中考数学应用题专题复习一
人教版2024年中考数学第一轮复习练习题—应用题分类复习
人教版2024中考数学第一轮复习练习题—应用题分类复习类型一、一元一次方程的应用1、某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?2、甲、乙两班学生到集市上购买苹果,苹果的价格如下:超过20千克购苹果数不超过10千克超过10千克但不超过20千克每千克价格10元9元8元甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为千克;②甲班第一次、第二次分别购买多少千克?3、有一批核桃要加工成罐头,甲工人每天能加工32公斤,乙工人每天能加工48公斤,且甲单独加工这批核桃要比乙多用10天.(1)这批核桃共多少公斤?(2)为了尽快加工完成,先由甲、乙两工人按原速度合作一段时间后,甲工人停工,而乙工人每天的生产速度提高25%,乙工人单独完成剩余部分,且乙工人的全部工作时间是甲工人工作时间的3倍还多1天,求乙工人共加工多少天?类型二、二元一次方程组的应用1、某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B 品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售2、“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有几只鸡和兔?3、根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高_____________cm,放入一个大球水面升高_____________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?类型三、分式方程的应用1、某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?2、为了响应“保护环境,低碳生活”的号召,张老师决定将上班的交通方式由开汽车改为骑自行车.张老师家距学校6千米,由于汽车的平均速度是自行车平均速度的4倍,所以张老师每天比原来提前30分钟出发,才能按原来的时间到校,求张老师骑自行车的平均速度是每小是多少千米.3、甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲、乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).类型四、一元一次不等式(组)的应用1、某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?2、某商店购进A,B两种教学仪器,已知A仪器价格是B仪器价格的1.5倍,用450元购买A仪器的数量比用240元购买B仪器数量多2台.(1)求A,B两种仪器单价分别是多少元?(2)该商店购买两种仪器共100台,且A型仪器数量不少于B型仪器数量的14,那么A型仪器最少需要购买多少台,求A型仪器执行最少购买量时购买两种仪器的总费用.3、某地区为筹备一项庆典,计划搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉50盆,乙种花卉30盆;搭配一个B种造型需甲种花卉40盆,乙种花卉60盆,且搭配一个A种造型的花卉成本是270元,搭配一个B种造型的花卉成本是360元.(1)试求甲、乙两种花卉每盆各多少元?(2)若利用现有的2295盆甲种花卉和2190盆乙种花卉进行搭配,则有哪几种搭配方案?(3)在(2)的搭配方案中花卉成本最低的方案是哪一种?最低成本是多少元?类型五、一元二次方程的应用1、如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?2、某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?3、周末,小明和小红约着一起去公园跑步锻炼身体若两人同时从A 地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A 地到达B 地后,小明以跑步形式继续前进到C 地(整个过程不休息),据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A 地到C 地锻炼共用多少分钟.类型六、一次函数的应用1、在创建全国文明城市过程中,官渡区决定购买A 、B 两种树苗对某路段道路进行绿化改造.已知购买A 种树苗5棵,B 种树苗3棵,需要840元;购买A 种树苗3棵,B 种树苗5棵,需要760元.(1)求购买A 、B 两种树苗每棵各需多少元?(2)现需购进这两种树苗共100棵,考虑到绿化效果和资金周转,购进A 种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过10000元,怎样购买所需资金最少?2、临沂到海口货运路线总长2400千米.交通法规定:货车在这条路线上行驶速度范围是:60≤x ≤100(单位:km/h ,x 表示货车的行驶速度,假设货车保持匀速行驶),该货车每小时耗油(x 32400−x 220+85x )升,柴油价格是10元/升.(1)求该货车在这条路线上行驶时全程的耗油量Q (升)关于车速x 之间的函数关系式.(2)求车速为何值时,该车全程油费最低,并求出最低油费.(3)刘师傅欲将一车香蕉由海南运往临沂,公司要求在32小时之内(包含32小时)到达.否则刘师傅将支付2000元的超时高额罚款.请计算刘师傅的最佳车速.3、某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费120元,购进A品牌文具袋3个和B品牌文具袋4个共花费88元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为w元.①求w关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不低于进货价格的45%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.类型七、二次函数的应用1、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg,销售价每涨价1元,月销售量就减少5kg.(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.2、小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当售价为30元时销量为200件,每涨1元少卖10件,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?3、某游乐场的圆形喷水池中心O有一喷水管OA,0.5OA 米,从A点向四周喷水,喷出的水柱为抛物线且形状相同.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在y轴上.已知在与池中心O点水平距离为3米时,水柱达到最高,此时高度为2米.(1)求水柱所在的抛物线(第一象限部分)的函数表达式;(2)身高为1.67m的小颖站在距离喷水管4m的地方,她会被水喷到吗?(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m处达到最高,则喷水管OA要升高多少?。
中考数学专题复习函数应用题有答案
专题复习函数应用题类型之一与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型;在人们的生产、生活中有着广泛的应用;利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.1.莆田市枇杷是莆田名果之一;某果园有100棵枇杷树..每棵平均产量为40千克;现准备多种一些枇杷树以提高产量;但是如果多种树;那么树与树之间的距离和每一棵数接受的阳光就会减少;根据实践经验;每多种一棵树;投产后果园中所有的枇杷树平均每棵就会减少产量千克;问:增种多少棵枇杷树;投产后可以使果园枇杷的总产量最多最多总产量是多少千克2.贵阳市某宾馆客房部有60个房间供游客居住;当每个房间的定价为每天200元时;房间可以住满.当每个房间每天的定价每增加10元时;就会有一个房间空闲.对有游客入住的房间;宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:1房间每天的入住量y间关于x元的函数关系式.2该宾馆每天的房间收费z元关于x元的函数关系式.3该宾馆客房部每天的利润w元关于x元的函数关系式;当每个房间的定价为每天多少元时;w有最大值最大值是多少例3:某商场经营某种品牌的服装;进价为每件60元;根据市场调查发现;在一段时间内;销售单价是100元时;销售量是200件;而销售单价每降低1元;就可多售出10件1写出销售该品牌服装获得的利润y元与销售单价x元之间的函数关系式..2若服装厂规定该品牌服装销售单价不低于80元;且商场要完成不少于350件的销售任务;则商场销售该品牌服装获得最大利润是多少元32014江苏省常州市某小商场以每件20元的价格购进一种服装;先试销一周;试销期间每天的销量件与每件的销售价x元/件如下表所示:假定试销中每天的销售号件与销售价x元/件之间满足一次函数.1试求与x之间的函数关系式;2在商品不积压且不考虑其它因素的条件下;每件服装的销售定价为多少时;该小商场销售这种服装每天获得的毛利润最大每天的最大毛利润是多少注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价类型之二图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题;解题时要通过观察、比较、分析;从中提取相关信息;建立数学模型;最终达到解决问题的目的..4.08江苏南京一列快车从甲地驶往乙地;一列慢车从乙地驶往甲地;两车同时出发;设慢车行驶的时间为(h)x;两车之间的距离y;图中的折线表示y与x之间的.......为(km)函数关系.根据图象进行以下探究:信息读取1甲、乙两地之间的距离为 km;2请解释图中点B的实际意义;图象理解3求慢车和快车的速度;4求线段BC所表示的y与x之间的函数关系式;并写出自变量x的取值范围;问题解决5若第二列快车也从甲地出发驶往乙地;速度与第一列快车相同.在第一列快车与慢车相遇30分钟后;第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时类型之三方案设计方案设计问题;是根据实际情境建立函数关系式;利用函数的有关知识选择最佳方案;判断方案是否合理;提出方案实施的见解等..5.某房地产开发公司计划建A、B两种户型的住房共80套;•该公司所筹资金不少于2090万元;但不超过2096万元;且所筹资金全部用于建房;•两种户型的建房成本和售价如下表:成本万元/套25 28售价万元/套30 341该公司对这两种户型住房有哪几种建房方案2该公司如何建房获得利润最大3根据市场调查;每套B型住房的售价不会改变;每套A•型住房的售价将会提高a万元a>0;且所建的两种住房可全部售出.该公司又将如何建房获得利润最大注:利润=售价-成本类型之四分段函数应用题..6.赣州市年春节前夕;南方地区遭遇罕见的低温雨雪冰冻天气;赣南脐橙受灾滞销.为了减少果农的损失;政府部门出台了相关补贴政策:采取每千克补贴元的办法补偿果农.下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y万元与销售量x吨的关系图.请结合图象回答以下问题:1在出台该项优惠政策前;脐橙的售价为每千克多少元2出台该项优惠政策后;“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完;加上政府补贴共收入万元;求果园共销售了多少吨脐橙3①求出台该项优惠政策后y 与x 的函数关系式;②去年“绿荫”果园销售30吨;总收入为万元;若按今年的销售方式;则至少要销售多少吨脐橙总收入能达到去年水平.7.2009成都某大学毕业生响应国家“自主创业”的号召;投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售;购进价格为20元/件.销售结束后;得知日销售量P 件与销售时间x 天之间有如下关系:P=-2x+801≤x≤30;且x 为整数;又知前20天的销售价格1Q 元/件与销售时间x 天之间有如下关系:11Q 302x =+ 1≤x≤20;且x 为整数;后10天的销售价格2Q 元/件与销售时间x 天之间有如下关系:2Q =4521≤x≤30;且x 为整数.1试写出该商店前20天的日销售利润1R 元和后l0天的日销售利润2R 元分别与销售时间x 天之间的函数关系式;2请问在这30天的试销售中;哪一天的日销售利润最大并求出这个最大利润.注:销售利润=销售收入一购进成本.8.通过实验研究;专家们发现:一个会场听众听讲的注意力指标数是随着演讲者演讲时间的变化而变化的;演讲开始时;听众的兴趣激增;中间有一段时间;听众的兴趣保持平稳的状态;随后开始分散..听众注意力指标数y 随时间x 分钟变化的函数图像如下图所示y 越大表示听众注意力越集中..当0≤x≤10时;图像是抛物线的一部分;当10≤x≤20和20≤x≤40时;图像是线段..1当0≤x≤10时;求注意力指标数y 与时间x 的函数关系式;2王标同学竞选学生会干部需要演讲24分钟;问他能否经过适当安排;使听众在听他的演讲时;注意力的指标数都不低于36若能;请写出他安排的时间段;若不能;也请说明理由..9.2008仙桃华宇公司获得授权生产某种奥运纪念品;经市场调查分析;该纪念品的销售量1y 万件与纪念品的价格x 元/件之间的函数图象如图所示;该公司纪念品的生产数量2y 万件与纪念品的价格x 元/件近似满足函数关系式85232+-=x y .; 若每件纪念品的价格不小于20元;且不大于40元.请解答下列问题:1求1y 与x 的函数关系式;并写出x 的取值范围;2当价格x 为何值时;使得纪念品产销平衡生产量与销售量相等;3当生产量低于销售量时;政府常通过向公司补贴纪念品的价格差来提高生产量;促成新的产销平衡.若要使新的产销平衡时销售量达到46万件;政府应对该纪念品每件补贴多少元10.图象如图中折线所示;该加油站截止到13;截止至15请你根据图象及加油站五月份该油品的所有销售记录提供的信息;解答下列问题: 元/件1求销售量x 为多少时;销售利润为4万元;2分别求出线段AB 与BC 所对应的函数关系式;3我们把销售每升油所获得的利润称为利润率;那么;在O A 、AB 、BC 三段所表示的销售信息中;哪一段的利润率最大直接写出答案11.扬州2006年中考题我市某企业生产的一批产品上市后40天内全部售完;该企业对这一批产品上市后每天的销售情况进行了跟踪调查.表一、表二分别是国内、国外市场的日销售量y1、y2万件与时间tt 为整数;单位:天的部分对应值.表一:国内市场的日销售情况表二:国外市场的日销售情况1日:有库存6万升;成本价4元/升;售价51请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t 的变化规律;写出y1与t 的函数关系式及自变量t 的取值范围;2分别探求该产品在国外市场上市30天前与30天后含30天的日销售量y2与时间t 所符合的函数关系式;并写出相应自变量t 的取值范围;3设国内、外市场的日销售总量为y 万件;写出y 与时间t 的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y 最大;并求出此时的最大值.12.2007东营某公司专销产品A;第一批产品A 上市40天内全部售完..该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查;调查结果如图所示;其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A 的销售利润与上市时间的关系..1试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;2第一批产品A 上市后;哪一天这家公司市场日销售利润最大最大利润是多少万元13.随着人民生活水平的不断提高;我市家庭轿车的拥有量逐年增加;据统计;某小区2006年底拥有家庭轿车64辆;2008年底家庭轿车的拥有量达到100辆..1若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同;求该小区到2009年底家庭轿车将达到多少辆2为了缓解停车矛盾;该小区决定投资15万元再建造若干停车位;据测算;建造费用分别为室内车位5000元/个;露天车位1000元/个;考虑到实际因素;计划露天车位的数量不少于室内车位的2倍;但不超过室内车位的倍;求该小区最多可建两种车位各多少个试写出所有可能的方案..14.2012攀枝花.煤炭是攀枝花的主要矿产资源之一;煤炭生产企业需要对煤炭运往用煤单位所产生的费用进行核算并纳入企业生产计划..某煤矿现有1000吨煤炭要全部运往A;B两厂;通过了解获得A;B两厂的有关信息如下表表中运费栏“元/kmt⋅”表示:每吨煤炭运送一千米所需的费用:1写出总运费y元与运往B厂的煤炭量x t之间的函数关系式;并写出自变量x的取值范围;2请你运用函数有关知识;为该煤矿设计总运费最少的运送方案;并求出最少的总运费..可用含a的代数式表示几何的定值与最值几何中的定值问题;是指变动的图形中某些几何元素的几何量保持不变;或几何元素间的某些几何性质或位置关系不变的一类问题;解几何定值问题的基本方法是:分清问题的定量及变量;运用特殊位置、极端位置;直接计算等方法;先探求出定值;再给出证明.几何中的最值问题是指在一定的条件下;求平面几何图形中某个确定的量如线段长度、角度大小、图形面积等的最大值或最小值;求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理公理法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中;由冷点变为热点.这是由于这类问题具有很强的探索性目标不明确;解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.15.如图;已知AB=10;P是线段AB上任意一点;在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD;则CD长度的最小值为.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE;边长和方向如图;欲在这块地上建一座地基为长方形东西走向的公寓;请划出这块地基;并求地基的最大面积精确到1m 2.17.某住宅小区;为美化环境;提高居民生活质量;要建一个八边形居民广场平面图如图所示.其中;正方形MNPQ 与四个相同矩形图中阴影部分的面积的和为800平方米. 1设矩形的边AB=x 米;AM=y 米;用含x 的代数式表示y 为 .2现计划在正方形区域上建雕塑和花坛;平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪;平均每平方米造价为105元;在四个三角形区域上铺设草坪;平均每平方米造价为40元.①设该工程的总造价为S 元;求S 关于工的函数关系式.②若该工程的银行贷款为235000元;仅靠银行贷款能否完成该工程的建设任务若能;请列出设计方案;若不能;请说明理由.③若该工程在银行贷款的基础上;又增加资金73000元;问能否完成该工程的建设任务若能;请列出所有可能的设计方案;若不能;请说明理由.镇江市中考题18.如图;抛物线2212-+=bx x y 与x 轴交于A 、B 两点;与Y 轴交于C 点; 且A -1;0..求抛物线的解析式及顶点D的坐标判断△ABC的形状;证明你的结论..点Mm;0是x 轴上的一个动点;当MC+MD的值最小时;求m 的值答案部分1.解析先建立函数关系式;把它转化为二次函数的一般形式;然后根据二次函数的顶点坐标公式进行求极值.答案解:设增种x 棵树;果园的总产量为y 千克;依题意得:y=100 + x40 – =4000 – 25x + 40 x – 0;25x 2 = - x 2 + 15x + 4000 =-x-30 2 +4225因为a= - <0;所以当1530220.25b x a =-=-=-⨯; y 有最大值2244(0.25)400015422544(0.25)ac b y a -⨯-⨯-===⨯-最大值答:增种30棵枇杷树;投产后可以使果园枇杷的总产量最多;最多总产量是4225千克.2.解析解决在产品的营销过程中如何获得最大利润的“每每型”试题成为近年中考的热点问题..每每型”试题的特点就是每下降;就每减少;或每增长;就每减少..解决这类问题的关键就是找到房价增加后;该宾馆每天的入住量..“每每型”试题都可以转化为二次函数最值问题;利用二次函数的图像和性质加以解决.答案16010x y =- 221(200)6040120001010x z x x x ⎛⎫=+-=-++ ⎪⎝⎭ 3(200)6020601010x x w x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭ 当x=210时;w 有最大值.此时;x+200=410;就是说;当每个房间的定价为每天410元时;w 有最大值;且最大值是15210元.3. 解:1900;4. 2图中点B 的实际意义是:当慢车行驶4h 时;慢车和快车相遇.3由图象可知;慢车12h 行驶的路程为900km; 所以慢车的速度为90075(km /h)12=;当慢车行驶4h 时;慢车和快车相遇;两车行驶的路程之和为900km;所以慢车和快车行驶的速度之和为900225(km /h)4=;所以快车的速度为150km/h . 4根据题意;快车行驶900km 到达乙地;所以快车行驶9006(h)150=到达乙地;此时两车之间的距离为675450(km)⨯=;所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+;把(40),;(6450),代入得 044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩, 所以;线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.自变量x 的取值范围是46x ≤≤.5慢车与第一列快车相遇30分钟后与第二列快车相遇;此时;慢车的行驶时间是. 把 4.5x =代入225900y x =-;得112.5y =.此时;慢车与第一列快车之间的距离等于两列快车之间的距离是;所以两列快车出发的间隔时间是112.51500.75(h)÷=;即第二列快车比第一列快车晚出发.4.解:1设A 种户型住房建x 套;则2090≤25x+2880-x ≤2096;48≤x ≤50;x 取整数48;49;50;有三种建房方案 2公司获利润W=5x+680-x=480-x;当x=48时;W 最大=432万元3W=5+ax+•680-x=480+a -1x;当0<a<1时;x=48;W 最大;当a=1时;三种建房方案获利相同;当a>1时;x=50;W 最大5.解析从函数图象容易看出前面一段是出台该项优惠政策前的情况;后面一段是出台该项优惠政策后的情况;前面一段所有的量已经知道;容易求出该果园共销售脐橙的重量;为后面一段的求值奠定了基础.答案解:1政策出台前的脐橙售价为43310 3 1010⨯=⨯元元/千克千克;2设剩余脐橙为x 吨;则103×3×9+x=×104∴43(11.73)1010(30.90.2)x -⨯=⨯⨯⨯+=310吨; 该果园共销售了10 +30 = 40吨脐橙 ;3①设这个一次函数的解析式为 (1040)y mx n x =+≤≤;代入两点10;3、40;得: 310, 11.740;m n m n =+⎧⎨=+⎩=0.29,=0.1;m n ⎧⎨⎩解得 函数关系式为0.290.1 (1040)y x x =+≤≤;②令 10.25(10.250.290.1 y x ≥≤+万元),则,35 (x ≥解得吨)答:1原售价是3元/千克;2果园共销售40吨脐橙;3①函数关系式为0.290.1 (1040)y x x =+≤≤;②今年至少要销售35吨;总收入才达到去年水平. 6.7. 解:1由抛物线y=a 2+bx+c 过0;20、5;39、10;48三点; 解得:a=;b=;c=20.即y=++200≤x≤102令①式中的y=36;即++20=36;解得:x 1=4;x 2=20舍去在第20-40分钟范围内;一次函数y=kx+b 经过点20;48、40;20;即 ;解得即函数解析式为y=+76 当y=36时;∵-4=>24∴王标的演讲从第4分钟开始能有24分钟时间使学生的注意力指标效一直不低于36..8解:1设y 与x 的函数解析式为:b kx y +=;将点)60,20(A 、)28,36(B 代入b kx y +=得:⎩⎨⎧+=+=b k b k 36282060 解得:⎩⎨⎧=-=1002b k ∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y2当2820≤≤x 时;有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x 当4028≤≤x 时;有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元;可使公司产销平衡.3当461=y 时;则8523461+-=x ;∴261=x 当462=y 时;则1002462+-=x ;∴272=x∴112=-x x∴政府对每件纪念品应补贴1元9解:解法一:1根据题意;当销售利润为4万元;销售量为4(54)4÷-=万升. 答:销售量x 为4万升时销售利润为4万元. ·········· 3分 2点A 的坐标为(44),;从13日到15日利润为5.54 1.5-=万元;所以销售量为1.5(5.54)1÷-=万升;所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+;则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ····· 6分 从15日到31日销售5万升;利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=万元. ∴本月销售该油品的利润为5.5 5.511+=万元;所以点C 的坐标为(1011),. 设线段BC 所对应的函数关系式为y mx n =+;则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ····· 9分 3线段AB . ······················· 12分 解法二:1根据题意;线段OA 所对应的函数关系式为(54)y x =-;即(04)y x x =≤≤. 当4y =时;4x =.答:销售量为4万升时;销售利润为4万元. ·········· 3分 2根据题意;线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-; 即 1.52(45)y x x =-≤≤. ··················· 6分 把 5.5y =代入 1.52y x =-;得5x =;所以点B 的坐标为(55.5),.截止到15日进油时的库存量为651-=万升.当销售量大于5万升时;即线段BC 所对应的销售关系中; 每升油的成本价144 4.5 4.45⨯+⨯==元. 所以;线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.········· 9分 3线段AB . ······················· 12分 10解:1通过描点;画图或分析表一中数据可知y 1是t 的二次函数..设y 1=at-202+60;把t 1=0;y 1=0.代入得a=;故y 1=t 2+6t0≤t ≤40且t 为整数.. 经验证;表一中的所有数据都符合此解析式..2通过描点;画图或分析表二中数据可知当0≤t ≤30时y 2是t 的正比例函数;当30≤t ≤40时y 2是t 的一次函数..可求得;经验证;表二中的所有数据都符合此解析式..3由y=y1+y2得;经比较可知第27天时y 有最大值为万件..11.解:1 由图10可得;当0≤t ≤30时;设市场的日销售量y =k t .∵ 点30;60在图象上;∴ 60=30k .∴ k =2.即 y =2 t .当30≤t ≤40时;设市场的日销售量y =k 1t +b .因为点30;60和40;0在图象上;所以 ⎩⎨⎧+=+=b k b k 114003060解得k1=-6;b=240.∴y=-6t+240.综上可知;当0≤t≤30时;市场的日销售量y=2t;当30≤t≤40时;市场的日销售量y=-6t+240.2当0≤t≤20时;每件产品的日销售利润为z=3t;当20≤t≤40时;每件产品的日销售利润为z=60.设日销售利润为W万元;由题意当0≤t≤20时;W=3t×2t=6 t2;∴当t=20时;产品的日销售利润W最大等于2400万元.当20≤t≤30时;W=60×2t =120t.∴当t=30时;产品的日销售利润y最大等于3600万元;当30≤t≤40时;产品的日销售利润y=60×-6t+240;∴当t=30时;产品的日销售利润y最大等于3600万元.综上可知;当t=30天时;这家公司市场的日销售利润最大为3600万元.151设AB的解析式为y=kx+b;∵四边形OCDE是矩形;∴OA=OE-AE=80-60=20m;OB=OC-BC=100-70=30m;∴A0;20;B30;0∴解得∴AB的解析式为2如图;以直线BC;AE分别为x轴;y轴建立直角坐标系;BC;AE为正方向;长度单位为米;直线AB的方程为.首先考虑与D不相邻的顶点F在AB上的情况;则Fx;;0≤x≤30;;;时;≈17时S≈6017m2;再考虑F在AE或BC上的情况;此时最大矩形的面积是6000m2和5600m2; 故选定F5;17点;最大面积是6017m2.。
新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)
中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。
广东省深圳市中考数学复习 应用题专题
应用题专题试卷一、单选题1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A、120元B、100元C、80元D、60元2、已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A、518=2(106+x)B、518﹣x=2×106C、518﹣x=2(106+x)D、518+x=2(106﹣x)3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x4、为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A、 B、C、 D、5、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A、﹣=2B、﹣=2C、﹣=2D、﹣=26、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A、 B、 C、 D、7、足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A、1或2B、2或3C、3或4D、4或58、某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A、103块B、104块C、105块D、106块9、一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A、 B、 C、 D、10、2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A、7200(1+x)=9800B、7200(1+x)2=9800C、7200(1+x)+7200(1+x)2=9800D、7200x2=980011、某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A、560(1+x)2=315B、560(1﹣x)2=315C、560(1﹣2x)2=315D、560(1﹣x2)=315二、解答题12、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?13、学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?14、为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?15、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度; (2)当甲到达学校时,乙同学离学校还有多远?16、某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?17、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?18、一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.19、为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20、青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.21、为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.22、(2016•深圳)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23、孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.25、随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?26、光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).27、为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?28、某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?29、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?30、为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?31、()在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?32、为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B 型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?33、我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?34、某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?35、春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.36、2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?37、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?38、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?39、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?40、长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?41、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?42、济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?43、在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?答案解析部分一、单选题1、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷ =200,解得:x=80.∴该商品的进价为80元/件.故选C.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷ =200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.2、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3、【答案】C【考点】一元一次方程的应用,根据数量关系列出方程【解析】【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.4、【答案】D【考点】二元一次方程的应用【解析】【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.5、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6、【答案】C【考点】由实际问题抽象出分式方程【解析】【解答】解:由题意可得,﹣= ,故选C.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7、【答案】C【考点】二元一次方程的应用【解析】【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x= ,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.8、【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.9、【答案】A【考点】二元一次方程组的应用【解析】【解答】解:由题意可得,,故选A.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【分析】根据题意,可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.11、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.二、解答题12、【答案】解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣2.5解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.【考点】分式方程的应用【解析】【分析】(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.13、【答案】(1)解:设采摘黄瓜x千克,茄子y千克.根据题意,得,。
中考数学应用题专题含答案26题专项
2012年中考数学应用题专题复习(26题)专项1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%15%.根据相关信息解决下列.根据相关信息解决下列问题:(1)降价前,降价前,甲乙两种药品每盒的出厂价格之和为甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,经过若干中间环节,甲种药品甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%15%、对乙种药品每盒加价、对乙种药品每盒加价10%10%后零售后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,元,为了促销,公司决定每售出一台乙型号手机,返还顾返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(元,而甲型号手机仍按今年的售价销售,要使(22)中所有方案获利相同,)中所有方案获利相同,a a 应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%90%和和95%95%..(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%93%,且购买鱼苗的总费用最低,应如何选购鱼苗?,且购买鱼苗的总费用最低,应如何选购鱼苗?5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系(吨)之间的函数关系. . (1)小明家五月份用水8吨,应交水费吨,应交水费__________________元;元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?份节约用水多少吨?6、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km 9km,甲以匀速行驶,花了,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O O ––A A ––B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min min)时的行程,请回答下列问)时的行程,请回答下列问题:题:⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象;的图象; ⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?7、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x 元,每月的销售量为y 件.(1)求y 与x 的函数关系式并写出自变量x 的取值范围;的取值范围;(2)(2)设每月的销售利润为设每月的销售利润为W ,请写出W 与x 的函数关系式;的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?8、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,现有一现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.元.(1)(1)设设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;的函数关系式;(2)(2)如果放养如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x O y x 205010 20 第5题 (吨)(元)的函数关系式.的函数关系式.(3)(3)该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润((利润利润=Q =Q =Q-收购总额-收购总额-收购总额))?1、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;)问符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(明在(11)中哪种方案费用最低?最低费用是多少元?)中哪种方案费用最低?最低费用是多少元?2、 “保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A 、B 两型污水处理设备,共10台,其信息如下表:台,其信息如下表:单价单价((万元万元//台) 每台处理污水量每台处理污水量((吨/月) A 型12 240 B 型 10 200(1)(1)设购买设购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 的函数关系式.的函数关系式.(2)(2)经预算,市污水处理厂购买设备的资金不超过经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金? ?3、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.件行李.⑴请你帮助学校设计所有可行的租车方案;⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?最省?4、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.吨.(1)(1)受天气、受天气、场地等各种因素的影响,需要提前完成销售任务需要提前完成销售任务..在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务天完成销售任务..那么原计划零售平均每天售出多少吨?零售平均每天售出多少吨?(2)(2)在(在(在(11)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.算实际获得的总利润.5、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.件,其中甲种玩具的件数少于乙种玩具的件数.商商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?元,求商场共有几种进货方案?6、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,吨的部分,自来水公司按每吨自来水公司按每吨2元收费;元收费;超过超过5吨的部分,按每吨2.6元收费。
中考数学专题复习--应用题行程问题
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少?
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。
3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。
当他们第二次相遇时距离B地30千米。
问AB两地的距离是多少?
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。
快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。
从两车头相遇到两车的尾部离开,需要几秒钟?
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米?
6.一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。
通讯员以每小时10千米的速度回到驻地,取了地图立即返回。
通讯员从驻地出发,几小时可以追上队伍?。
初中数学 湖北省武汉市中考专题训练应用题题练习1
2021年武汉市中考专题训练应用题题练习11.某厂有75名工人,每人每天可以生产甲,乙,丙三种产品中的一种,每天产量与每件产品利润如表:设每天安排x名工人生产丙产品(x为不小于5的整数).(1)若每天每件丙产品的利润为100元,求x的值;(2)若每天只生产甲,丙两种产品,丙产品的总利润比甲产品的总利润多200元,求每件丙产品的利润;(3)若每天同时生产甲,乙,丙三种产品,且甲,乙两种产品的产量相等.当这三种产品的总利润的和最大时,请直接写出x的值.2.某商店销售A型和B型两种电器,若销售A型电器20台,B型电器10台可获利13000元,若销售A型电器25台,B型电器5台可获利12500元.(1)求销售A型和B型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100台,其中B型电器的进货量不超过A型电器的2倍,该商店购进A型、B型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电器出厂价下调a(0<a<200)元,且限定商店最多购进A型电器60台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100台电器销售总利润最大的进货方案.3.某板栗经销商在销售板栗时,经市场调查:板栗若售价为10元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设板栗售价为x元/千克(x≥10且为正整数).(1)若某日销售量为24千克,直接写出该日板栗的单价;(2)若政府将销售价格定为不超过15元/千克,设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)若政府每日给板栗经销商补贴a元后(a为正整数),发现只有4种不同的单价使日收入不少于395元且不超过400元,请直接写出a的值.(日收入=销售额+政府补贴)4.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的总利润为w万元,求w关于x的函数关系式;(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大利润,并求出最大利润.5.某旅游度假村有甲种风格客房15间,乙种风格客房20间按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元(1)设甲、乙两种客房每间现有定价分别为m元/天、n元/天,求m、n的值.(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润W最大,最大利润是多少元?6.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)456y(件)1000095009000(1)求y与x的函数关系式(不求自交量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.①若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?②抗疫期间,该商场决定每销售一件这种品牌商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.7.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”;某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件.①当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润;②若线下月利润与线上月利润的差不低于800元,直接写出x的取值范围.8.某公司决定投资燃油汽车与新能源汽车,该公司信息部的市场调研结果如下:方案A:若单独投资燃油汽车时,则所获利润w1(千万元)与投资金额x(千万元)之间存在正比例函数关系例w1=kx,并且当投资2千万元时,可获利润0.8千万元;方案B:若单独投资新能源汽车时,则所获利润w2(千万元)与投资金额x(千万元)之间存在二次函数关系:w2=ax2+bx,并且当投资1千万元时,可获利润1.4千万元;当投资3千万元时,可获利润3千万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果该公司对燃油汽车与新能源汽车这两种产品投资金额相同,且获得总利润为5千万元,求此时该公司对这两种汽车的投资金额各是多少千万元?(3)如果公司对燃油汽车投资x千万元,对新能源汽车的投资金额是燃油汽车的两倍,投资所获总利润的利润率不低于60%,且获得总利润为不低于4千万元,直接写出x的取值范围.9.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:注:周销售利润=周销售量×(售价−进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是______元/件;当售价是______元/件时,周销售利润最大,最大利润是______元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.10.在2020年“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将利润的一部分捐赠给社区用于抗疫.已知商家购进一批产品,成本价为10元/件,拟采取线上和线下两种方式进行销售,调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12<x<24)满足一次函数关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为200件.试问:①当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润;②商家决定每售出一件该产品给社区捐赠a元(0<a<8),该月扣除捐赠后可获得线上和线下月利润总和的最大利润为3200元,求a的值.11.如图,学校计划建造一块边长为40m的正方形花坛ABCD,分别取四边中点E,F,G,H构成四边形EFGH,四边形EFGH部分种植甲种花,在正方形ABCD四个角落构造4个全等的矩形区域种植乙种花,剩余部分种草坪.每一个小矩形的面积为xm2,已知种植甲种花50元/m2,乙种花80元/m2,草坪10元/m2,种植总费用为y元.(1)求y关于x的函数关系式;(2)当种植总费用为74880元时,求一个矩形的面积为多少?(3)为了缩减开支,甲区域改用单价为40元/m2的花,乙区域用单价为a元/m2(a≤80,且a为10的倍数)的花,草坪单价不变,最后种植费只用了55000.元,求a的最小值.12.去年疫情期间,部分药店乘机将口罩涨价销售,经调查发现某药店某月(按30天计)前5天的某型号口罩的销售价格p(元/只)和日销售量q(只)与第x天(x为整数)的关系如下表:物价部门迅速发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的销售价格调整为1元/只.据统计,该药店从第6天起该型号口罩的日销售量q(只)与第x天有如下关系:q=−2x2+80x−200(6≤x≤30且x为整数),已知该型号口罩的进价为0.5元/只.(1)分别直接写出该药店该月前5天该型号口罩的销售价格p和日销售量q与x之间的函数关系式;(2)求该药店该月销售该型号口罩每天所获利润w(元)与x的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,决定对在销售过程中获得的正常利润(该型号口罩销售价格不得高于1元/只)之外的非法所得部分处以m倍的罚款(m≤6).若按处罚规定,该药店在这个月销售该型号口罩的过程中的罚款金额不低于2000元,则m的取值范围是.13.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A,B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元台)满足函数关系y A=−x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=−x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.①当A型汽车的利润不低于B型汽车的利润,求B型汽车的最低售价?②求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?14.空气净化器越来越被人们认可,某商场购进A、B两种型号的空气净化器,如果销售5台A型和10台B型空气净化器的销售总价为20000元,销售10台A型和5台B型空气净化器的销售总价为17500元.(1)求每台A型空气净化器和B型空气净化器的销售单价;(2)该商场计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器m台,这100台空气净化器的销售总价最大时,该公司购进A型、B型空气净化器各多少台?(3)在(2)的条件下,若A型空气净化器每台的进价为800元,B型空气净化器每台的进价z(元)满足z=−10m+700的关系式,则销售完这批空气净化器能获取的最大利润是多少元?15.糖果厂对销售糖果的定价标准由生产费与包装费两部分组成,包装费y1(百元)与原料数量x(千克)之间的关系式为y1=kx+b(0<x<4),当加工1kg糖果时,包装费是0.3(百元);当原料数量不少于4千克时,包装费全免,生产费y2(百元)与原料数量x之间的关系式为y2=ax2−0.2x(a>0).(1)求出y1与x之间的函数表达式;(2)当a=0.1时,求原料数量为多少千克时,总费用最少?(3)当原料数量不超过4千克,且总费用不高于2.4百元时,直接写出a的取值范围.16.某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)这批芒果的实际成本为______ 元/千克;[实际成本=进价÷(1−损耗率)](2)①请你根据表中的数据直接出写出y与x之间的函数表达式,标出x的取值范围;②该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W1最大?[日销售利润=(销售单价−实际成本)×日销售量](3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a元(a>0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2156元,求a的值.【日获利=日销售利润−日支出费用】。
中考数学专题复习之应用题
德阳中学2013中考应用题复习1、(2012•绵阳)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数关系式;(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.2、(2012•泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价-进价)3、(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.4、(2012•广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?在(2)的条件下,请说明哪种方案的总费用最少?7、(2010•德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?二次函数应用8、四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间捐款给灾区多少钱?9、某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?(3)请回答客房定价在什么范围内宾馆就可获得利润?。
2023年中考数学第一轮复习应用题专项训练
2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。
中考数学不定方程应用题专题
中考专题复习:不定方程应用题专题一、课本题再现例1:现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元.1角、5角、1元硬币各取多少枚?解法一:设1角、5角、1元的硬币分别取x枚、y枚、z枚,那么1551070x y zx y z++=⎧⎨++=⎩①②,②-②得4y+9z=55,即y=5594z-=14-194z+,而x、y、z都为正整数,且不大于10,那么1+9z必须是4的倍数,即z=3,7,…当z=3时,y=7,x=5符合题意;当z=7时,y=-2,x=10不符合题意,所以1角取5枚,5角取7枚,1元取3枚.解法二:设1角、5角、1元的硬币各取x枚、y枚、z枚,根据题意得150.10.57x y zx y z++=⎧⎨++=⎩①②,②-②得0.9x+0.5y=8,②y=16-95 x,由x、y、z都为不小于10的整数知x需为5的倍数,且x=5或10,当x=5时,y=7,z=3(符合题意);当x=10时,y=-2,z=7(不符合题意),所以,1角取5枚、5角取7枚、1元取3枚.从上面解答可以得出此类不定方程应用题解题的一般步骤:首先,读懂题意并找到数量关系,设未知数,用等量关系列出方程组并解方程组;其次,用某一字母表示其他未知数,利用整除性质及整数的条件,求出符合题意的答案.其中选用适当的字母来表示其他量是解题关键.若选用的字母比较合适,则解题的难度会减小不少,反之会增大运算量.如解法二中得到式子y=16-95x,很容易找出这样有鲜明特点的数如x=5,10,…,而解法一则运算量会增大.二、在选择题的应用例2:(2020黑龙江龙东中考)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.12种B.15种C.16种D.14种解:设购买A种奖品m个,购买B种奖品n个,(1)当C种奖品个数为1个时,根据题意得10m+20n+30=200,整理得m+2n=17,因为m、n都是正整数,则0<2n<17,所以n=1,2,3,4,5,6,7,8;(2)当C种奖品个数为2个时,根据题意得10m+20n+60=200,整理得m+2n=14,因为m、n都是正整数,则0<2n<14,所以n=1,2,3,4,5,6;综上共有8+6=14种购买方案.故选:D.例3:(黑龙江鹤岗中考)今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种 B.3种 C.4种 D.5种4中考解:设小虎足球队胜了x场,平了y场,负了z场,小虎足球队踢平场数是所负场数的k倍.依题意,得17316x y zx yy kz++=⎧⎪+=⎨⎪=⎩①②③,把②代入②②,得(1)17316x k zx kz++=⎧⎨+=⎩,解得z=3523k+(k为正整数),又因为z为正整数,则2k+3=35或5或7,所以当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种.三、在填空题的应用例4(2020黄石中考改编)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),那么商人的购买方法共有种,列出所有的可能购买方案.解:设每头牛值x两银子,每只羊值y两银子,根据题意得:,解得:.即每头牛值3两银子,每只羊值2两银子.设19两银子购买a头牛,b只羊,依题意有3a+2b=19,则b=,因为a,b都是正整数,那么a=1,3,5;所以商人共有三种购买方法:②购买1头牛,8只羊;②购买3头牛,5只羊;②购买5头牛,2只羊.例5(2020重庆A卷)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.解:设第一时段统计摸到红、黄、绿球的次数分别为a,b,c,则第二时段统计摸到红、黄、绿球的次数分别为3a,2b,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得250210702510(5012020)(503010)420a b c a b c a b c ++=⎧⎨++-++=⎩,即25217251942a b c b c ++=⎧⎨+=⎩,所以424325429b a c b-⎧=⎪⎨⎪=-⎩, 因为a ,c 为正整数,所以42430254290b b -⎧⎪⎨⎪-⎩≥≥,则4342≤b ≤143,因为b 为正整数,所以b =2,3,4;当b =2,3时,a 的值非正整数,不符合题意;当b =4时,a =5,c =6,符合题意;所以150a +60b +40c =150×5+60×4+40×6=1230,即第二时段返现金额为1230元.四、在解答题的应用例6(2021杭州模考)某市政府筹集了抗旱必需物资120t 打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:已知它们的总辆数为16,你能通过列方程组的方法求出可能的运送方案吗?(2)哪种方案的运费最少?最少是多少元?解:(1)设甲型车有x 辆,乙型车有y 辆,丙型车有z 辆.根据题意,得165810120x y z x y z ++=⎧⎨++=⎩,消去z ,得5x +2y =40.所以x =8-25y . 由x ,y ,z 是非负整数,可知x 与y 的和不大于16,y 为5的倍数,则80x y =⎧⎨=⎩,,65x y =⎧⎨=⎩,,410.x y =⎧⎨=⎩,,所以808x y z =⎧⎪=⎨⎪=⎩,,,655x y z =⎧⎪=⎨⎪=⎩,,,4102x y z =⎧⎪=⎨⎪=⎩,,. 所以有三种运送方案:②甲型车8辆,丙型车8辆;②甲型车6辆,乙型车5辆,丙型车5辆;②甲型车4辆,乙型车10辆,丙型车2辆.(2)3种方案的运费分别是:②400×8+600×8=8000(元);②400×6+500×5+600×5=7900(元);②400×4+500×10+600×2=7800(元).因为8000>7900>7800,所以调用甲型车4辆,乙型车10辆,丙型车2辆时运费最少,最少是7800元.例7(广西梧州中考)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x 件,售完此两种商品总利润为y 元.写出y 与x 的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五·一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?-x)件,由题意,得y=(20-15)x+(45-35)(100-x)=-5x+1000,故y与x之间的函数关系式为:y=-5x+1000;(2)由题意,得15x+35(100-x)≤3000,解之,得x≥25.因为y=-5x+1000,k=-5<0,所以y随x的增大而减小,所以当x取最小值25时,y最大值,此时y=-5×25+1000=875(元),所以至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元;(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.②当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),则20m+45n=360,m=18-94n>0,所以0<n<8.n是4的倍数,有3种情况:情况1:m=0,n=8,则利润是:324-8×35=44(元);情况2:m=9,n=4,则利润是:324-(15×9+35×4)=49(元);情况3:m=18,n=0,则利润是:324-15×18=54(元);②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元)则20m+45n=405,m=8194n>0,所以0<n<9.m、n均是正整数,有2种情况:情况1:m=9,n=5,则利润为:324-(9×15+5×35)=14(元);情况2:m=18,n=1,则利润为:324-(18×15+1×35)=19(元).综上所述,商家可获得的最小利润是14元,最大利润是54元.练习题1(2020重庆B卷)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3②5②2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8②5,则7月份外卖还需增加的营业额与7月份总营业额之比是.解:设6月份的总营业额为a 元,7月份的总营业额为b 元,则7月份增加的总营业额为(b -a )元.根据题意,6月份该火锅店堂食、外卖、摆摊三种方式的营业额可分别表示为310a 元,510a 元,210a 元,7月份该火锅店堂食、外卖、摆摊三种方式的营业额可分别表示为820b 元,520b 元,720b 元,所以7月份摆摊增加的营业额为(720b -210a )元.根据7月份摆摊增加的营业额占总增加的营业额的25,得720b -210a =25(b -a ),解得b =4a ,所以7月份外卖还需增加的营业额与7月份的总营业额之比为552010b a b -=55420104a a a⨯-=18.故答案为18. 2 百鸡问题;鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.百钱买百鸡,问:鸡翁、鸡母、鸡雏各几何?解 设鸡翁x 只、鸡母y 只、鸡雏z 只,依题意,得100,1153100,23x y z x y z ++=⎧⎪⎨++=⎪⎩()() ②×3-②,得7x +4y =100.显然x =4,y =18是该方程的一组解,故x =4+4t ,y =18-7t .所以,z =78+3t .因为,0<(x ,y ,z )<100,t =0,1或2.故x =4,y =18,z =78;x =8,y =11,z =81或x =12,y =4,z =843、某商场计划拨款万元从厂家购进台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台元,乙种每台元,丙种每台元.②若商场同时购进两种不同型号的电视机台,共付万元,请探究一下商场的进货方案; ②若商场销售一台甲种电视机可获利元,销售一乙种电视机可获利元,销售一台丙种视机可获利元.在同时购进两种不同电视机的方案中,哪种能使获利最大? ②若商场准备用万元同时购进三种不同型号的电视机台,请你设计进货方案. 解②应分三种情形讨论:②设购进甲种电视机台,乙种电视机台,列方程组,解得; ②同理求得若同时购进甲、丙电视机分别为台和台;②不可能同时购进乙、丙两种电视机(方程组无正整数解).②通过直接计算,上述两种方案的利润分别为元和元,应选第二种方案.也可进行估算,在三种机型中,乙的利润率最低,甲、丙相同,易选择方案二.950150021002500509150200250950x y 501500210090000x y x y +=⎧⎨+=⎩2525x y =⎧⎨=⎩351587509000②设购进甲、乙、丙三种电视机分别为台、台和台,可列方程组,分别解出和得, 根据题意,分别得到符合题意的整数解为:,,,4、有一水库,有水流进,同时也向外放水,可使用40天,最近库区降雨,流入库区的水量增加20%,如果放水量增加10%,仍可使用40天,如果按原来的放水量放水,可使用多少天?解:设未降雨的一天流进的水为x 立方米,未降雨的一天流出的水为y 立方米,水库原有a 立方米, 根据两次的情况可得:40a y x -=,1.1 1.240a y x -=,所以 1.1 1.2y x y x -=-,2y x =,40a x =,若按原来的放水可使用:( 1.2)400.850a y x x x ÷-=÷=(天)5、有甲、乙、丙三种规格的钢条,已知甲种2根,乙种1根,丙种3根共长23米;甲种1根,乙种4根,丙种5根共长36米。
中考数学复习之一元一次方程综合应用训练题(20大题)
中考数学复习之一元一次方程综合应用训练题(20大题)1.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.2.如图,已知数轴上点A表示的数为﹣60,点B表示的数为20,甲在A点,乙在B点,甲的速度是每秒5个单位,乙的速度是每秒3个单位,小狗的速度是每秒20个单位.(1)点A与点B之间的距离是.(2)若甲、乙两人同时同向(向右)而行,几秒钟甲追上乙?(3)若甲、乙两人同时相向而行,在C点相遇,求点C表示的数并在数轴上表示出来?(4)若小狗随甲同时同地向右出发,当小狗碰到乙时,乙才开始出发,乙和小狗同时向甲方向前进,当小狗再次碰到甲时又向乙方向跑,碰到乙的时候再向甲方向跑,就这样一直跑下去,直到甲、乙两人相遇为止,问这只小狗一共跑了多少路程?3.已知:A,B在数轴上对应的数分别用a,b表示,且(a+4)2+|b﹣12|=0.(1)数轴上点A表示的数是,点B表示的数是.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q从原点O出发,以1个单位长度/秒速度向B运动,运动到B点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.4.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?5.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)8.利用方程解决下面问题:相传有个人不讲究说话艺术常引起误会,一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的三个人也都告辞走了,聪明的你能知道开始来了几位客人吗?9.列方程或方程组解应用题:中国2010年上海世博会第三期预售平日门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币.那么,这一售票点当天售出的普通票和优惠票各多少张?注:优惠票的适用对象包括残疾人士、老年人(1950年12月31日前出生的)、学生、身高超过1.20米的儿童、现役军人.10.十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x≤5005%0x≤15005%0 2500<x≤200010%251500<x≤450010%32000<x≤500015%1254500<x≤900020%45000<x≤2000020%3759000<x≤3500025%975520000<x≤4000025%137535000<x≤5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?11.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?12.某学校为改善办学条件,计划购置至少40台电脑,现有甲,乙两家公司供选择:甲公司的电脑标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠;乙公司的电脑标价也是每台2000元,购买40台以上(含40台),则一次性返回10000元给学校.(1)假如你是学校负责人,在电脑品牌,质量,售后服务等完全相同的前提下,你如何选择?请说明理由;(2)甲公司发现乙公司与他竞争(但甲公司不知乙公司的销售方案),便主动与该校联系,提出新的销售方案;标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠,在40台的基础上,每增加15台,便赠送一台.问:该学校计划购买120台(包括赠送),至少需要多少元?13.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x 对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.14.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.15.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km /h ,人步行的速度是5km /h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.16.某电信局现有600部已申请装机的电话尚待装机,此外每天有新申请装机的电话也待装机.假定每天新申请装机的电话部数相同,每个电话装机小组每天安装电话的部数也相同,若安排3个装机小组去安装电话,则30天可将待装电话装机完毕;若安排5个装机小组去安装电话,则恰好10天可将待装电话装机完毕.(1)求每天新申请装机的电话部数及每个电话装机小组每天安装电话部数.(2)如果要在5天内将待装电话装机完毕,那么电信局至少需按排几个电话装机小组同时装机?17.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数: 车站名ABC D E F G H各站至H 站的里程 数(单位:千米)1500 1130 910 622 402 219 72 0 例如,要确定从B 站至E 站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).18.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.19.阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表: 顾客乘车路程(单位:千米) 1 1.5 2.5 3.5 需支付的金额(单位:元) “5.1”前4.4 “5.1”后4(2)小方从家里坐出租车到A 地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A 地路程大约 .(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.20.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a (元) 200≤a <400 400≤a <500 500≤a <700 700≤a <900 … 获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元). 购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价. 试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?。
中考数学专题复习—— 应用性问题
中考数学专题复习——应用性问题足球场上有句顺口溜:“向着球门跑,越近就越好;歪着球门跑,射点要选好!”从数学角度看是何道理?应用题是中考试题的经典试题,解决应用题的思想方法如下:实际问题分析、联想、转化、抽象解答数学问题建立数学模型应用性问题的常见模型有:方程模型、不等式模型、函数模型、统计模型、几何模型方程(组)型应用题一般步骤:(1)审:未知量、已知量、相等关系;(2)设:用字母表示未知数(写明单位);(3)列:列出方程(组);(4)解:解所列方程(组);(5)验:检验答案是否符合方程、符合题意(6)答:写出答案。
例1、5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?不等式(组)型应用题现实世界中不等关系是普遍存在的,有关最佳决策、合理调配、统筹安排等最优化问题,一般可通过对给出的一些数据进行分析、转化、建立不等式模型,再求在约束条件下的不等式的解集.例2:某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
学校花去捐款96000元,正好可供2300人临时居住。
(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。
如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?初三数学第1 页共4 页初三数学 第 2 页 共 4 页4%函数型应用问题一般步骤:(1)审:常量、变量、相等关系;(2)设:用两个字母分别表示自变量、因变量;(3)列:列出函数关系式(写出自变量的取值范围)(4)解:解决函数问题;(5)验:检验答案是否符合函数关系、符合题意(6)答:写出答案.例3、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为1254y t =+(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.统计型应用问题:统计的内容有着非常丰富的实际背景,其实际应用性特别强,与统计有关的实际问题可建立统计模型,并利用统计的知识加以解决。
中考数学应用题汇编及解析
一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间治理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间治理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间治理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-〔元〕; 〔2〕设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =〔千克〕(120%) 1.811700x x x +-==〔千克〕答:〔1〕当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; 〔2〕小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提升了用油的重复利用率,并且发现在技术革新的根底上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析]〔1〕由题意,得70(160%)7040%28⨯-=⨯=〔千克〕 〔2〕设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗?欢送你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.解得:1275,10x x ==-〔舍去〕(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工 治理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数(名) 1 3 2 3 24 1 每人月工资(元)21000 840020252200 1800 1600950请你根据上述内容,解答以下问题:〔1〕该公司“高级技工〞有 名;〔2〕所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元; 〔3〕小张到这家公司应聘普通工作人员.请你答复右图中小张的问题,并指出用〔2〕中的哪个 数据向小张介绍员工的月工资 实际水平更合理些; 〔4〕去掉四个治理人员的工资后,请你计算出其他员工的月平均工资y 〔结果保存整数〕,并判断y 能否反映该公司员工的月工资实际水平.[解析] 〔1〕由表中数据知有16名;〔2〕由表中数据知中位数为1700;众数为1600;〔3〕这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.〔说明:该问中只要写对其中一个数据或相应统计量〔中位数或众数〕也可以〕 〔4〕250050210008400346y ⨯--⨯=≈1713〔元〕.y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚〔点C 〕的水平线为x 轴、过山顶〔点A 〕的铅垂线为y 轴建立平面直角坐标系如图〔单位:百米〕.AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且)4,(m B . 〔1〕设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;〔2〕从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上〔见图〕. ①分别求出前三级台阶的长度〔精确到厘米〕; ②这种台阶不能一直铺到山脚,为什么?〔3〕在山坡上的700米高度〔点D 〕处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE 〔米〕.假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x ,〔…2分〕 ∴)8(42y x -=,y x -=82〔…3分〕∵)4,(m B ,∴482-=m =4,∴)4,4(B〔…4分〕〔2〕在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x 〔百米〕894≈〔厘米〕〔…6分〕同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x 〔百米〕371≈〔厘米〕 〔…7分〕 第三级台阶的长度为02843.023=-x x 〔百米〕284≈〔厘米〕〔…8分〕②取点)4,4(B ,又取002.04+=y ,那么99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 〔…10分〕 〔注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性〕 ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR〔…9分〕在题设图中,作OA BH ⊥于H那么︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚〔…10分〕〔3〕)7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值〔…11分〕 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x〔…13分〕当320=x 时,38max =y ∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y 〔米〕与挖掘时间x 〔时〕之间关系的局部图象.请解答以下问题: 〔1〕乙队开挖到30米时,用了_____小时.开挖6小时时, 甲队比乙队多挖了______米; 〔2〕请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)〔3〕如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] 〔1〕2;10;〔2〕①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点〔6,60〕, ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点〔2,30〕、〔6,50〕,∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.〔说明:通过观察图象并用方程来解决问题,正确的也给分〕 〔3〕由图可知,甲队速度是:60÷6=10〔米/时〕.设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料〔这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理〕.当每吨售价为260元时,月销售量为45吨.该经销店为提升经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x 〔元〕,该经销店的月利润为y 〔元〕. 〔1〕当每吨售价是240元时,计算此时的月销售量;〔2〕求出y 与x 的二次函数关系式〔不要求写出x 的取值范围〕;〔3〕请把〔2〕中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;〔4〕小静说:“当月利润最大时,月销售额也最大.〞你认为对吗?请说明理由.[解析] 〔1〕5.71024026045⨯-+=60〔吨〕.〔2〕260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.〔3〕24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.〔4〕我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.〔说明:如果举出其它反例,说理正确,也相应给分〕二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图〔尺寸如下图〕,车棚顶部是圆柱侧面的一局部,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积〔不考虑接缝等因素,计算结果保存π〕.[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1.…………〔1分〕由垂径定理,可知: E 是AB 中点,F 是AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………〔2分〕 设半径为R 米,那么OE =(R -2)米.O BA·图10—2图10—1 AB2米 43米·图1EF A在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………〔5分〕 ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………〔6分〕∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π. ………………………〔7分〕∴帆布的面积为38π×60=160π〔平方米〕. …………………………………〔8分〕 〔说明:此题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分〕9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格〔每个小方格的边长均为1个单位长〕,其对称中央为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中央也是点O ,它以每秒1个单位长的速度由起始位置向外扩大〔即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……〕,直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动〔即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动〕.正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠局部面积为y 个平方单位.〔1〕请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠局部〔重叠局部用阴影表示〕,并分别写出重叠局部的面积;〔2〕①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.〔3〕对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠局部面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.〔说明:问题〔3〕是额外加分题,加分幅度为1~4分〕图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7E C BA DFG H M Q NOP[解析]〔1〕相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.〔2〕①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,那么MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-〔7-x 〕= x -1. ∴y=MT ·MS =〔x -1〕〔2x -1〕=2x 2-3x +1. ②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,那么 TQ =7-x ,∴MT =MQ -TQ =6-〔7-x 〕=x -1. ∴y=MN ·MT =6〔x -1〕=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,那么 TQ=x -7,∴MT =MQ -TQ =6-〔x -7〕=13-x . ∴y = MN ·MT =6〔13-x 〕=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,那么MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =〔13-x 〕〔27-2x 〕=2x 2-53x +351.〔说明:以上四种情形,所求得的y 与x 的函数关系式正确的,假设不化简不扣分〕 〔3〕对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 E C B A D F G H Q N O P T 图2-5E C B A DF GH M N O PT 图2-6 E C B A DF G HK Q N OP R S 图2-3 E C B A D F G H M Q N OP S T 图2-2 E C B A D FG HMN O P 图2-1 E C B AD Q O P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。
中考数学专题复习填空实际应用题
中考数学专题复习填空实际应用题学校:___________姓名:___________班级:___________考号:__________评卷人得分一、填空题1.某销售商五月份销售A、B、C三种饮料的数量之比为3:2:4,A、B、C三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A饮料增加的销售占六月份销售总额的115,B、C饮料增加的销售额之比为2:1.六月份A饮料单价上调20%且A饮料的销售额与B饮料的销售额之比为2:3,则A饮料五月份的销售数量与六月份预计的销售数量之比为_____________.2.盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为__________元.3.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.4.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.5.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.6.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.7.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.(-=100%商品的售价商品的成本价商品的利润率商品的成本价)8.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=商品的售价-商品的成本价商品的成本价×100%)参考答案:1.910【解析】 【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x , A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y . 六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m , A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3, B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键 2.155 【解析】 【分析】设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,列方程求出B 盒中各种设备的数量,再设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列出方程组,再整体求出32x y z ++的值即可. 【详解】解:根据题意,设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,优盘的数量为3a+2a=5 a 个,则23132513222a a a ++++++++=,解得,a=1;设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列方程组得,23145352245x y z x y z ++=⎧⎨++=⎩①② ∴-∴得,2100x y z ++=③, ∴×3-∴得,32155x y z ++=, 故答案为:155. 【点睛】本题考查了三元一次方程组和一元一次方程的应用,解题关键是找准题目中的等量关系列出方程(组),熟练运用等式的性质进行方程变形,整体求值.3.18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∴7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.4.1230.【解析】【分析】设第一时段统计摸到红、黄、绿球的次数分别为a,b,c,则第二时段统计摸到红、黄、绿球的次数分别为3a,2b,4c,第三时段统计摸到红、黄、绿球的次数分别为a,4b,2c.根据题意得到关于a,b,c方程组,根据a,b,c均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∴a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数. 5.3:20 【解析】 【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x依题意可得,5919()121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由∴得32x y =③ 将∴代入∴得38z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202y z x y y y ==++ 故答案为3:20. 【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键 6.18:19 【解析】 【分析】设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案. 【详解】解:设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天, 则第五、六车间每天生产的产品数量分別是34x 和83x ,由题意得,6()36322248(24)43x x x m ac x x m bc x m bc ⎧⎪+++=⎪⎪⎛⎫++=⎨ ⎪⎝⎭⎪⎪+⨯+=⎪⎩①②③,2⨯-②③得,3m x =,把3m x =分别代入∴得,92x ac =, 把3m x =分别代入∴得,1922x bc =, 则:18:19a b =,甲、乙两组检验员的人数之比是18:19,故答案为18:19.【点睛】本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.7.8 9【解析】【详解】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:品种类别甲乙A31B12C12由题意可得甲的成本价为:58.5130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.8.47【解析】 【分析】根据每袋甲种粗粮的成本是每千克A 种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案. 【详解】设A 的单价为x 元,B 的单价为y 元,C 的单价为z 元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a 袋,乙的销售量为b 袋,由题意,得 A 一袋的成本是7.5x=3x+y+z , 化简,得 y+z=4.5x ;乙一袋的成本是x+2y+2z=x+2(y+z )=x+9x=10x , 乙一袋的售价为10x (1+20%)=12x , 甲一袋的售价为10x . 根据甲乙的利润,得(10x-7.5x )a+20%×10xb=(7.5xa+10xb )×24% 化简,得 2.5a+2b=1.8a+2.4b 0.7a=0.4b 47a b , 故答案为47.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.。
2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)
2024 学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)1.春天来了,学校计划用两种花卉对校园进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆的价格比A 种花卉每盆的价格多0.5元.(1)求A ,B 两种花卉每盆的价格各是多少元;(2)学校计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,请你给出购买这批花卉费用最低的方案,并求出最低费用. 2.某市的A 县和B 县春季育苗,急需化肥分别为90t 和60t ,该市的C 县和D 县分别储存化肥100t 和50t ,全部调配给A 县和B 县.已知从C 县运化肥到A 县的运费为35元/t ,从C 县运化肥到B 县的运费为30元/t ,从D 县运化肥到A 县的运费为40元/t ,从D 县运化肥到B 县的运费为45元/t .(1)设C 县运到A 县的化肥为x t ,求总运费W (单位:元)关于x (单位:t )的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动. 经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元,该校决定购买(0)m m 棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售. 如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.分别求出两种方案的费用1W ,2W 关于m 的函数解析式.4.“一骑红尘妃子笑,无人知是荔枝来”,夏季是盛产荔枝的季节,某县城为尽快打开市场,对本地的荔枝品种妃子笑进行线上和线下销售相结合的模式,具体费用标准如下:线上销售模式:不超过6千克时,按原价出售,超过6千克时,超出部分每千克再让利3.5元;线下销售模式:一律九折出售.购买妃子笑x 千克,所需费用为y 元,y 与x 之间的函数关系如图所示.根据以上信息回答下列问题:(1)请问妃子笑的标价为多少?(2)请求出线上销售模式所需费用y关于x的函数解析式;(3)若想购买妃子笑40千克,请问选择哪种模式购买最省钱?5.某公司为改善办公条件,计划采购一批A,B两种型号的电脑,已知1台A型电脑比1台B型电脑的便宜1200元;采购4台A型电脑与采购3台B型电脑的费用一样多.(1)求A型电脑和B型电脑每台各需多少元;(2)若公司计划采购A、B两种型号电脑共50台,且A型电脑的台数不超过B型电脑的4倍,两种型号电脑的采购总费用不超过200000元,该公司共有几种采购方案?哪种采购方案可使总费用最低,最低费用是多少元?6.希望艺术团准备采购甲,乙两种道具,某经销商知道了活动的方案后,主动联系希望艺术团,对甲种道具的出售价格根据购买量给予优惠,对乙种道具按25元/件的价格出售.设希望艺术团购买甲种道具x件,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若希望艺术团计划一次性购买甲,乙两种道具共100件,且甲种道具不少于40件,但又不超过60件.如何分配甲,乙两种道具的购买量,才能使希望艺术团付款总金额w(元)最少?(3)若甲、乙两种道具的进货价格分别为22元/件和18元/件.经销商按(2)中甲,乙两种道具购买量的分配比例卖出两种道具共a件,且销售完a件道具获得的利润不少于1050元,求a的最小值.7.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买A,B两种奖品.已知2件A种奖品和3件B种奖品共需41元,5件A种奖品和2件B种奖品共需53元.(1)这两种奖品的单价各是多少元?(2)学校准备购进这两种奖品共90件,且B种奖品的数量不少于A种奖品数量的13,请设计出最省钱的购买方案,并求出最少费用.8.我市是福建省茶叶的主要产区,清明过后就是春茶的采摘季节.已知熟练采茶工人每天采茶的数量是新手采茶工人的3倍,每个熟练采茶工人采摘600斤鲜叶比新手采茶工人采摘450斤鲜叶少用25天.(1)求熟练采茶工人和新手采茶工人一天分别能采摘鲜叶的斤数;(2)某茶厂计划一天采摘鲜叶600斤,该茶厂有20名熟练采茶工人和15名新手采茶工人,按点工制度付给熟练采茶工人每人每天的工资为300元,付给新手采茶工人每人每天的工资为80元,应如何安排熟练采茶工人和新手采茶工人能使费用最少?9.为了方便老师工作,某中学决定购进一批教学用具,在购买教学用具时,该校从甲、乙、丙三家商场了解到同一种型号教学用具的优惠条件如下:甲:定价为90元,超过5个,超过的部分每个优惠20%;乙:定价为90元,每个优惠10% ;丙:购会员卡100元,每个教学用具70元.(1)设该校购买x个教学用具,选择甲商场时,所需费用为y1元;选择乙商场时,所需费用为y2元;选择丙商场时,所需费用为y3元;请分别求出y1,y2,y3与x之间的函数关系式;(2)当购买教学用具数量大于多少件时,y2>y3?10.某年级430名师生秋游,计划租用8辆客车,现有甲、乙两种型号客车,它们的载客量和租金如下表:(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?11.目前,全国各地都在积极开展新冠肺炎疫苗接种工作,某生物公司接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,该公司安排甲,乙两车间共同完成加工任务,乙车间加工过程中停工一段时间维修设备,然后提高效率继续加工,直到与甲车间同时完成加工任务为止,设甲,乙两车间各自生产疫苗y (万支)与甲车间加工时间x (天)之间的关系如图1所示;两车间未生产疫苗w (万支)与甲车间加工时间x (天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗 万支,第一天甲、乙两车间共生产疫苗 万支,=a ;(2)当3x =时,求甲、乙车间生产的疫苗数(万支)之差12y y -;(3)若5.5万支疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第三辆货车?12.某校准备在健康大药房购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元? 13.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件衬衣方案二:夹克和衬衣均按定价的80%付款现有顾客要到该商场购买夹克30件,衬衣x件(x>30)(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?(3)当x=40时,哪种方案更省钱?请说明理由.14.灵宝寺河山被誉为“亚洲第一高山果园”,海拔800﹣1200米,土质肥沃,雨量充沛,日照充足,昼夜温差大,气候条件得天独厚,是苹果的最佳适生地.寺河山苹果,是三门峡市灵宝苹果的龙头品牌,素有“天下苹果属灵宝,灵宝苹果属寺河”之说.在苹果收获季节,为了保证苹果的新鲜度,需要将苹果运送至冷库进行保存,现有A,B两个果园,若A果园有苹果120吨,B果园有苹果60吨.现将A,B两个果园的苹果全部运往C,D两个冷库进行冷藏保存,已知C仓库可储存100吨,D仓库可储存80吨,A,B 两个果园到C,D两个冷藏仓库的运费如下表:设从A果园运往C仓库的苹果重量为x吨.(1)用含x(吨)的代数式表示总运费W(元),并写出自变量x的取值范围;(2)如何进行运送才能使总运费最少?求出最低总运费.15.学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程.在建设美丽中国的活动中,某学校计划组织全校1450名师生到相关部门规划的林区植树,经过研究,决定在当地租车公司租用62辆A、B两种型号的客车作为交通工具.下表是租车公司提供给学校有关A、B两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数;(1)设租用A型号客车x辆,租车总费用为y元,求y与x之间的函数表达式,并通过计算求出x的取值范围;(2)若要使租车总费用不超过13460元,则共有几种租车方案?哪种租车方案最省钱?参考答案:1.(1)A 种花卉每盆1元,B 种花卉每盆1.5元(2)当购买A 种花卉1500盆,B 种花卉4500盆时购买这批花卉总费用最低,最低费用为8250元.2.(1)W =10x +4800(40≤x ≤90)(2)最低总运费为5200元,此时的运送方案是:C 县的100t 化肥40t 运往A 县,60t 运往B 县,D 县的50t 化肥全部运往A 县3.(1)枣树的单价为10元,石榴树的单价为8元(2)19360W m =+,210400(050),8500(50).m m W m m +<≤⎧=⎨+>⎩4.(1)25元/千克(2)()()250621.5216x x y x x ⎧≤<⎪=⎨+>⎪⎩(3)线上购买5.(1)购买1台A 型电脑需要3600元,购买1台B 型电脑需要4800元.(2)该公司共有7种采购方案. 购买A 型电脑40台,B 型电脑10台方案可使总费用最低,最低费用是192000元6.(1)30(050)24300(50)x x y x x ≤≤⎧=⎨+>⎩ (2)购进甲道具40件,乙道具60件时,才能使希望艺术团付款总金额w (元)最少;(3)a 的最小值为2107.(1)A :7元,B :9元(2)购进A 种奖品67件,购进B 种奖品23件;676元8.(1)每名熟练的采茶工人一天能采摘鲜叶30斤,每名新手采茶工人一天能采摘鲜叶10斤(2)茶厂应安排15名熟练的采茶工人采摘鲜叶,15名新手采茶工人采摘鲜叶能使得费用最少9.(1)190(05)7290(5)x x y x x <≤⎧=⎨+>⎩;290(110%)81y x x =⨯-=;370100y x =+ (2)1010.(1)y =100x +3600(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是4100元11.(1)2,3.5,1.5(2)1(3)2天,2天12.(1)每盒口罩和每盒水银体温计的价格各是200元,50元(2)5m(3)当m ≤4时,则w=450m ;当m >4时,w =360m +360,需要购买口罩20盒,水银体温计100盒,所需总费用为7560元13.(1)12501500402400y x y x =+⎧⎨=+⎩;(2)当90x =时12y y =;(3)当x =40时,方案一更省钱. 14.(1)43400W x =+,40100x ≤≤;(2)运送方案为A 果园将40吨苹果运往C 仓库,80吨运往D 仓库,B 果园的60吨苹果全部运往C 仓库,此时总运费最低,最低是3560元 15.(1)y =100x +11160(21≤x ≤62且x 为整数);(2)3种,租用A 型号客车21辆。
最新人教版中考数学复习第36讲 中考中档解答题专练(1)——简单应用题
∴BC=
≈14.6(m).
答:乙居民楼的高约为14.6 m.
返回目录
变式诊断
7. (2021·菏泽)某天,北海舰队在 中国南海例行训练,位于A处的济南舰 突然发现北偏西30°方向上的C处有一 可疑舰艇,济南舰马上通知位于正东 方向200 n mile B处的西安舰,西安 舰测得C处位于其北偏西60°方向上, 此时两舰距C处的距离分别是多少?
20
10
(1)求y与x的函数关系式; (2)当销售单价为多少时,有最大利润,最大利润为多少? 返回目录
解:(1)由表格中数据可知,y与x之间的函数关系式为一次函 数关系. 设y=kx+b(k≠0).
10k+b=40, 由题意,得
12k+b=30. 解得 k=-5,
b=90. ∴y与x的函数关系式y=-5x+90.
15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销
售1台A型车和2台B型车,可获利1.3万元.
(1)求销售一台A型,一台B型新能源汽车的利润各是多少万元
;
(2)该公司准备用不超过300万元资金,采购A,B两种新能源汽
车共22台,最少需要采购A型新能源汽车多少台?
返回目录
解:(1)设销售一台A型新能源汽车的利润是x万元,销售一台B
依题意,得 10m+5(100-m)≤800.
解得53 ≤m≤60.
又∵m为整数, ∴m可以为54,55,56,57,58,59,60. ∴共有7种购买方案. 设购买总费用为w元,则w=10m+5(100-m)=5m+500. ∵5>0, ∴w随m的增大而增大. ∴当m=54时,w取得最小值,w最小值=5×54+500=770. 答:共有7种购买方案,所花资金的最小值为770元.
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考数学分题型复习应用题
2021中考专项练习---应用题1.某县政府打算用25000元用于为某乡福利院购置每台价格为2000元彩电与每台价格为1800元冰箱,并方案恰好全部用完此款.〔1〕问原方案所购置彩电与冰箱各多少台?〔2〕由于国家出台“家电下乡〞惠农政策,该县政府购置彩电与冰箱可获得13%财政补贴,假设在不增加县政府实际负担情况下,能否多购置两台冰箱?谈谈你想法.2. 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2021年10月11日到2021年2月28日期间,地面公交日均客运量与轨道交通日均客运量总与为1696万人次,地面公交日均客运量比轨道交通日均客运量4倍少69万人次.在此期间,地面公交与轨道交通日均客运量各为多少万人次?3. 整理一批图书,如果由一个人单独做要花60小时。
现先由一局部人用一小时整理,随后增加15人与他们一起又做了两小时,恰好完成整理工作。
假设每个人工作效率一样,那么先安排整理人员有多少人?4. 某刊物报道:“2021年12月15日,两岸海上直航、空中直航与直接通邮启动,‘大三通’根本实现.‘大三通’最直接好处是省时间与省本钱,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,那么共可为民众节省2900万小时……〞根据文中信息,求每年采用空运与海运往来两岸人员各有多少万人次.5.面对全球金融危机挑战,我国政府毅然启动内需,改善民生.国务院决定从2021年2月1日起,“家电下乡〞在全国范围内实施,农民购置人选产品,政府按原价购置总额....13%...给予补贴返还.某村委会组织局部农民到商场购置人选同一型号冰箱、电视机两种家电,购置冰箱数量是电视机2倍,且按原价购置冰箱总额为40000元、电视机总额为15000元.根据“家电下乡〞优惠政策,每台冰箱补贴返还金额比每台电视机补贴返还金额多65元,求冰箱、电视机各购置多少台?〔1〕设购置电视机台,依题意填充以下表格:工程家电种类购置数量〔台〕原价购置总额〔元〕政府补贴返还比例补贴返还总金额〔元〕每台补贴返还金额〔元〕冰箱40 00013%电视机15 00013%〔2〕列出方程〔组〕并解答.6.某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪,设每双鞋本钱价为元.(1)试求值;(2)为了扩大销售量,公司决定拿出一定量资金做广告,根据市场调查,假设每年投入广告费为(万元)时,产品年销售量将是原销售量倍,且与之间关系如下图,可近似看作是抛物线一局部. ①根据图象提供信息,求与之间函数关系式; ②求年利润(万元)与广告费(万元)之间函数关系式,并请答复广告费(万元)在什么范围内,公司获得年利润(万元)随广告费增大而增多?〔注:年利润7.为了防控甲型H1N1流感,某校积极进展校园环境消毒,购置了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶. 〔1〕如果购置这两种消毒液共用780元,求甲、乙两种消毒液各购置多少瓶?〔2〕该校准备再次..购置这两种消毒液〔不包括已购置100瓶〕,使乙种瓶数是甲种瓶数2倍,且所需费用不多于...1200元〔不包括780元〕,求甲种消毒液最多能再购置多少瓶?8.某企业2006年盈利1500万元,2021年克制全球金融危机不利影响,仍实现盈利2160万元.从2006年到2021年,如果该企业每年盈利年增长率一样,求:〔1〕该企业2007年盈利多少万元?〔2〕假设该企业盈利年增长率继续保持不变,预计2021年盈利多少万O 24 1y 〔倍〕x 〔万1.1.元?9.去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款人数是多少?人均捐款多少元?10. 为了拉动内需,广东启动“家电下乡〞活动。
中考数学复习----一次方程(组)应用典型例题与考点归纳
中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。
2021年数学中考复习应用题专题
中考复习应用题专题一、列方程解应用题的一般步骤:1.认真审题;找出已知量和未知量;以及它们之间的关系;2.设未知数;可以直接设未知数;也可以间接设未知数;3.列出方程中的有关的代数式;4.根据题中的相等关系列出方程;5.解方程;6.答题。
注:列方程解应用题的关键是找出题中的等量关系二、常见的应用题类型行程问题:1)追及问题:a、两个物体在同一地点不同时间同向出发最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时间=乙速度×(甲时间+乙先走的时间)b、两个物体从不同地点同时同向出发最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点出发相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时间+乙速度×相遇时间=原两地的路程3)一般行程问题:等量关系:速度×时间=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1、一队学生去校外进行军事野营训练;他们以5千米/时的速度行进;走了18分钟的时候;学校要将一个紧急通知传给队长;通讯员骑自行车以14千米/时的速度按原路追上去;通讯员用多少时间可以追上学生队伍?2、甲、乙两地相距500 km;新修的高速公路开通后;在甲、乙两地问行驶的长途客运车平均速度提高了40%;而从甲地到乙地的时间缩短了2.5 h;求长途客运车原来的平均车速。
(结果精确到1 km/h)3、客车和货车分别在两条平行的铁轨上行驶;客车长150米;货车长250米.如果两车相向而行;那么从两车车头相遇到车尾离开共需10秒钟;如果客车从后面追货车;那么从客车车头追上货车车尾到客车车尾离开货车车头共需要1分40秒.求两车的速度.4、轮船顺流航行100km和逆流航行60km所用时间相等;已知轮船在静水中航行的速度为21km/h;求水流速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B卷26题应用题专题复习
一.解答题(共15小题)
1.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该动漫公司这两批各购进多少套玩具?
(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?
2.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?
3.某工厂有甲、乙两条生产线,一月份乙生产线创销售金额80万元,获得了
25%的毛利润.(销售金额﹣生产成本=毛利润)
(1)求乙生产线一月份的生产成本;
(2)从二月份起,按环保部门“节能减排”要求,甲、乙两条生产线都进行了技术革新,降低了能耗成本,甲生产线的毛利润每月比上月增加了10万元,乙生产线的毛利润则按一种相同的速度递增.第一季度结束时,经过测算,三月份两个生产线的毛利润之和是65万元,且甲生产线一、三两月的毛利润的和刚好等于乙生产线二月份毛利润的3倍,求这个工厂第一季度的毛利润.
4.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称空调彩电冰箱
工时
产值(千元)432
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)
5.甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
6.温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?
7.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80
个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.
8.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:
甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.
现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.
(1)求A型花和B型花每枝的成本分别是多少元?
(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?
9.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5元/吨收费,超出10吨的部分
按2元/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答:月份一二三四
用水量(吨)671215
水费(元)12142837
(1)该市规定用水量为吨,规定用量内的收费标准是元/吨,超过部分的收费标准是元/吨.
(2)若小明家五月份用水20吨,则应缴水费元.
(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?
10.A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B 两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.
(1)求甲车速度;
(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B 地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?
11.近期,重庆商品住宅市场房屋销售出现销售量和销售价齐涨态势,数据显示,2016年12月,甲、乙房地产公司的销售面积一共17000平方米,乙房地产公司的单价是甲房地产公司单价的.甲房地产公司单价为每平方米0.8万元,两家销售的总金额为14430万元.
(1)求2016年12月,甲、乙房地产公司各销售了多少平方米.
(2)根据市场需求,甲、乙房地产公司决定调整2017年1月份的房价,甲房地产公司每平方米的售价上涨a%,销售量预计比12月减少200平方米:乙房地产公司决定以降价促销的方式应对当前的形势,每平方米的售价下调a%,销售面积预计将比12月增加700平方米,预计1月份两家的总销售额恰好为15310万元,求a的值.
12.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
13.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不
超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,该经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?
14.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:
(1)乙队单独做需要多少天能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x、y都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?
15.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财
政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?。