2019精选医学NFKB信号通路综述
NF-kB信号通路
NF-kB信号通路NF-κB信号通路图解NF-κB最初是R.Sen和D.Blatimore于1986年在B细胞中发现的⼀种核转录因⼦,能特异性结合免疫球蛋⽩κ轻链基因的上游增强⼦序列并激活基因转录,此后发现它⼴泛存在于⼏乎所有的真核细胞中。
NF-κB信号通路可调控多种参与炎症反应的细胞因⼦(如IL-1、IL-6、TNF-α)、粘附因⼦和蛋⽩酶类基因的转录过程,以应答多种胞外信号刺激,包括病毒侵染、细菌和真菌感染、肿瘤坏死因⼦、⽩细胞介素等细胞因⼦,甚⾄离⼦辐射,产⽣免疫、炎症和应激反应。
并影响细胞增殖、分化及发育。
NF-κB通常以异⼆聚体形式存在于细胞质中,两个亚基p65和p50在N端共享⼀个同源区,以确保其⼆聚化并与DNA结合,核定位信号(NLS)也位于此同源区。
在细胞处于静息状态时,NF-κB在细胞质中与⼀个抑制物I-κBα结合,处于⾮活化状态,同源区的NLS也因抑制物的结合被掩盖。
当细胞受到外界信号刺激时,胞质中异三聚体I-κB激酶(I-κBkinase)被激活并磷酸化I-κB抑制物N端2个丝氨酸残基。
E3泛素连接酶快速识别I-κB的磷酸化丝氨酸残基并使I-κB发⽣多聚泛素化,进⽽导致I-κB被泛素依赖性蛋⽩酶体降解。
I-κB 的降解使NF-κB解除束缚并暴露NLS,然后NF-κB转位进⼊核内激活靶基因的转录。
在多种免疫系统细胞中,受NF-κB激活转录的基因有150多种,包括编码细胞因⼦和趋化因⼦的基因,在炎症反应中NF-κB能促进嗜中性粒细胞受体蛋⽩的表达以利细胞迁移,以及在应对细菌感染时刺激可诱导的⼀氧化氮合酶(iNOS)的表达。
NF-κB信号通路除了在免疫和炎症反应的作⽤之外,在哺乳动物的发育中也起关键作⽤,NF-κB对发育中肝细胞的存活也是必须的。
实验表明,如果⼩⿏胚胎不能表达I-κB激酶的⼀种亚基,那么在妊娠中期即发⽣夭折,原因是发育中的肝细胞过度衰竭。
NF-κB信号的终⽌是负向调节的关键,其中活化的NF-κB除激活靶基因转录外,还能激活I-κB基因的表达,新和成的I-κB与核中的NF-κB结合,然后NF-κB/I-κB复合物返回到细胞质,抑制NF-κB的活性。
NF-κB信号通路
1.IKK复合物
IKK复合物的组成:
*IKKα(又称IKK1),85kD *IKKβ(又称IKK2),87kD
具有较高的序列同源性和相似的 结构。 在N-末端均含有蛋白激 酶区,靠近中间区域的亮氨酸拉链 区(LZ) 及螺旋-环-螺旋(HLH)
*NEMO(又称IKKγ),48kD
包括大段的卷曲螺旋(coiled-coil) 及靠近C-末端的亮氨酸拉链区
☆ 与RIP1相似, RIP2的激酶区域对IKK的激活也不是必需的, 在NF-κB 经典信号通路中, RIP2与TAK1和TRAFS作用,直接诱导NEMO的泛素 化,和下游信号通路激活。
RIP3
在NF-κB信号通路中, RIP3由于和RIP1具有同型作用基序 (RHIM),所以与RIP1具有同等功能。但是在信号通路中, RIP3的重 要性远远比不上RIP1,因为当RIP3缺失时,大多数的NF-κB信号通路是 正常的。在特殊情况下, RIP3可能影响和阻碍RIP1诱导的NF-κB信号 通路的激活。
★ 在一些情况下, TRAF3可以诱导NIK的泛素化和降解,抑制信 号通路的激活。但是这时候,其他 TRAF家族成员可以介导TRAF3的降 解,结果造成NIK的积累和活化,促进非经典信号通路正向激活。
因此,不管在经典还是非经典信号通路中, TRAF蛋白 在诱导IKK激活方面发挥着很重要的作用。
2. RIPS——受体作用蛋白
NF-κB家族由P50、P52、P65、 c-Rel和RelB五个成员组成。它们 分别由NFKB1, NFKB2, RELA, REL和RELB基因进行编码。
它们都具有一个N端Rel同源结构 域(RHD),负责其与DNA结合 以及二聚化。
另外,在P65、c-Rel和RelB中,存 在着转录激活区域——TAD,对 基因表达起正向调节的作用。 P50和P52不存在转录激活区域, 它们的同型二聚体可以抑制转录。
NF-kB信号通路(图文)
NF-kB信号通路NF-kB在细胞因子诱导的基因表达中起关键性的调控作用,它调控的基因编码急性期反应蛋白、细胞因子、细胞粘附分子、免疫调节分子、病毒瘤基因、生长因子、转录和生长调控因子等。
通过调控多种基因的表达,NF-kB参与免疫反应、炎症反应、细胞凋亡、肿瘤发生等多种生物进程。
NF-Kb:是一个二聚体,标准的NF-kB为p50和p65的二聚体。
P50(P105的处理产物,两者都被称为NF-kB1),P52(p100的处理产物,两者都被称为NF-kB2),REL(也被称为cR EL),REL-A(也被称为P65)和REL-B。
这些蛋白质二聚化形成功能的NF-kB。
除了REL-B只能与P50或者P52有效的结合外,存在所有的同源或异源二聚体组合的可能性,并且都具有N F-kB 的活性激活剂:多种之病原的组分例如脂多糖,前炎性细胞因子,如TNF、IL-1及丝裂原等在内的多种信号一、经典的NF-kB活化途径的活化过程:1、静止状态时,N F-kB以无活性的潜在状态存在于细胞浆中,它与抑制因子IkB结合组成一个三聚体p50-p65-IkB2、在IkBs激酶(IKK)催化IkBs的两个保守的丝氨酸残基磷酸化3、IkBs在S CF-E3泛素化酶复合体的催化作用下多泛素化而被蛋白酶降解4、活化的NF-kB转位到核内与与其相关的DNA基序结合以诱导靶基因转录恢复静息过程:1、活化的NF-kB快速诱导编码自身抑制剂IkB a的基因的转录2、新合成的Ik Ba进入细胞核,使NF-kB与DNA解离并排出细胞核,等待重新激活二、非经典的,替代的或者新的NF-kB活化途径:广泛的IkB s家族也包括P50和P52前体形式的NF-kB1和NF-kB2,分别是P105和P100。
NF-kB信号通路(图文)
NF-kB信号通路NF-kB在细胞因子诱导的基因表达中起关键性的调控作用,它调控的基因编码急性期反应蛋白、细胞因子、细胞粘附分子、免疫调节分子、病毒瘤基因、生长因子、转录和生长调控因子等。
通过调控多种基因的表达,NF-kB参与免疫反应、炎症反应、细胞凋亡、肿瘤发生等多种生物进程。
NF-Kb:是一个二聚体,标准的NF-kB为p50和p65的二聚体。
P50(P105的处理产物,两者都被称为NF-kB1),P52(p100的处理产物,两者都被称为NF-kB2),REL(也被称为cREL),REL-A(也被称为P65)和REL-B。
这些蛋白质二聚化形成功能的NF-kB。
除了REL-B只能与P50或者P52有效的结合外,存在所有的同源或异源二聚体组合的可能性,并且都具有NF-kB的活性激活剂:多种之病原的组分例如脂多糖,前炎性细胞因子,如TNF、IL-1及丝裂原等在内的多种信号一、经典的NF-kB活化途径的活化过程:1、静止状态时,NF-kB以无活性的潜在状态存在于细胞浆中,它与抑制因子IkB结合组成一个三聚体p50-p65-IkB2、在IkBs激酶(IKK)催化IkBs的两个保守的丝氨酸残基磷酸化3、IkBs在SCF-E3泛素化酶复合体的催化作用下多泛素化而被蛋白酶降解4、活化的NF-kB转位到核内与与其相关的DNA基序结合以诱导靶基因转录恢复静息过程:1、活化的NF-kB快速诱导编码自身抑制剂IkBa的基因的转录2、新合成的IkBa进入细胞核,使NF-kB与DNA解离并排出细胞核,等待重新激活二、非经典的,替代的或者新的NF-kB活化途径:广泛的IkBs家族也包括P50和P52前体形式的NF-kB1和NF-kB2,分别是P105和P100。
除了P50和P52序列外,这些前体还包括IkB样的锚蛋白区,它抑制与其相关的NF-kB亚单位的活性。
从前体产生P50和P52的过程还没有被人完全的理解,但他需要翻译时和翻译后的蛋白酶的加工处理活动。
(完整版)NF-kb信号通路
NF-KB与微循环障碍核因子-KB(nuclear factor-kappa B,NF-KB)•蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。
其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。
而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。
本文就NF-KB的组成结构,•活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。
1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,•称之为NF-KB。
随后大量的研究又陆续发现了NF-KB•家族的其它成员,•其构成亚基分别是NF-•KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel(Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)•,•故统称为NF-KB/Rel蛋白家族。
其RHD内含DNA 结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。
又根据结构、功能和合成方式的不同,Rel蛋白分为两类。
•一类为P50(•NF-•KB1)和P52(•NF-•KB2),•分别由含有C-末端锚蛋白重复序列(ahkrin ••repeat motif)的前体蛋白p105和p100通过ATP依赖蛋白水解过程裂解而形成。
该类蛋白含有RHD,但缺乏转录活性区,无独立激活基因转录的功能。
NF-κB信号通路
NF-κB信号通路 4
NF-κB经典和非经典通路
NF-κB的 经典信号通路和非 经典信号通路的主要区别就在 于:
☆在NF-κB的 经典信号通路中, IκB蛋白的降解使NF-κB二聚 体得到释放。
☆而在NF-κB非经典信号通路
中,则是通过P100到P52的加
工处理,使信号通路激活。
h
5
背景2
NF-κB家族
▲ 在几乎所用的NF-κB信号通路中, TRAFs都是关键的信号中间 物 。
☆ TRAF蛋白家族:
TRAF蛋白家族一共有7个成员,分别是TRAF1、 TRAF2、 TRAF3、
TRAF4、 TRAF5、 TRAF6、 TRAF7。
h
13
TRAF蛋白的结构
TRAF蛋白质在结构上具有很高 的同源性,同源性一般大于30%, 其特征性的结构是所有成员在羧基 端都有一个C-末端TRAF结构域, 即包括一个卷曲螺旋结构,介导同 型和异型蛋白之间的相互作用。
h
24
1.IKK复合物
IKK复合物的组成:
*IKKα(又称IKK1),85kD *IKKβ(又称IKK2),87kD
具有较高的序列同源性和相似的 结构。 在N-末端均含有蛋白激 酶区,靠近中间区域的亮氨酸拉链 区(LZ) 及螺旋-环-螺旋(HLH)
*NEMO(又称IKKγ),48kD
包括大段的卷曲螺旋(coiled-coil) 及靠近C-末端的亮氨酸拉链区
虽然一些实验证明在IKK复合物中,可能会含有一些其他成分,,如
IKK关联蛋白1( IKKAP1) 、促分裂原活化蛋白激酶1 (MEKK1) 、NF-κB
诱导激酶(NIK) 及调节蛋白IKAP 等,但是需要进一步的证明。
NF-kB信号通路(图文)
NF-kB信号通路NF-kB在细胞因子诱导的基因表达中起关键性的调控作用,它调控的基因编码急性期反应蛋白、细胞因子、细胞粘附分子、免疫调节分子、病毒瘤基因、生长因子、转录和生长调控因子等。
通过调控多种基因的表达,NF-kB参与免疫反应、炎症反应、细胞凋亡、肿瘤发生等多种生物进程。
NF-Kb:是一个二聚体,标准的NF-kB为p50和p65的二聚体。
P50(P105的处理产物,两者都被称为NF-kB1),P52(p100的处理产物,两者都被称为NF-kB2),REL(也被称为cREL),REL-A(也被称为P65)和REL-B。
这些蛋白质二聚化形成功能的NF-kB。
除了REL-B只能与P50或者P52有效的结合外,存在所有的同源或异源二聚体组合的可能性,并且都具有NF-kB的活性激活剂:多种之病原的组分例如脂多糖,前炎性细胞因子,如TNF、IL-1及丝裂原等在内的多种信号一、经典的NF-kB活化途径的活化过程:1、静止状态时,NF-kB以无活性的潜在状态存在于细胞浆中,它与抑制因子IkB结合组成一个三聚体p50-p65-IkB2、在IkBs激酶(IKK)催化IkBs的两个保守的丝氨酸残基磷酸化3、IkBs在SCF-E3泛素化酶复合体的催化作用下多泛素化而被蛋白酶降解4、活化的NF-kB转位到核内与与其相关的DNA基序结合以诱导靶基因转录恢复静息过程:1、活化的NF-kB快速诱导编码自身抑制剂IkBa的基因的转录2、新合成的IkBa进入细胞核,使NF-kB与DNA解离并排出细胞核,等待重新激活二、非经典的,替代的或者新的NF-kB活化途径:广泛的IkBs家族也包括P50和P52前体形式的NF-kB1和NF-kB2,分别是P105和P100。
除了P50和P52序列外,这些前体还包括IkB样的锚蛋白区,它抑制与其相关的NF-kB亚单位的活性。
从前体产生P50和P52的过程还没有被人完全的理解,但他需要翻译时和翻译后的蛋白酶的加工处理活动。
NF-KB信号通路综述
被激活的IKK还可磷酸化IKKβ的丝氨酸 740和NEMO的丝氨酸68,使得NEMO二聚体与IKK 的分离,阻止激酶的反复激活。
☆ TRAF蛋白家族:
TRAF蛋白家族一共有7个成员,分别是TRAF1、 TRAF2、 TRAF3、 TRAF4、 TRAF5、 TRAF6、 TRAF7。
TRAF蛋白的结构
TRAF蛋白质在结构上具有很 高的同源性,同源性一般大于30%, 其特征性的结构是所有成员在羧基 端都有一个C-末端TRAF结构域,即 包括一个卷曲螺旋结构,介导同型 和异型蛋白之间的相互作用。
181ikk复合物ikk又称ikk185kdikk又称ikk287kdnemo又称ikk48kd具有较高的序列同源性和相似的结在n末端均含有蛋白激酶区靠近中间区域的亮氨酸拉链区lz及螺旋环螺旋hlh包括大段的卷曲螺旋coiledcoil及靠近c末端的亮氨酸拉链区虽然一些实验证明在ikk复合物中可能会含有一些其他成分如ikk关联蛋白1ikkap1促分裂原活化蛋白激酶1mekk1nfb诱导激酶nik及调节蛋白ikap等但是需要进一步的证明
☆ RIPs既可以通过蛋白结合区域直接作用于信号通路的上游, 也可以通过与NEMO结合激活IKK复合物。并且,在大多数的TRAF依赖型 信号通路中, RIPs都被牵涉其中。
☆ RIP蛋白家族一共有7个成员,分别为RIP1-7。
域。
☆ RIP蛋白的结构特征是:都具有保守的丝氨酸/苏氨酸激酶区
三.IκB激酶的结构和激活方式
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发 生作用,激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一 步证明的。
NF KB信号通路综述
NF KB信号通路与银屑病的关系
NF KB信号通路与炎症性肠病的关系
NF KB信号通路与系统性红斑狼疮的关系
NF KB信号通路与多发性硬化的关系
NF KB信号通路在自身免疫性疾病中的作用
NF KB信号通路与类风湿性关节炎的关系
NF KB信号通路与肿瘤的关系
反馈环的生物学意义:在免疫应答、细胞增殖、分化和凋亡等过程中发挥重要作用
NF KB信号通路的靶向治疗研究
PRT 06
NF KB信号通路的抑制剂研究
抑制剂的研究进展:已有多种抑制剂进入临床试验阶段,部分已获批上市
抑制剂的应用前景:有望用于治疗多种炎症性疾病和自身免疫性疾病
抑制剂的作用机制:阻断NF KB信号通路的激活,抑制炎症和免疫反应
NF KB信号通路在肿瘤发生发展中的作用
NF KB信号通路与肿瘤治疗靶点的关系
NF KB信号通路与肿瘤微环境的关系
NF KB信号通路与肿瘤免疫逃逸的关系
NF KB信号通路与肿瘤耐药性的关系
NF KB信号通路的调控机制
PRT 05
NF KB信号通路的上游调控因子
TNF-α:肿瘤坏死因子-α,是一种炎症介质,可以激活NF-KB信号通路
抑制剂的类型:小分子抑制剂、生物制剂、基因编辑等
NF KB信号通路的激动剂研究
激动剂的作用机制:激活NF KB信号通路,促进基因表达
激动剂的类型:小分子化合物、多肽、抗体等
激动剂的应用:治疗炎症、免疫疾病、癌症等
激动剂的研究进展:新型激动剂的开发和优化,提高疗效和安全性
NF KB信号通路靶向治疗的应用前景
NF KB信号通路与Notch信号通路的相互作用
NF-kB信号通路(图文)
NF-kB信号通路NF-kB在细胞因子诱导的基因表达中起关键性的调控作用,它调控的基因编码急性期反应蛋白、细胞因子、细胞粘附分子、免疫调节分子、病毒瘤基因、生长因子、转录和生长调控因子等。
通过调控多种基因的表达,NF-kB参与免疫反应、炎症反应、细胞凋亡、肿瘤发生等多种生物进程。
NF-Kb:是一个二聚体,标准的NF-kB为p50和p65的二聚体。
P50(P105的处理产物,两者都被称为NF-kB1),P52(p100的处理产物,两者都被称为NF-kB2),REL(也被称为cREL),REL-A(也被称为P65)和REL-B。
这些蛋白质二聚化形成功能的NF-kB。
除了REL-B只能与P50或者P52有效的结合外,存在所有的同源或异源二聚体组合的可能性,并且都具有NF-kB的活性激活剂:多种之病原的组分例如脂多糖,前炎性细胞因子,如TNF、IL-1及丝裂原等在内的多种信号一、经典的NF-kB活化途径的活化过程:1、静止状态时,NF-kB以无活性的潜在状态存在于细胞浆中,它与抑制因子IkB结合组成一个三聚体p50-p65-IkB2、在IkBs激酶(IKK)催化IkBs的两个保守的丝氨酸残基磷酸化3、IkBs在SCF-E3泛素化酶复合体的催化作用下多泛素化而被蛋白酶降解4、活化的NF-kB转位到核内与与其相关的DNA基序结合以诱导靶基因转录恢复静息过程:1、活化的NF-kB快速诱导编码自身抑制剂IkBa的基因的转录2、新合成的IkBa进入细胞核,使NF-kB与DNA解离并排出细胞核,等待重新激活二、非经典的,替代的或者新的NF-kB活化途径:广泛的IkBs家族也包括P50和P52前体形式的NF-kB1和NF-kB2,分别是P105和P100。
除了P50和P52序列外,这些前体还包括IkB样的锚蛋白区,它抑制与其相关的NF-kB亚单位的活性。
从前体产生P50和P52的过程还没有被人完全的理解,但他需要翻译时和翻译后的蛋白酶的加工处理活动。
NF-kB 信号通路影响慢性阻塞性肺疾病进展的研究
NF-kB 和免疫应答、炎症反应以及细胞的增生转化以及细 胞的凋亡等过程密切相关。正常情况下在静息细胞的胞浆中, NF-kB 与抑制蛋白 I-kB 非共价结合,p50 和 p65 在细胞中的比 重最大,也是 NF-kB1 二聚体复合物的主要组成亚单位。P65 的 非共价结合从而掩盖了 P50 上的核定位信号,导致 NF-kB 处于 多聚体无活性状态。而 P65 因含有转录活性区域,并参与了基 因转录的调节,因而提高了 P50 与 DNA 的结合特异性 [11]。当细
124
World Latest Medicine Information (Electronic Version) 20F-kB 信号通路影响慢性阻塞性肺疾病进展的研究
罗清 1,刘萌 1,廖俊城 2
(1. 广西中医药大学第一附属医院,广西 南宁;2. 广西中医药大学,广西 南宁)
摘要:慢性阻塞性肺疾病 (Chronic Obstructive Pulmonary Disease, COPD),是一种以气流阻塞为特征的临床肺系疾病。现阶段的研究发现,激
活核转录因子 kappa B( nuclear factor of kappa B, NF-kB) 是肺部炎症性疾病的一个重要特征。本文旨在对 NF-kB 信号通路影响 COPD 的研究进 展作一综述。
0 引言
慢性阻塞性肺疾病 (Chronic Obstructive Pulmonary Disease, COPD),是 一 种 以 气 流 阻 塞 为 特 征 的 临 床 肺 系 疾 病。 该 疾 病 的 气 流 阻 塞 常 常 呈 进 行 性 发 展 ,这 和 肺 对 有 害 气 体 或 者 有 毒 颗 粒 的异常炎症反应相关 [1]。2016 年更新版慢性阻塞性肺疾病全 球 倡 议(Global Initiative for Chronic Obstructive Lung Disease, GOLD)[2] 指出咳痰、咳嗽和轻中度的 COPD 患者的肺功能下降 以及死亡率的增加有关。在我国 COPD 的患者中,以咳痰、咳嗽 等症状较为明显,在钟南山院士牵头的关于 2002 年至 2004 年 的全国慢阻肺流行病学的调查中发现,我国 COPD 患者中咳痰 的 比 例 为 39.5%,咳 嗽 的 比 例 为 44.0%,而 出 现 咳 痰 合 并 咳 嗽 症 状 的 患 者 比 例 高 达 30.0%。 同 时,相 关 的 研 究 发 现,在 引 起 COPD 患者咳痰、咳嗽的过程中,慢性气道炎症起着关键作用 [3]。 在 目 前 的 研 究 中 发 现 [4,5],激 活 核 转 录 因 子 kappa B(nuclear factor of kappa B,NF-kB) 是肺部炎症性疾病的一个重要特征。 NF-kB 作为一种核转录因子,和免疫应答、炎症反应以及细胞的 增生、转化以及细胞的凋亡等病理生理过程密切相关,亦可间接 促进血管内皮生长因子 (VFGF)、成纤维细胞生长因子 (FGF)、转 化生长因子 (TGF-β) 的表达 。 [6,7] 故本文对 NF-kB 信号通路影 响 COPD 的研究进展作一综述。
(完整版)NF-kb信号通路
(完整版)NF-kb信号通路NF-KB与微循环障碍核因子-KB(nuclear factor-kappa B,NF-KB)?蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。
其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。
而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。
本文就NF-KB的组成结构,?活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。
1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,?称之为NF-KB。
随后大量的研究又陆续发现了NF-KB?家族的其它成员,?其构成亚基分别是NF-?KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel (Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)?,?故统称为NF-KB/Rel 蛋白家族。
其RHD内含DNA 结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。
又根据结构、功能和合成方式的不同,Rel蛋白分为两类。
?一类为P50(?NF-?KB1)和P52(?NF-?KB2),?分别由含有C-末端锚蛋白重复序列(ahkrin ??repeat motif)的前体蛋白p105和p100通过ATP依赖蛋白水解过程裂解而形成。
NF-kb信号通路
NF-KB与微循环障碍核因子-KB(nuclear factor-kappa B,NF-KB)•蛋白家族是一种多效性的转录因子,可以与多种基启动子部位的KB位点发生特异性的结合从而促进其转录表达。
其受氧化应激、细菌脂多糖,细胞因子等多种刺激而活化后,能调控前炎症性细胞因子、细胞表面受体、转录因子、粘附分子等的生成。
而这些刺激因素及其调控的因子与微循环障碍的发生、发展均有着密切的关系。
本文就NF-KB的组成结构,•活化调节及与微循环障碍的关系等方面做一综述,以期从一新的角度阐述微循环障碍发生的机制及改善的途径。
1.NF-KB的概述1.1 NF-KB/Rel蛋白家族及结构1986年,Sen 等首次从鼠B淋巴细胞核提取物中,发现一种能与免疫球蛋白K轻链基因增强子KB序列(GGGACTTTCC)特异结合,调节其基因表达的核蛋白因子,•称之为NF-KB。
随后大量的研究又陆续发现了NF-KB•家族的其它成员,•其构成亚基分别是NF-•KB1 (P50)、NF-KB2(P52)、P65(RelA)、c-Rel(Rel)、RelB等,因这些亚基的N-末端均崐有约300个氨基酸残基的Rel同源区(rel homology domain ,RHD)•,•故统称为NF-KB/Rel蛋白家族。
其RHD内含DNA 结合区,二聚体化区和核定位序列,分别具有与DNA KB序列结合、与同源或异源亚基二聚体化以及与NF-KB抑制蛋白(IKB)家族成员相互作用并携带核定位信号(NLS),参与活化的NF-KB由细胞质向细胞核的迅速移动等功能。
又根据结构、功能和合成方式的不同,Rel蛋白分为两类。
•一类为P50(•NF-•KB1)和P52(•NF-•KB2),•分别由含有C-末端锚蛋白重复序列(ahkrin ••repeat motif)的前体蛋白p105和p100通过ATP依赖蛋白水解过程裂解而形成。
该类蛋白含有RHD,但缺乏转录活性区,无独立激活基因转录的功能。
NF-κB信号通路
21
3. TAK1/NIK——TGFβ-激活性激酶1/ NF-κB诱导激酶
TAK1和NIK作为IKK激酶出现在NF-κB信号通路中。其中,在经典 信号通路中, TAK1被涉及。而在非经典信号通路中, NIK有诱导 IKKα激活和P100磷酸化的作用。
TAK1
TAK1一般在RIP蛋白激活IKK的信号通路中(例如:抗原受体和 NOD-LRR信号通路),都要被涉及。但是其作用机制并不明确。主要 表现在:
文献综述
NF-κB信号通路
精选完整ppt课件
1
主要内容
★背景介绍
★ IKK复合物的上游信号 ★ IκB激酶的结构和激活方式 ★ IκB蛋白的作用 ★ NF-κB的转录调节
精选完整ppt课件
2
一.背景介绍
1. NF-κB信号通路
2. NF-κB家族
3. IκB蛋白家族
4. IκB激酶复合物
5. NF-κB信号通路激活对肿瘤发生
精选完整ppt课件
24
1.IKK复合物
IKK复合物的组成:
*IKKα(又称IKK1),85kD *IKKβ(又称IKK2),87kD
具有较高的序列同源性和相似的 结构。 在N-末端均含有蛋白激 酶区,靠近中间区域的亮氨酸拉链 区(LZ) 及螺旋-环-螺旋(HLH)
*NEMO(又称IKKγ),48kD
精选完整ppt课同件作用。
15
2
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发生作用, 激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一步证明 的。
因此,在NF-κB信号通路中, TRAF2、TRAF5和
TRAF6在激活IKK复合精物选方完整面ppt起课件着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TRAFS的功能
1
通过TRADD,TRAF2和 TNF-α的 受体TNFR1结合,向下传递信号,
激活IKK。在此过程中,其RING
指区域作为E3连接酶是必须的。但
NF-κB家族由P50、P52、P65、cRel和RelB五个成员组成。它们分 别由NFKB1, NFKB2, RELA, REL和RELB基因进行编码。
它们都具有一个N端Rel同源结构 域(RHD),负责其与DNA结合 以及二聚化。
另外,在P65、c-Rel和RelB中,存 在着转录激活区域——TAD,对 基因表达起正向调节的作用。 P50和P52不存在转录激活区域, 它们的同型二聚体可以抑制转录。
文★ IKK复合物的上游信号 ★ IκB激酶的结构和激活方式 ★ IκB蛋白的作用 ★ NF-κB的转录调节
一.背景介绍
1. NF-κB信号通路 2. NF-κB家族 3. IκB蛋白家族 4. IκB激酶复合物 5. NF-κB信号通路激活对肿瘤发生
在很多NF-κB信号通路中,许多的信号中间物都是共有的,特别是 IKK复合物的上游信号。不同的信号通路可利用一些共有的信号元件激 活和抑制通路。
IKK复合物的上游信号衔接蛋白 IKK复合物的激酶
TRAFs——TNF受体相关因子
RIPs——受体作用蛋白 TAK1——TGFβ-激活性激酶1
NIK——NF-κB诱导激酶
在Toll-like/IL-1信号通路中, TRAF6可与受体复合物发生作用, 激活IKK。但是, TRAF6的E3连接酶作用机制也是需要进一步证明 的。
因此,在NF-κB信号通路中, TRAF2、TRAF5和 TRAF6在激活IKK复合物方面起着重要的作用。
▲ 在几乎所用的NF-κB信号通路中, TRAFs都是关键的信号中间 物 。
☆ TRAF蛋白家族:
TRAF蛋白家族一共有7个成员,分别是TRAF1、 TRAF2、 TRAF3、 TRAF4、 TRAF5、 TRAF6、 TRAF7。
TRAF蛋白的结构
TRAF蛋白质在结构上具有很高 的同源性,同源性一般大于30%, 其特征性的结构是所有成员在羧基 端都有一个C-末端TRAF结构域, 即包括一个卷曲螺旋结构,介导同 型和异型蛋白之间的相互作用。
发展的影响
背景1
最基本的NF-κB信号通路,包括 受体和受体近端信号衔接蛋白, IκB激酶复合物, IκB蛋白和 NF-κB二聚体。
当细胞受到各种胞内外刺激 后,IκB激酶被激活,从而导致 IκB蛋白磷酸化,泛素化,然后 IκB蛋白被降解, NF-κB二聚体 得到释放。然后NF-κB二聚体通 过各种翻译后的修饰作用而被 进一步激活,并转移到细胞核 中。在细胞核里,它与目的基 因结合,以促进目的基因的转 录。
背景4
IκB激酶复合物
IKKα/IKK1 (CHUK) IKKβ/IKK2(IKBKB) 调节亚基 NEMO
☺在特定的NF-κB 信号通路中, IKKα和IKKβ是选择性需求的。
背景5 NF-κB信号通路激活 对肿瘤发生发展的影响
1. NF-κB信号通路激活对肿瘤发生发展的促进作用。
※NF-κB 所致的GADD45α和γ(生长抑制DNA损伤基因)联合表达下调是 很多肿瘤细胞逃逸凋亡机制的关键步骤。 ※NF-κB 还可上调CyclinD1(CCNDI) 等基因的表达, 促进细胞生长。 ※NF-κB 激活对肿瘤的转移具有明显的促进作用。
背景3
IκB蛋白家族
IκB蛋白家族包括七个成员: IκBα、IκBβ、 IκBζ 、IκBε、 Bcl-3、p100和p105 。
作用:在细胞质中与NF-κB二 聚体结合,并对信号应答具有 重要作用。
IκB蛋白的结构特点:存在锚蛋 白重复区域(即多个紧密相连 的钩状重复序列,每个重复序 列含有33个氨基酸 )。
2.NF- κB信号通路激活对肿瘤发生发展的抑制作用。
※RelA(p65) 亚基在p53- 介导的凋亡过程中具有重要作用
二. IKK复合物的上游信号
很多胞外刺激信号都可以引起NF-κB 信号通路的激 活,如:促炎症细胞因子TNF-α、白介素IL-1 ,细菌脂多糖 (LPS) ,T 细胞及B 细胞有丝分裂原,病毒双链RNA 以及各 种物理和化学压力等。虽然这些胞外刺激所产生的胞内 早期信号途径各不相同,但一般认为,大多数此类胞外刺 激起始的信号传递反应将最终激活IKK复合物。在这个 传递过程中,衔接蛋白起着重要的作用。
1. TRAFs——TNF受体相关因子
▲ TNF受体相关因子TRAFs家族成员是一大类胞内接头蛋白,能直 接或间接与多种TNF 和IL-1/Toll-like 受体家族成员结合。介导多种下游 信号通路的信号传导 ,其中包括NF-κB 信号通路。从而影响细胞的生 存、增殖、分化和死亡,并参与多个生物学过程的调控。
NF-κB二聚体的存在方式
一般, NF-κB是以二聚体的形式存在的,而它的二聚体又有两种 存在方式。
NF-κB二聚体与IκB蛋白结合 NF-κB二聚体与DNA结合
NF-κB二聚体结构
★ 氨基末端为免疫球蛋白相似区域,对某一种形式的κB位点具有选 择性。
★ C-末端疏水区域提供NF-κB各亚基之间的连接。
是其具体作用机制还需要深入研究。
在TNFR1信号通路中,单一的敲 除TRAF2或TRAF5, NF-κB信号 通路的激活仍会出现。但是双敲除 TRAF2和TRAF5,则会造成 NFκB信号通路中,IKK复合物的激活 出现缺陷。因此,在TNFR1信号 通路中,需要TRAF2和TRAF5的 共同作用。
2
NF-κB信号通路
NF-κB经典和非经典通路
NF-κB的 经典信号通路和非 经典信号通路的主要区别就在 于:
☆在NF-κB的 经典信号通路 中, IκB蛋白的降解使NF-κB 二聚体得到释放。
☆而在NF-κB非经典信号通路 中,则是通过P100到P52的加 工处理,使信号通路激活。
背景2
NF-κB家族