求解可得;(2)求出600Q =时x 的值即可得;(3)根据月销售额·1002400Q x x ==+且10x ≤可得.解:(1)设()k Q m m x=+为基本销售量,依题意,得58054008k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩解得1002400m k =⎧⎨=⎩∴()240010010Q x x=+≤(2)当600Q =时2400100600x+=解得 4.8x =(3)依题意,得月销售额·1002400Q x x ==+∵1000>∴Q 随x 的增大而增大则当10x =时,月销售额最大,最大值为3400元【点拨】本题主要考查了反比例函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数解析式.24.(1)8y x =,8,33⎛⎫ ⎪⎝⎭;(2)3;(3)103【分析】(1)根据题意求出点D 的坐标,进而求出反比例函数关系式,根据反比例函数图象上点的坐标特征求出点E 的坐标;(2)根据轴对称-最短路径确定点P 的位置,根据勾股定理计算,得到答案;(3)过点P 作PF OD ⊥于F ,根据勾股定理求出OD ,设PA m =,根据等腰直角三角形的性质、勾股定理列出方程,解方程得到答案.解:(1) 点B 的坐标为()4,3,1BD =,∴点D 的坐标为()4,2,反比例函数k y x=的图象经过点D ,428k ∴=⨯=∴反比例函数的解析式为:8y x =,由题意得:当E 的纵坐标为3,∴点E 的横坐标为83,∴点E 的坐标为8,33⎛⎫ ⎪⎝⎭;(2)如图2,作点D 关于x 轴的对称点D ¢,连接ED ',交OA 于点P ',连接P D ',则P D P E ''+的值最小,由(1)可知,84433BE =-=由勾股定理得:3D E '==,PD PE ∴+的最小值为3;(3)如图3,过点P 作PF OD ⊥于F ,则PFD 为等腰直角三角形,2∴==PF DF4= OA ,2OD =,==OD设PA m =,则4,=-=OP m PD2∴==PF DF ,2∴=OF ,在Rt OPF 中,222=+OP PF OF ,即222(4))-=+m 整理得:2316120m m +-=解得122,63m m ==-(舍去)210433OP ∴=-=【点拨】本题考查的是矩形的性质、反比例函数图象上点的坐标特征、轴对称-最短路径以及勾股定理的应用,作出PD PE +的最小时,点P 的位置是解题的关键.。

最新八年级数学下学期反比例函数提高练习题.docx

最新八年级数学下学期反比例函数提高练习题.docx

反比例函数提高练习:ykP 分别向 x 轴和 y轴引垂线,阴影部分x 图象上的一点,由1、如图: P 是反比例函数 面积为 3 ,求函数的表达式。

1yAC 平行于 y轴, BC2、如图: A ,B 是函数x 的图象上关于原点O 对称的任意两点。

平行于 x 轴,求△ ABC 的面积。

3、某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价 x (元)与日销售量 y (个)之间有如下关系:日销售单价x (元) 3 4 5 6 日销售量 y( 个 )20151210( 1)猜测并确定 y 与 x 之间的函数关系式;( 2)设经营此贺卡的销售利润为W元, 求出W与 x 之间的函数关系式 . 若物价局规定此贺卡 的售价最高不能超过 10 元/个,请你求出当日销售单价 x 定为多少时,才能获得最大日销售利润?y14、如图正比例函数 y=k x 与反比例函数k 2yBx 交于点 A ,从 A 向 x 轴、 y 轴分别作垂线,所构成的正方形的面积为 4。

AO①分别求出正比例函数与反比例函数的解析 Cx式。

D②求出正、反比例函数图像的另外一个交点坐标。

③求△ ODC 的面积。

15、若 A 、B 两点关于 y轴对称,且点 A 在双曲线y2x 上,点 B 在直线y x 3ab上,设点 A 的坐标为( a,b ) ,求 ba 的值。

6、如图 13- 8- 7 已知一次函数y1xa与 x 轴、 y轴分别交于ky 2点 D 、 C 两点和反比例函数 x 交于 A 、 B 两点,且点 A 的坐标是( 1, 3)点 B 的坐标是( 3, m )( 1) 求 a , k , m 的值;( 2) 求 C 、D 两点的坐标,并求△ AOB 的面积;( 3) 利用图像直接写出,当 x 在什么取值范围时,y1y 2?7、已知 y 与 x+1 成反比例函数,当x=2 时 y=3 ,求当 x=-3 时, y 的值?。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

反比例函数提高题练习题

反比例函数提高题练习题

1反比例函数 技巧训练题1、已知直线()0>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别是A (11,y x ),B (22,y x ),则1221y x y x += 。

2、若点(1,2y -)(2,1y -),(3,1y )在反比例函数xy 2=的图象上,则下列结论中正确的是( ) A 、321y y y >> B 、312y y y >> C 、213y y y >> D 、123y y y >>3、如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,点C 的纵坐标为1,O A ∥BC ,上底边OA 在直线x y =上,下底边BC 交x 轴于E (2,0),则四边形A0EC 的面积是( )A 、3B 、3C 、13-D 、13+4、如图,已知点A 是一次函数x y =的图象与反比例函数xy 2=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( ) A 、2 B 、22C 、2D 、22 5、如图,在反比例函数()02>=x xy 的图象上,有4321,,,P P P P 四点,它们的横坐标依次为1,2,3,4.分别过这些点作到x 轴与y 轴的垂线段,图中所构成的阴影部分的面积从左到右依次为321,,S S S ,则321S S S ++= 。

6、如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点 且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q32OQC S ∆=,则k 的值和Q 点的坐标分别为涉及面积的反比例函数的相关习题1、如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C . 若点A 的坐标为(6-,4),则△AOC 的面积为( )2y x =xyOP 1 P 2P 3 P 4 12342A .12B .9C .6D .4 2.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x=交OB 于D ,且OD :DB =1 :2,若△OBC 的面积等于3,则k 的值( )A .2B .34 C .245D .无法确定第1题图 第3题图3.如图,直线y x b =+与y 轴交于点A ,与双曲线k y x =在第一象限交于B 、C 两点,且AB ·AC =4,则k =_________. 4. 如图,A 、B 是双曲线 y = kx (k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .5.如图,已知双曲线)0k (xk y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.6. 如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x=>的图象上,则点E 的坐标是( )A.⎝⎭; B.⎝⎭ C.⎝⎭ D.⎝⎭解答题训练1、已知一次函数k x y 231-=的图形与反比例函数xk y 32-=的图象相交,其中一个交点的纵坐标为6.(1)求这两个函数的解析式; (2)结合图象求出21y y <时,x 的取值范围。

九年级数学上册第六章《反比例函数》(基础)巩固练习(含解析)北师大版(2021年整理)

九年级数学上册第六章《反比例函数》(基础)巩固练习(含解析)北师大版(2021年整理)

2018-2019学年九年级数学上册第六章《反比例函数》(基础)巩固练习(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第六章《反比例函数》(基础)巩固练习(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第六章《反比例函数》(基础)巩固练习(含解析)(新版)北师大版的全部内容。

反比例函数(基础)巩固练习【巩固练习】一.选择题1. 点(3,-4)在反比例函数k y x=的图象上,则在此图象上的是点( ). A .(3,4) B .(-2,-6) C .(-2,6) D .(-3,-4)2. 如图,过反比例函数y=(x >0)的图象上一点A 作AB⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .53.下列四个函数中:①5y x =;②5y x =-;③5y x =;④5y x=-. y 随x 的增大而减小的函数有( ).A .0个B .1个C .2个D .3个4. 在反比例函数()0k y k x =<的图象上有两点()11,y x A ,()22,y x B ,且021>>x x ,则12y y -的值为( )A 。

正数 B. 负数 C 。

非正数 D 。

非负数5。

已知一次函数y=kx+k ﹣1和反比例函数y=x k ,则这两个函数在同一平面直角坐标系中的图象不可能是( )6。

已知反比例函数1y x=,下列结论中不正确的是( ) A 。

(完整版)反比例函数的图像和性质练习题

(完整版)反比例函数的图像和性质练习题
并说明理由.
A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣1<x<0D.x>3
10、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y= 于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积( ).
A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定
(第10题图) (第11题图) (第12题图)
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
24、如图, 已知反比例函数y= 的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,
反比例函数的图像和性质练习题
一、选择题
1.下列函数中,y与x成反比例函数是( )
A、 B、 C、 D、
2.反比例函数 的图象两支分布在第二、四象限,则k取值范围为( )
A.k<2B.k>2C. D.
3.如果双曲线y= 经过点(-2,3),那么此双曲线也经过点( )
A.(-2,-3)B.(3,2)C.(3,-2)D.(-3,-2)
7.一次函数 与反比例函数 在同一坐标系中的图像大致是( )
(第6题图) (第7题图)
8.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()
(第8题图) (第9题图)
9、已知一次函数y1=kx+b与反比例函数y2= 在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()
19、如图,点A是反比例函数 图象上一点,AB⊥y轴于点B, 那么△AOB的面积是。

北师大版九年级上册第六章反比例函数各小节练习题(基础)含答案

北师大版九年级上册第六章反比例函数各小节练习题(基础)含答案

北师大版九年级上册第六章反比例函数各小节练习题反比例函数--巩固练习(基础)一.选择题1. 点(3,-4)在反比例函数的图象上,则在此图象上的是点( ). A .(3,4) B .(-2,-6) C .(-2,6) D .(-3,-4)2. (2016•河南)如图,过反比例函数y=(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .53.下列四个函数中:①;②;③;④. y 随x 的增大而减小的函数有( ).A . 0个B . 1个C . 2个D . 3个 4. 在反比例函数()0ky k x=<的图象上有两点,,且,则12y y -的值为( )A. 正数B. 负数C. 非正数D. 非负数5. (2015•潮南区一模)已知一次函数y=kx+k ﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是( )6. 已知反比例函数1y x=,下列结论中不正确的是( ) A.图象经过点(-1,-1)B.图象在第一、三象限C.当1x >时,01y <<D.当0x <时,y 随着x 的增大而增大ky x=5y x =5y x =-5y x =5y x=-()11,y x A ()22,y x B 021>>xx二.填空题7. (2016春•德州校级月考)已知y 与成反比例,当y=1时,x=4,则当x=2时,y= . 8. 已知反比例函数的图象,在每一象限内y 随x 的增大而减小,则反比例函数的解析式为 .9. (2015•和平区模拟)若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数y=的图象上的点,并且x 1<0<x 2<x 3,y 1,y 2,y 3的大小关系为 . 10. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.11. 如图,如果曲线1l 是反比例函数ky x=在第一象限内的图象,且过点A (2,1), 那么与1l 关于x 轴对称的曲线2l 的解析式为 (0x >).12. 已知正比例函数的图象与双曲线的交点到x 轴的距离是1, 到y 轴的距离是2,则双曲线的解析式为_______________. 三.解答题13. 已知反比例函数2m y x=的图象过点(-3,-12),且双曲线m y x =位于第二、四象限,求m 的值.14. (2015秋•龙安区月考)如图,已知反比例函数y=(m 为常数)的图象经过□ABOD 的顶点D ,点A 、B 的坐标分别为(0,3),(﹣2,0)(1)求出函数解析式;(2)设点P 是该反比例函数图象上的一点,若OD=OP ,求P 点的坐标.102)2(--=m xm y mx y =xky =m k15. 已知点A(m ,2)、B(2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y mx n =-与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.实际问题与反比例函数--巩固练习(基础)一.选择题1. (2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B.C D.2. 日常生活中有许多现象应用了反比例函数,下列现象符合反比例函数关系的有()①购买同一商品,买得越多,花得越多;②百米赛跑时,用时越短,成绩越好;③把浴盆放满水,水流越大,用时越短;④从网上下载一个文件,网速越快,用时越少.A. 1个B. 2个C. 3个D. 4个3.(2016•海南)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷4. 若r为圆柱底面的半径,h为圆柱的高.当圆柱的侧面积一定时,则h与r之间函数关系的图象大致是().5. 如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的函数关系图象大致是()6. 下列各问题中,两个变量之间的关系不是反比例函数的是( )A :小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (/m s )之间的关系.B :菱形的面积为482cm ,它的两条对角线的长为y (cm )与x (cm )的关系. C :一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的体积V 之间的关系. D :压力为600N 时,压强P 与受力面积S 之间的关系. 二.填空题 7.(2016春•灌云县期末)某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q 立方米,那么将满池水排空所需要的时间为t (小时),写出时间t (小时)与Q 之间的函数表达式 .8. 由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20Ω时,电流强度I =0.25A .则(1)电压U =______V ; (2)I 与R 的函数关系式为______; (3)当R =12.5时的电流强度I =______A ; (4)当I =0.5A 时,电阻R =______Ω.9. 一水桶的下底面积是桶盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是500.翻过来放,对桌面的压强是_____________. 10.一个水池装水123m ,如果从水管中每小时流出3xm 的水,经过yh 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.11.(2014秋•甘州区校级月考)某种大米单价是y 元/千克,若购买x 千克花费了2.2元,则y 与x 的表达式是 . 12.一定质量的氧气,它的密度3(/)kg m ρ是它的体积3()V m 的反比例函数,当V =203m 时,1.36ρ=3/kg m ,当V =403m 时,ρ=______3/kg m .三.解答题13. 池内装有123m 的水,如果从排水管中每小时流出的水是x 3m ,则经过y 小时就可以把水放完.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)画出函数图象的草图.14. (2015•温州模拟)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x (分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?15.某机床加工一批机器零件,如果每小时加工30个,那么12小时可以完成.(1)设每小时加工x个零件,所需时间为y小时,写出y与x之间的函数关系式,画出图象;(2)若要在一个工作日(8小时)内完成,每小时要比原来多加工几个?反比例函数--巩固练习答案一.选择题 1.【答案】C ;【解析】由题意得12y x=-,故点(-2,6)在函数图象上. 2.【答案】C.【解析】∵点A 是反比例函数y=图象上一点,且AB ⊥x 轴于点B , ∴S △AOB =|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4.3.【答案】B ; 【解析】只有②,注意不要错误地选了③,反比例函数的增减性是在每一个象限内讨论的.4.【答案】A ;【解析】函数在二、四象限,y 随x 的增大而增大,故120y y ->. 5.【答案】C ;【解析】当k >0时,反比例函数y=的图象在一、三象限,一次函数y=kx+k ﹣1的图象过一、三、四象限,或者一、二、四象限,A 、B 选项正确;当k <0时,反比例函数y=的图象在二,四象限,一次函数y=kx+k ﹣1的图象过一、三、四象限,选项D 正确,C 不正确; 故选C .6.【答案】D ;【解析】D 选项应改为,当0x <时,y 随着x 的增大而减小. 二.填空题 7.【答案】.【解析】由于y 与成反比例,可以设y=,把x=4,y=1代入得到1=, 解得k=2, 则函数解析式是y=, 把x=2代入就得到y=.8.【答案】1y x=; 【解析】由题意210120m m ⎧-=-⎨->⎩,解得3m =.9.【答案】y 2<y 3<y 1; 【解析】∵﹣a 2﹣1<0,∵反比例函数图象位于二、四象限,如图在每个象限内,y 随x 的增大而增大,∵x 1<0<x 2<x 3,∵y 2<y 3<y 1.10.【答案】 2m = ;2k =; (1,2);【解析】另一个交点坐标与A 点关于原点对称. 11.【答案】;12.【答案】2y x =或2y x=-; 【解析】由题意交点横坐标的绝对值为2,交点纵坐标的绝对值为1,故可能是点(2,1)或(-2,-1)或(-2,1)或(2,-1).三.解答题 13.【解析】解:根据点在图象上的含义,只要将(-3,-12)代入2m y x =中,得2123m -=-,∴ m =±6 又∵ 双曲线my x=位于第二、四象限, ∴ m <0, ∴ m =-6. 14.【解析】 解:(1)∵四边形ABOC 为平行四边形,∵AD ∵OB ,AD=OB=2, 而A 点坐标为(0,3), ∵D 点坐标为(2,3),∵1﹣2m=2×3=6,m=﹣, ∵反比例函数解析式为y=.(2)∵反比例函数y=的图象关于原点中心对称,∵当点P 与点D 关于原点对称,则OD=OP ,此时P 点坐标为(﹣2,﹣3), ∵反比例函数y=的图象关于直线y=x 对称,∵点P 与点D (2,3)关于直线y=x 对称时满足OP=OD ,此时P 点坐标为(3,2), 点(3,2)关于原点的对称点也满足OP=OD ,此时P 点坐标为(﹣3,﹣2), 综上所述,P 点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2).x y 2-=15.【解析】解:(1)将点A(m ,2)、B(2,n )的坐标代入xm y 3+=得:32m m +=,解得3m =;333322m n ++===, 所以3m n ==.(2)直线为33y x =-, 令01y x ==,,所以该直线与x 轴的交点坐标为C (1,0), C 关于y 轴对称点C ′的坐标为(-1,0).实际问题与反比例函数--巩固练习答案一.选择题1. 【答案】C ;【解析】设y=(k ≠0),∵当x=2时,y=20,∵k=40,∵y=,则y 与x 的函数图象大致是C.2. 【答案】C ;【解析】②③④为反比例函数,①为正比例函数. 3.【答案】D .【解析】如图所示,人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数关系是反比例函数,它的图象在第一象限, ∴y 随x 的增大而减小, ∴A ,B 错误,设y=(k >0,x >0),把x=50时,y=1代入得:k=50, ∴y=,把y=2代入上式得:x=25, ∴C 错误,把x=50代入上式得:y=1, ∴D 正确.4.【答案】B ;【解析】侧面积一定,h,r 成反比例,考虑到实际问题,选第一象限内的图象. 5.【答案】B ;【解析】应用物理学的知识:U =I ×R. 6.【答案】C ;【解析】因为m =ρV ,当V =30时,m =30ρ,故为正比例函数. 二.填空题 7.【答案】t=.【解析】∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.8.【答案】(1)5; (2)RI 5=; (3)0.4; (4)10. 9.【答案】1000【解析】压强与面积的乘积是一个定值.10.【答案】x y 12=;x >0; 11.【答案】 2.2y x=;12.【答案】0.68;三.解答题13.【解析】解:(1)由已知条件,得12(0) y xx=>.(2)如图所示.14.【解析】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.15.【解析】解:(1)需加工的零件数为30×12=360(个).y与x之间的函数关系式为360(0) y xx=>.图象如图所示.(2)当y=8时,x=360÷8=45,45-30=15.∴要在8小时内完成,每小时比原来要多加工15个.第11页共11页。

反比例函数提高训练题(难)

反比例函数提高训练题(难)

反比例函数提高训练题(难)一、选择题:1、反比例函数的解析式为y=k/x,因此选项D正确。

2、根据反比例函数的性质可知,x越大,y越小,因此选项B正确。

3、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此选项D正确。

4、反比例函数y=k/x的图象是一个双曲线,开口朝右上方,因此选项C正确。

5、根据题目条件可知,XXX(x1y2-y1x2),因此选项B正确。

6、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此选项A正确。

二、填空题:1、反比例函数y=k/x的图象是一个双曲线,开口朝右上方,因此k>0.2、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.3、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.4、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.5、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.6、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.7、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.8、根据题目条件可知,点P关于y轴对称的点为(-a。

m/(a-1)),因此k=m/(a-1)。

9、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.10、根据题目条件可知,y2=8/(x-4),因此选项C正确。

11、根据题目条件可知,A1、A2、A3在x轴上,因此选项B正确。

1.将文章中的格式错误和明显有问题的段落删除,改写每段话如下:1.在图中,点B1、B2、B3分别交于x轴平行线,过点xB3、C2、C3、B1、B3,分别与y轴交于点C1、OB2、OB3.阴影部分的面积之和为连接OB1、OB2、OB3的三角形面积加上连接OB1、OB3、C3、C2、OB2的梯形面积。

2.已知点A(-1.y1)、B(1.y2)、C(2.y3)在反比例函数y=k/x 的图象上,其中ky2>y3.3.如图所示,点P在y=k1/x和y=k2/x的图象上,PC⊥x 轴于点C,交y=k1/x的图象于点A,PD⊥y轴于点D,交y=k2/x的图象于点B。

反比例函数练习题及答案

反比例函数练习题及答案

反比例函数练习题一、填空题(每空3分,共42分) 1.已知反比例函数()0≠=k xky 的图象经过点(2,-3),则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________.2.已知变量y 与x 成反比,当x =1时,y =-6,则当y = 3时,x=________。

3.若反比例函数y=(2m-1)22m x - 的图象在第一、三象限,则函数的解析式为___________.4.已知反比例函数xm y )23(1-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大;5.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 ; 6.已知111222(,),(,)P x y P x y 是反比例函数xky =(k≠0)图象上的两点,且12x x <<0时,12y y < ,则k________。

7.已知正比例函数y=kx(k≠0),y 随x 的增大而减小,那么反比例函数y=kx,当x< 0时,y 随x 的增大而_______.8.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为________. 9. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

10.当>0,<0时,反比例函数的图象在__________象限。

11.老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y 随x 的增大而减小;丁:当2<x 时,0>y 。

反比例函数增减性专题

反比例函数增减性专题
反比例函数
增减性专题训练
a
1
性质复习
你能试着说说反比例函数y k x
的共同特征吗?
反比例函数 y k 的图象 x
当k>0时,在每一象限内,y的值随x值的增大而减小; 当k<0时,在每一象限内,y的值随x值的增大而增大。
a
2
利用性质求k的取值y 范1 围k
在反比例函数
x 图像在一三
象限,则 的取k 值范围是
B ( x 2 , y 2 ) 两 点 在 该 双 曲 线 上 , 且
X 1 < x 2 < 0 , 那 么 y 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y 2
a
5
已 知 双 曲 线 y = 3 , 如 果 A ( x 1 , y 1 ) x
B ( x 2 , y 2 ) 两 点 在 该 双 曲 线 上 , 且
数 y 2 x 的 图 象 上 , 则 y 1 , y 2 , y 3 的 大 小 关 系 是 _
a
10
关于面积
a
11
a
12
a
13
a
8
已 知 双 曲 线 y = a 2 1 , 如 果 A ( x 1 , y 1 ) x
B ( x 2 , y 2 ) 两 点 在 该 双 曲 线 上 , 且
X 1 < x 2 < 0 , 那 么 y 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y 2
a
Байду номын сангаас
9
若 当点 堂( 检2 , y 测1 ) 、 ( 1 , y 2 ) 、 ( 3 , y 3 ) 都 在 反 比 例 函

反比例函数基础练习题

反比例函数基础练习题

反比例函数基础练习题第一篇范文:反比例函数基础练习题及答案一.选择题(共22小题)1.(2022春泉州校级期中)下列函数中,y是某的反比例函数的为()A.y=2某+1B.2.(2022春兴化市校级期中)函数y=k是反比例函数,则k的值是()C.D.2y=某A.﹣1B.2C.±2D.±|m|﹣23.(2022春衡阳县期中)若y=(m﹣1)某是反比例函数,则m的值为()A.m=2B.m=﹣1C.m=1D.m=04.(2022汕尾校级模拟)若y与某成反比例,某与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2022春常州期末)反比例函数大,则m的取值范围是()A.m<06.(2022贺州)已知k1<0<k2,则函数y=和y=k2某﹣1的图象大致是()B.C.D.m≥(m为常数)当某<0时,y随某的增大而增A.B.C.D.7.(2022滦平县二模)在同一直角坐标系中,函数y=k某+k与y=()(k≠0)的图象大致为A.B.C.D.第1页(共7页)8.(2022上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.9.(2022宝安区二模)若ab>0,则函数y=a某+b与函数能是()在同一坐标系中的大致图象可B.y=2某+1C.y=﹣某D.y=﹣某+12A.B.C.D.10.(2022鱼峰区二模)若方程=某+1的解某0满足1<某0<2,则k可能是()A.1B.2C.3D.611.(2022颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2022深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=13.(2022随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于某轴成轴对称D.当某<0时,y随某的增大而减小第2页(共7页)D.y=14.(2022昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=k某﹣k的图象大致是()A.B.C.D.15.(2022天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随某的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(某,y)在图象上,则点P1(﹣某,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2022杭州)函数的自变量某满足≤某≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=17.(2022阜新)反比例函数y=在每个象限内的函数值y随某的增大而增大,则m的B.y=C.y=D.y=取值范围是()A.m<0B.m>0C.m>﹣1D.m<﹣1第3页(共7页)18.(2022凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10B.11C.12D.1319.(2022眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥某轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.20.(2022绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥某轴于点C,作BD⊥y轴于点D.在某轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()B.C.3D.4第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S221.(2022抚顺)如图,在平面直角坐标系中,点A是某轴正半轴上的一个定点,点P是双曲线y=(某>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小第4页(共7页)22.(2022重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与某轴交于点C,则△AOC的面积为()A.8二.填空题(共4小题)B.10C.12D.2423.(2022锦江区一模)已知y=(a﹣1)是反比例函数,则a=24.(2022江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2022路北区二模)函数y=,当y≥﹣2时,某的取值范围是象求解).26.(2022贵阳)若反比例函数的图象在其每个象限内,y随某的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2022春东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当某=﹣10时函数y的值;(3)求当y=6时自变量某的值.第5页(共7页)1.下列表达式中,①某y④y3m某(m13②.y36某③y2某是常数,m0)表示y是某的反比例函数的是()A.①②④D.①③2.下列函数关系中是反比例函数的是()A.等边三角形面积S与边长a的关系B.直角三角形两锐角A与B的关系C.长方形面积一定时,长y与宽某的关系D.等腰三角形顶角A与底角B的关系3.函数yk某B.①③④C.②③的图象经过点(-4,6),则下列个点中在yk某图象上的是()A.(3,8)B.(-3,8)C.(-8,-3)D.(-4,-6)4.如果矩形的面积为6cm2,那么它的长ycm与宽某cm之间的函数图象大致为()ABCk5.如图,反比例函数y的图象经过点A,k的值是()某(A)2(B)1.5(C)3(D)236.点A为反比例函数图象上一点,它到原点的距离为5,到某轴的距离为3,若点A在第二象限内.则这个反比例函数的解析式为()(A)y12(B)y某y112某12某(C)y112某(D)7.△ABC的高h和它的底边某成反比例函数关系,并且△ABC的面积等于12,则这个反比例函数关系式为()A.hD.h24某12某B.h112某C.h124某8.已知菱形面积为12cm2,两条对角线分别为某cm,ycm写出y关于某的函数解析式是.9.已知矩形的面积为15厘米2,设它的长为某厘米,宽为y厘米,那么y与某之间的函数关系是10.已知反比例函数yk某的图象经过点A(-2,3).(1)求出这个(2)如果点B(m,6)也在这个函数图像上,求m的值11、某商场出售一批贺卡,在市场营销中发现此商品的日销售单价某(元)与日销售量y(个)之间有如下关系:(1)根据表中数据,在直角坐标系中描出实数对(某,y)的对应点;(2)猜测并确定y与某之间的函数关系式,并画出图象;12.如图是反比例函数y=题:(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数的图象经过(3,1),求n的值.(3)在这个函数图象的某一支上任取点A(a1,b1)和点B(a2,b2),如果a1<a2,试比较b1和b2的大小.2n4某的图象的一支,根据图象回答下列问13.已知反比例函数yk1(k为常数,k1).某(Ⅰ)若点A(1,2)在这个函数的图象上,求k的值;(Ⅱ)若在这个函数图象的每一支上,y随某的增大而减小,求k的取值范围;(Ⅲ)若k13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.1.反比例函数的概念(1)下列函数中,y是某的反比例函数的是().A.y=3某B.C.3某y=1D.(2)下列函数中,y是某的反比例函数的是().A.B.C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随某的增大而减小,那么k=___________.(2)已知一次函数y=a某+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=k某+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数的大小关系是().A.<<(a为常数)的图象上有三个点,,,则函数值、、B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随某的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2某和y=某+1的图象过同一点,则当某>0时,这个反比例函数的函数值y随某的增大而(填“增大”或“减小”).4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2某与反比例函数另一个交点为________.的图象有一个交点为(2,m),则m=_____,k=________,它们的(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=某+m与反比例函数()的图象在第一象限内的交点为P(某0,3).①求某0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间某(分钟)成正比例,药物燃烧完后,y与某成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于某的函数关系式为___________,自变量某的取值范围是_______________;药物燃烧后y关于某的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向某轴、y轴作垂线,过每一点所作的、、,则().D.两条垂线段与某轴、y轴围成的矩形的面积分别为A.B.C.(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//某轴,△ABC的面积S,则().A.S=1B.1<S<2C.S=2D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.(4)如图,正比例函数y=k某(k>0)和反比例函数接BC,若△ABC面积为S,则S=_________.6.综合应用的图象相交于A、C两点,过A作某轴垂线交某轴于B,连(1)若函数y=k1某(k1≠0)和函数(k2≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的某的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与某轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于某轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.。

期中考试专题复习(8)反比例函数的性质(增减性)

期中考试专题复习(8)反比例函数的性质(增减性)

期中考试专题复习(8)反比例函数的性质(增减性)【知识点】1.反比例函数的图象性质:(增减性) 2.由反比例函数的增减性比较大小一般步骤为:(1)先确定所给点是否在 (主要看x 的 性, 在同一分支) (2)在同一分支的利用 比较大小 (3)不在同一分支的利用 比较大小 【例题讲解】例1.(2010期中)反比例函数y= 22k x--图象上有三点A (12-,1y )、B (-1,2y )、C (13,3y ),则1y ,2y ,3y 的大小关系是( )A.1y <2y <3yB.2y <1y <3yC.3y <1y <2yD.3y <2y <1y例2.(2011期中)反比例函数y=21k x+图象上有三点A (12-,1y )、B (13-,2y )、C (1,3y ),则1y ,2y ,3y 的大小关系是( )A 3y <1y <2yB 3y <2y <1yC 1y <2y <3yD 2y <1y <3y练一练:1.(2010福建惠安)若反比例函数xy 6=的图象上有两点),1(1y A 和),2(2y B ,则1y ______2y (填“<”“=”“>”).2.(2010山东济南)若1122()()A x y B x y ,,,是双曲线3y x=上的两点,且120x x >>,则12_______y y {填“>”、“=”、“<”}.3.(2009陕西)若A(x 1,y 1),B(x 2,y 2)是双曲线xy 3=上的两点,且x 1>x 2>0,则y 1 y 2(填“>”“=”“<”).4.(2011湖南永州)若点P 1(1,m),P 2(2,n )在反比例函数)0(<=k xk y 的图象上,则m_____n(填“>”、“<”或“=”号). 5.(2008内江) 若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c < C .b c =D .无法判断6.(2009广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数xk y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y7.(2010甘肃兰州)14. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数xky 12--=的图像上. 下列结论中正确的是( )A .321y y y >>B .231y y y >>C .213y y y >> D.132y y y >> 8.(2010浙江台州)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<9. (2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 1 10.已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数 (0)k =≠2-k y x的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 . 11.点(−2,y 1)、(−1,y 2)、(1,y 3)在反比例函数y = 21k x+的图象上,比较y 1、y 2、y 3的大小为 。

003反比例函数增减性练习

003反比例函数增减性练习

17.1.2 反比例函数的图象和性质 基础训练 班级 姓名 1.反比例函数43y x=-的图象在( ) A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限2.若函数k y x=的图象在第一、三象限,则函数y=kx-3的图象在( ) A .第二、三、四象限 B .第一、二、三象限C .第一、二、四象限D .第一、三、四象限3.如果反比例函数xk y =的图象经过点(-3,-4),那么函数的图象应在( ) A . 第一、三象限 B . 第一、二象限 C . 第二、四象限 D . 第三、四象限 4. 已知点(2,-6)在函数y=kx 的图象上,则函数x k y =的图象在( ) A 、第一、第二象限B 、第二、第三象限C 、第二、第四象限D 、第一、第四象限5.反比例函数y =xk (k 是常数,k ≠0)的图象经过点(a ,-a ),那么该图象经过第_________象限 6.若点(m ,-2m )在反比例函数k y x =的图象上,则这个反比例函数的图象在 象限 A .第一、二B . 第三、四象限C .第一、三象限D .第二、四象限 7.如果函数x k y =的图象经过点)1,1(-,则函数2kx y -=的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限8.若反比例函数y=24212-+m x m 的图象经过第二、四象限,则函数的解析式为 。

9.若反比例函数21m y x-=的图象在第二、四象限,则 m 的取值范围是 . 10.若反比例函数22)12(--=mx m y 的图象在第二、四象限,则m 的值是( ) A .-1或1 B .小于21 的任意实数 C . -1 D. 不能确定 11.已知反比例函数y=5m x-的图象在每一个象限内,y 随x 增大而增大,则m________. 12.若函数y =(m +2)x |m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .以上答案均不正确13.函数y m x m m =+--()2229是反比例函数,则m 的值是( )A . m =4或m =-2B . m =4C . m =-2D . m =-1 14.已知22)1(--=a xa y 是反比例函数,则a =__________. 15.若241(4)mm y m x --=-为反比例函数关系式,则m = _________。

反比例函数增减性练习

反比例函数增减性练习

反比例函数增减性进阶练习1【概念辨析】1.反比例函数的图象性质:(增减性)2.由反比例函数的增减性比较大小一般步骤为: (1)先确定所给点是否在 (主要看x 的 性, 在同一分支) (2)在同一分支的利用 比较大小 (3)不在同一分支的利用 比较大小【熟练练习】1.若反比例函数xy 6= 的图象上有两点),1(1y A 和),2(2y B ,则1y ______2y (填“<”“=”“>”).2.若1122()()A x y B x y ,,,是双曲线3y x=上的两点,且120x x >>,则12_______y y {填“>”、“=”、“<”}.3.若点P 1(1,m),P 2(2,n )在反比例函数)0(<=k xk y 的图象上,则m_____n(填“>”、“<”或“=”号).4.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c <C .b c =D .无法判断5.反比例函数y= 22k x--图象上有三点A (12-,1y )、B (-1,2y )、C (13,3y ),则1y ,2y ,3y 的大小关系是( )A.1y <2y <3yB.2y <1y <3yC.3y <1y <2yD.3y <2y <1y6.反比例函数y= 21k x+图象上有三点A (12-,1y )、B (13-,2y )、C (1,3y ),则1y ,2y ,3y 的大小关系是( )A 3y <1y <2yB 3y <2y <1yC 1y <2y <3yD 2y <1y <3y答案:【概念辨析】 略【熟练练习】1.y 1<y 22.y 1<y 23.m <n4.B5.D6.D。

九年级数学反比例函数的增减性

九年级数学反比例函数的增减性
解释]跑卫 古玩交易 [问答题,简答题]列车制动机简略试验由谁负责? 古玩交易 [单选]强调双手协同针刺,且对后世影响颇大的著作是()。A.《素问》B.《针灸甲乙经》C.《难经》D.《针经指南》E.《神应经》 古玩交易 [单选]学校文化建设有多个落脚点,其中,课堂教学是学校文化建设的主渠道。在课堂教学中,教师必须注意加强学校文化和学科文化建设,这主要有利于落实课程三维目标中的:()A.知识与技能目标。B.方法与过程目标。C.情感态度价值观目标。D.课堂教学目标。 古玩交易 [单选,A型题]肾结石与胆囊结石的X线区别点,以下哪项正确()A.泌尿道结石大多数为透X线或阴性结石B.典型肾结石为分层状C.静脉肾盂造影诊断无明显鉴别价值,因为两者位置相似D.输尿管结石为长圆形,其长轴和输尿管长轴有成角E.腹部侧位上肾结石靠后和脊柱重叠 古玩交易 [单选,A1型题]人体消灭结核杆菌主要依靠的细胞是()A.中性粒细胞B.嗜酸性粒细胞C.浆细胞D.B淋巴细胞E.巨噬细胞 古玩交易 [问答题,简答题]什么是凝聚和絮凝?它们在发酵液预处理时的作用是什么? 古玩交易 [单选,A3型题]婴儿胎龄40周,生后5小时,择期剖宫产娩出,生后不久出现呻吟,呼吸急促,口中少许泡沫伴口周发绀。查体:呼吸70次/分,双肺呼吸音粗,可闻及粗湿啰音,心率140次/分,胸骨左缘2.3肋间闻及Ⅰ~Ⅱ级收缩期杂音。血气分析结果:pH7.32,PaO26.4kPa,PaCO26.7 古玩交易 [单选]下列各项业务中,可以确认收入的是。A.企业销售的商品在质量、品种、规格等方面不符合合同或协议的要求,又未根据正常的保证条款予以弥补B.企业尚未完成售出商品的安装或检验工作,且安装或检验工作是销售合同和协议的重要组成部分C.销售合同和协议中规定了买方由 古玩交易 [名词解释]沙漠 古玩交易 [单选]与CT扫描伪影无关的是()A.扫描中病人移动B.显示器故障C.探测器故障D.体内金属异物E.扫描层面中有高密度骨出现 古玩交易 [单选]质量摩尔浓度的定义是()中含有溶质的物质的量。A.1dm3溶液B.1kg溶液C.1kg溶剂D.1dm3溶剂 古玩交易 [填空题]氨具有()、(),对()、()有强烈刺激和腐蚀作用,可导致人体()、()、()甚至(),通常浓度在()即可闻到臭味,其短时间接触容许浓度(),半致死浓度(),即刻致死浓度()。 古玩交易 [单选]关于合理砂率对混凝土拌合物特性的影响,说法不正确的是()。A.流动性最小B.粘聚性良好C.保水性良好D.水泥用量最小 古玩交易 [单选]以下不是黄瘤病临床类型的是()A.结节性黄瘤B.扁平黄瘤C.发疹性黄瘤D.重症黄瘤 古玩交易 [单选]性联鱼鳞病的临床特点不正确的是()A.仅见于男性,女性仅为携带者B.皮损往往遍布全身,面、颈部亦常受累C.掌趾无角化过度D.症状随年龄增长而减轻 古玩交易 [多选]下列属于成品数据构成的有()。A.原始图像文件B.单层图像PDF文件C.双层PDF文件D.单层矢量PDF文件E.CIP信息 古玩交易 [单选]根据《担保法》规定,必须由第三人为当事人提供的担保方式是()。A.保证B.抵押C.质押D.留置 古玩交易 [单选,A2型题,A1/A2型题]碘造影剂可发生过敏反应,除哪项外属于轻度反应()A.恶心、呕吐B.气喘、呼吸困难C.面色潮红D.头晕、头痛E.荨麻疹 古玩交易 [单选]货币存量主要有五个层次,其中属于M2的是()。A.旅行支票B.活期存款C.其他支票存款D.储蓄存款 古玩交易 [单选]邓丁与乡政府签订一份海湾养殖承包合同,将月亮湾承包给邓丁经营5年。后某市政府发出通知,要求邓丁等人依法办理确权手续,并领取海域使用权证书。邓丁以自己与乡政府签有承包合同为由拒不办理。市海洋行政主管部门通知乡政府处理此事。乡政府得知后转交乡治安联防 古玩交易 [填空题]目前国内城轨交通的主要形式有()、()、(),其中()和()是今后城市轨道交通发展的方向。 古玩交易 [单选]按照《担保法》的规定,可以作为保证人的是()。A.厂矿的职能部门B.有限责任公司C.政府机关D.某高等学校 古玩交易 [单选]城乡规划卫生的目的是()。A.预防疾病B.增进人民身心健康C.延长寿命D.提高生活质量E.以上都是 古玩交易 [单选,A2型题,A1/A2型题]心跳复苏后,最容易出现的并发症()。A.肺水肿B.脑缺氧性损伤C.肝小叶中心性坏死D.心肌缺氧性损伤E.肾小管坏死 古玩交易 [单选]沿岸航行中,利用同名侧物标进行转向时,若发现船舶至转向物标的横距比预定的距离大,则应()转向,以使船舶转向后行驶在计划航线上。A.提前B.推迟C.大舵角D.小舵角 古玩交易 [单选]血小板膜糖蛋白Ⅱb/Ⅲa(GPⅡb/Ⅲa)复合物与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能 古玩交易 [单选]炉膛火焰电视监视系统的检测部件需具有控制保护系统,其主要作用是()。A、超温保护;B、控制通风;C、吹扫;D、控制方向。 古玩交易 [判断题]涡轮的阻力包括ATF油的摩擦阻力、与涡轮相联系的各元件的运动阻力等。()A.正确B.错误 古玩交易 [填空题]在不同类型的原油中,()原油是石油的低凝产品和优质道路沥青的宝贵原料。 古玩交易 [填空题]从原理上讲离心泵和离心风机都是介质流经叶轮叶道时,受到()的作用而获得()。 古玩交易 [单选]容量不同的变压器,具有不同的短路电压,大容量的变压器()。A.短路电压较小B.短路电压较大C.短路电压不固定 古玩交易 [单选,A2型题,A1/A2型题]关于会阴的描述,正确的是()A.广义的会阴前方为耻骨联合上缘B.狭义的会阴是指尿道口与肛门之间的软组织C.会阴包括皮肤、肌肉、筋膜及骨骼D.会阴体厚3~4cm,呈楔状E.会阴组织妊娠时的延展性差,分娩时容易裂伤 古玩交易 [单选]不属于二次环境污染物的是A.光化学烟雾B.可吸入颗粒物C.酸雨D.甲基汞E.有机汞 古玩交易 [单选]采收皮类药材一般宜在A.春末夏初B.盛夏C.夏末秋初D.秋末冬初E.初春 古玩交易 [单选]以下不属于质量控制的方法的是()。A.人工抽样检测B.产品整合与测试C.批处理数据校验D.应用环境模拟校验 古玩交易 [单选]CT检查前,病人准备工作的主要依据是:()A.申请单B.预约登记卡C."病人需知"预约单D.对家属的交待E.病人自己理解 古玩交易 [单选]在社会主义市场经济或以公有制为主导的市场经济条件下,()是作为经济法灵魂的一项根本性原则。A.平衡协调原则B.维护公平竞争原则C.有限干预原则D.责权利相统一原则 古玩交易 [多选]慢性浅表性胃炎的胃镜下表现为A.黏膜呈颗粒状B.红斑C.黏膜血管显露D.出血点E.色泽灰暗 古玩交易 [单选]串励直流电动机若空载运行则会发生()现象。A.飞车B.停车C.因电流极大冒烟D.因转矩极小而拖不动负载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 2word.
17.1.2 反比例函数的图象和性质 基础训练 班级 姓名 1.反比例函数43y x
=-的图象在( ) A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限
2.若函数k y x
=的图象在第一、三象限,则函数y=kx-3的图象在( ) A .第二、三、四象限 B .第一、二、三象限
C .第一、二、四象限
D .第一、三、四象限
3.如果反比例函数x
k y =的图象经过点(-3,-4),那么函数的图象应在( ) A . 第一、三象限 B . 第一、二象限 C . 第二、四象限 D . 第三、四象限
4. 已知点(2,-6)在函数y=kx 的图象上,则函数x
k y =的图象在( ) A 、第一、第二象限 B 、第二、第三象限
C 、第二、第四象限
D 、第一、第四象限
5.反比例函数y =
x
k (k 是常数,k ≠0)的图象经过点(a ,-a ),那么该图象经过第_________象限 6.若点(m ,-2m )在反比例函数k y x =的图象上,则这个反比例函数的图象在 象限 A .第一、二 B . 第三、四象限 C .第一、三象限 D .第二、四象限
7.如果函数x
k y =的图象经过点)1,1(-,则函数2kx y -=的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
8.若反比例函数y=2421
2-+m x m 的图象经过第二、四象限,则函数的解析式为 。

9.若反比例函数21m y x
-=的图象在第二、四象限,则 m 的取值范围是 . 10.若反比例函数22)12(--=m
x m y 的图象在第二、四象限,则m 的值是( ) A .-1或1 B .小于
21 的任意实数 C . -1 D. 不能确定 11.已知反比例函数y=5m x
-的图象在每一个象限内,y 随x 增大而增大,则m________. 12.若函数y =(m +2)x |m |-3是反比例函数,则m 的值是( ).
A .2
B .-2
C .±2
D .以上答案均不正确
13.函数y m x m m =+--()2229是反比例函数,则m 的值是( )
A . m =4或m =-2
B . m =4
C . m =-2
D . m =-1 14.已知22)1(--=a x
a y 是反比例函数,则a =__________. 15.若241(4)m
m y m x --=-为反比例函数关系式,则m = _________。

2 / 2word. 16、在第三象限中,下列函数,y 随x 的增大而减小的有( ).
①、y = -3x ②、y =x
8 ③、y = - 2x +5 ④、y = - 5x -6 A .1个 B .2个 C .3个 D .4个 17.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =
4x 的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3
18.若M (12-,1y )、N (14-,2y )、P (12,3y )三点都在函数k y x
=(k >0)的图象上,则1y 、2y 、3y 的大小关系是( )
A .132y y y >>
B .312y y y >>
C . 213y y y >>
D .123y y y >>
19.若点(−2,y 1)、(−1,y 2)、(1,y 3)在反比例函数y =
x k (k < 0)的图象上,则 (比较y 1、y 2、y 3的大小)。

20.已知反比例函数)0(<=k x
k y 的图象上有两点A (1x ,1y ),B (2x ,2y ),且21x x <,则21y y -的值是( )
A .正数
B .负数
C . 非正数
D .不能确定
21.如图是三个反比例函数312,,k k k y y y x x x
===,在x 轴上方的图象, 由此观察得到k l 、k 2、k 3的大小关系为( )
A .k 1>k 2>k 3
B .k 3>k 1>k 2
C .k 2>k 3>k 1
D .k 3>k 2>k 1
22.设有反比例函数y k x
=+1,(,)x y 11、(,)x y 22为其图象上的两点, 若x x 120<<时,y y 12>,则k 的取值范围是___________
23.设)y ,x (B ),y ,x (A 2211是反比例函数x 2y -
=图象上的点,若0x x 21<<,则21y y 与之间的关系是( )
A 、0y y 12<<
B 、0y y 21<<
C 、0y y 12>>
D 、0y y 21>> 24.在反比例函数x 1y -
=的图象上,有三点)y ,x (),y ,x (),y ,x (332211,若321x 0x x >>>,则下列各式正确的是( )
A 、213y y y >>
B 、123y y y >>
C 、321y y y >>
D 、231y y y >>
25.已知)y ,x (P ),y ,x (P ),y ,x (P 333222111是反比例函数x 2y =的图象上的三点,且321321y ,y ,y ,x 0x x 则<<<的大小关系是( )
A 、123y y y <<
B 、321y y y <<
C 、312y y y <<
D 、132y y y <<
第21题 家长签字。

相关文档
最新文档