《二元一次方程组》全章复习与巩固(提高)知识讲解
第八章二元一次方程组的复习课件

在代入时,要确保代入的表达式正确,且代入后的方程能够简化为一元一次方程。
消元法应用举例
例题1
解法
例题2
解法
解方程组 {x + y = 5, 2x - y = 1}。
采用加减消元法,将两个方 程相加得到 3x = 6,解得 x = 2,然后将 x = 2 代入原 方程 x + y = 5 中解得 y = 3。所以方程组的解为 {x = 2, y = 3}。
第八章二元一次方程 组的复习课件
汇报人:XX
目 录
• 二元一次方程组基本概念 • 消元法求解二元一次方程组 • 图像法求解二元一次方程组 • 实际问题中的二元一次方程组 • 方程组解的讨论与性质 • 复习总结与提高
01
二元一次方程组基本概念
定义与性质
二元一次方程组的定义
含有两个未知数,且未知数的次数都 是1的方程组。
忽视方程组的解的定义
在解二元一次方程组时,需要注意方程组的解必须满足方程组中的所有
方程。如果忽视这一点,可能会导致求解错误。
02
消元方法使用不当
在解二元一次方程组时,需要根据方程组的特点选择合适的消元方法。
如果方法使用不当,可能会导致计算过程繁琐或结果错误。
03
忽视实际问题的限制条件
在应用二元一次方程组解决实际问题时,需要注意问题中的限制条件。
• 解:分别画出两个方程对应的直线图像,观察两条直线的位置关系。通 过图像可以看出,两条直线相交于一点,因此方程组有唯一解。
04
实际问题中的二元一次方程组
利润与成本问题
利润公式
利润 = 售价 - 进价
利润率公式
利润率 = 利润 / 进价 × 100%
教学课件:第七章二元一次方程组复习ppt课件

在实际应用中,应根据方程组 的特征选择合适的转化技巧。
方程组的几何解释
通过几何图形解释二元一次方程组的解,能够直观地理解方程组的含义 和求解过程。
例如,对于形如 (ax + by = c) 的直线方程,其解可以解释为直线与坐标 轴的交点;对于形如 (x^2 + y^2 = r^2) 的圆方程,其解可以解释为圆 与坐标轴的交点或切点。
05 复习总结与展望
本章复习要点总结
知识点梳理 掌握二元一次方程组的定义、解法及其应用。
理解方程组解的判定定理和求解步骤。
本章复习要点总结
掌握消元法和代入法两种基本解法。 例题解析
通过典型例题的解析,加深对二元一次方程组解法的理解。
本章复习要点总结
• 掌握不同类型方程组的解法,如线性方程组、非线性方程 组等。
本章复习要点总结
解题技巧
掌握方程组的求解技巧,如合并同类项、消元法、 代入法等。 学会运用数形结合思想解决方程组问题。
学习方法与建议
学习方法
01
积极参与课堂讨论,与同学交流学习心得 和解题经验。
03
02
注重理论与实践相结合,通过实际问题的解 决加深对二元一次方程组的理解。
04
学习建议
对于难以理解的解法,可以尝试通过多种 方法进行求解,提高解题能力。
通过几何解释,可以更好地理解方程组的解在实际问题中的应用,提高 解题能力。
04 综合练习与提高
基础练习题
总结词:巩固基础
详细描述:基础练习题主要针对二元一次方程组的基本概念和解题方法进行巩固 ,包括方程组的建立、消元法、代入法等基本技巧。这些题目难度较低,适合所 有学生练习。
进阶练习题
总结词:拓展思维
二元一次方程组复习课件

详细描述
2. 将表示后的方程代入另一个方程,得到一个新的方 程。 4. 检验所求的解是否正确,代入原方程组进行验证。
加减法例题
总结词:加减法是解二元一次方程组的一种常用方法, 通过将两个方程进行加减操作,将未知数的系数变为相 同或相反,从而得到解。 1. 将两个方程进行加减操作,使未知数的系数变为相同 或相反。
二元一次方程组复习课件
2023-11-08
目 录
• 基础知识回顾 • 重点知识讲解 • 经典例题解析 • 易错点总结 • 实战练习题 • 总结与展望
01
基础知识回顾
二元一次方程组的定义
总结词
二元一次方程组是由两个二元一次方程组成的方程组
详细描述
二元一次方程组包含两个方程,每个方程都包含两个未知数和一个等号。例如 ,x+y=16 和 3x+2y=30 是二元一次方程组的两个例子。
二元一次方程组在生活中有着广泛的应用 ,如购物优惠、行程问题等,掌握其解法 能够解决实际问题。
下章展望
ቤተ መጻሕፍቲ ባይዱ
巩固练习
通过大量的练习题,巩固已学知识,提高解题速度和准 确率。
拓展提高
学习一元二次方程的解法,进一步拓展数学思维和解题 能力。
感谢您的观看
THANKS
详细描述
在求解二元一次方程组时,学生应检查方程组是否存在解。当方程组中两个方程的系数矩阵行列式相 等且系数矩阵不为零时,方程组无解。此时,学生应能够根据方程组的系数矩阵判断无解的情况,并 能够处理无解的情况。
05
实战练习题
基础练习题
总结词
简单容易,涉及知识点单一
详细描述
基础练习题主要针对二元一次方程组的基本 概念和解题方法进行考察,题目难度相对较 小,涉及的知识点较为单一,适合所有学生 练习。
《二元一次方程组》全章复习与巩固(基础)知识讲解

《二元一次方程组》全章复习与巩固(基础)知识讲解撰稿:吴婷婷责编:常春芳【学习目标】1.了解二元一次方程(组)的有关概念,会解简单的(数字系数);能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.2.二元一次方程组的图像解法,初步体会方程与函数的关系.3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的划归思想.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(x和y),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba ==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y(或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值;⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.(3)图像法解二元一次方程组的一般过程:①把二元一次方程化成一次函数的形式.②在直角坐标系中画出两个一次函数的图像,并标出交点.③交点坐标就是方程组的解.要点诠释:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、二元一次方程(组)与一次函数1.二元一次方程与一次函数的关系(1)任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a c y x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数.(2)我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点诠释:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同.2. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.3.用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.要点五、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是( ).A.⎩⎨⎧+==-13032x y y xB.⎩⎨⎧=-=+211z y xC.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组⎩⎨⎧=+-=+63222y x y x x x 中,y x x x 3222-=+可以整理为y x 32-=.【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(2)】【变式】若32225a b a b x y --+-=是二元一次方程,则a = ,b = .【答案】1, 0.2.以⎩⎨⎧-==11y x 为解的二元一次方程组是( ). A.⎩⎨⎧=-=+10y x y x B.⎩⎨⎧-=-=+10y x y x C.⎩⎨⎧=-=+20y x y x D.⎩⎨⎧-=-=+20y x y x【答案】C.【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是0=+y x ,第二个方程的左边都是y x -,而右边不同,根据二元一次方程的解的意义可知,当⎩⎨⎧-==11y x 时,211)1(1=+=--=-y x .【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解.举一反三:【变式】若⎩⎨⎧==12y x 是关于y x 、的方程032=+-k y x 的解,则=k . 【答案】 -1.类型二、二元一次方程组的解法3.解方程组15(2)3(25)4(34)5x y x y +=+⎧⎨--+=⎩【思路点拨】由于本题结构比较复杂,不能直接消元,应先将方程组化为一般形式,再看如何消元,即用加减或代入消元法.【答案与解析】解:将原方程组化简得5926x y x y -=⎧⎨-=⎩①-②得:-3y =3,得y =-1,将y =-1代入①中,x =9-5=4.故原方程组的解为41x y =⎧⎨=-⎩.【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:【高清课堂:二元一次方程组章节复习409413 例2(2)】【变式】已知方程组35x y x y +=⎧⎨-=⎩的解是二元一次方程m(x+1)=3(x-y)的一个解,则m= .【答案】3.类型三、实际问题与二元一次方程组4. 20XX 年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、20XX 年相关数据. 已知20XX 年药品降价金额是20XX 年药品降价金额的6倍,结合表中的信息,求20XX 年和20XX 年的药品降价金额.【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)20XX 年药品降价金额=6×20XX 年的药品降价金额.【答案与解析】解:设20XX 年和20XX 年药品降价金额分别为x 亿元、y 亿元.根据题意,得⎩⎨⎧=++++=2694035546y x x y ,解方程组得⎩⎨⎧==12020y x .答:20XX 年和20XX 年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解. 举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元.根据题意,可列方程组3192218x y x y +=⎧⎨+=⎩,解得54x y =⎧⎨=⎩. 所以第三束鲜花的价格是x+3y =5+3×4=17(元).答:第三束鲜花的价格是17元.类型四、二元一次方程(组)与一次函数5. 已知如图所示,直线L 1,L 2相交于A 点,请根据图象写出以交点坐标为解的二元一次方程组,并求出它的解.【思路点拨】由图知:直线l 1、l 2相交于A 点,那么以两个函数的解析式为方程组的二元一次方程组的解即为两个函数图象的交点坐标.【答案与解析】解:设直线l 1的解析式是y=kx+b ,已知直线l 1经过(1,3)和(0,4),根据题意, 得:34k b b +=⎧⎨=⎩解得:14k b =-⎧⎨=⎩则直线l 1的函数解析式是y=-x+4;同理得直线l 2的函数解析式是y=2x+1.则所求的方程组是421 y xy x=-+⎧⎨=+⎩两个函数图象的交点坐标为(1,3),所以方程组的解为:13 xy=⎧⎨=⎩【总结升华】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.6. 甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为120 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.【答案与解析】解:(1)120÷1=120千米/时,故答案为120;(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴,解得∴s甲与t的函数关系式为s甲=﹣180t+600.设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(3)当t=0,s甲=600,∴两城之间的路程为600千米.∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.当相遇后两车相距300千米时,s 乙﹣s 甲=300,即 120t+180t ﹣600=300.解得t=3.【总结升华】考查用待定系数法求一次函数解析式以及一次函数解析式的应用;得到两个函数的关系式是解决本题的突破点;用数形结合的方法判断出所求值与得到函数关系式的关系是解决本题的难点.类型五、三元一次方程组7.解方程组312,23,3716.x y z x y z x y z ++=⎧⎪--=-⎨⎪+-=-⎩①②③ 【思路点拨】先用加减法消去y ,变为x 、z 的二元一次方程组.【答案与解析】解:①+②,得329x z +=.②+③,得5819x z -=-.解方程组329,5819,x z x z +=⎧⎨-=-⎩得1,3.x z =⎧⎨=⎩把13x z =⎧⎨=⎩,代入①,得2y =.所以方程组的解是1,2,3.x y z =⎧⎪=⎨⎪=⎩【总结升华】因为y 的系数为1+或1-,所以先消去y 比先消去x 或z 更简便.。
七年级数学下册《第八章二元一次方程组》知识点归纳

第八章二元一次方程组是七年级下册数学的章节之一,主要介绍了二元一次方程组的相关知识。
本章内容比较重要,是学习方程组的基础,也是解决实际问题的基础。
以下是对该章节重要知识点的归纳:一、二元一次方程及方程组:1. 二元一次方程:二元一次方程是指含有两个未知数的一次方程,形式一般为ax+by=c。
其中,a、b、c为已知数,a和b不全为零。
2.方程的解:给定一个二元一次方程,如果存在一对数(x,y),使得将这些数代入方程使等式成立,那么这对数(x,y)就是方程的解。
3.方程组:由两个或多个方程组成的集合称为方程组。
二元一次方程组是由两个二元一次方程组成的方程组。
二、解二元一次方程组的方法:1.消元法:a.加法消元法:通过给每个方程乘以适当的倍数,使得待消元的未知数的系数相同,然后将两个方程相加,消去这个未知数。
b.减法消元法:通过给其中一个方程乘以适当的倍数,使得待消元的未知数的系数相反,然后将两个方程相减,消去这个未知数。
2.代入法:将一个方程的一元表达式代入到另一个方程中,从而将二元一次方程组转化为一个一元二次方程。
三、方程组的解的情况:1.无解的情况:当方程组中的方程互相矛盾,即无法找到同时满足所有方程的解时,方程组无解。
2.有唯一解的情况:当方程组中的方程相互独立,且无论怎样组合方程,都只能得出一个解时,方程组有唯一解。
3.有无穷多解的情况:当方程组中的方程有冗余的情况,即两个或多个方程实际上是同一个方程的时候,方程组有无穷多解。
四、应用问题:1.运用二元一次方程组解决实际问题,如两个数字之和为一些数,两数之差为一些数等。
2.通过问题中给出的条件建立方程组,然后解方程组找到问题的解。
3.运用代入法解决更复杂的实际问题,如一个数以另一个数的几倍和为一些数等。
五、实战习题:1.练习整理方程组、解方程组的方法;2.挑战实际问题,在解决问题的过程中巩固知识点;3.深入思考不同的解法对于问题的实际意义,触类旁通。
人教版数学七下第八章《二元一次方程组》word知识点整理

第八章二元一次方程组二、基本定义:1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
三、二元一次方程的解法:1、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”2、加减消元法解二元一次方程组(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
二元一次方程组复习ppt课件ppt

02
利用数学方法和计算工具,我们可以求解二元一次方程组并找
到问题的答案。
验证答案
03
最后,我们需要验证求解结果是否符合实际情况,并作出必要
的调整。
问题建模的方法和步骤
分析问题
建立模型
了解问题的背景、目的和条件。
使用数学符号和公式来表示问题。
执行计算
整合答案
利用数学软件或手算来求解模型中的方程。
将计算结果与实际问题相结合,给出最终答 案。
二元一次方程组复习ppt课件
xx年xx月xx日
目录
• 复习基础知识 • 解题方法和技巧 • 实际应用和问题建模 • 综合练习和巩固 • 总结和归纳
01
复习基础知识
二元一次方程组的定义
总结词
二元一次方程组是由两个二元一次方程组成的数学方程组
详细描述
在数学中,二元一次方程组是由两个二元一次方程(即包含 两个未知数且未知数的最高次数为一次的方程)组成的数学 表达式。
04
综合练习和巩固
基础练习题
总结词
强化基础,查漏补缺
详细描述
通过解答基础题型,回顾和强化二元一次方程组的基本概念、解题步骤和易 错点,帮助学生们建立扎实的基础知识体系。
提高练习题
总结词
提高解题速度,提升解题技巧
详细描述
通过一些稍有难度和复杂度的题目,训练学生对二元一次方程组的理解和应用能 力,提高解题速度和技巧,进一步加深对知识点的理解和掌握。
难点
正确应用二元一次方程组的解法,解决实际应用问题。
学习方法和策略总结
学习方法
通过讲解、示范、练习等方式,加深对二元一次方程组的理 解和应用。
策略总结
多做练习,加强解题思路和步骤的训练,提高解题效率。
北师大版八年级数学第五章二元一次方程组复习与巩固

二元一次方程组复习与巩固【学习目标】1.了解二元一次方程(组)的有关概念,会解简单的(数字系数);能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.2.二元一次方程组的图像解法,初步体会方程与函数的关系.3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的划归思想.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(x和y),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点进阶:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.要点进阶:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba ==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点进阶:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点进阶:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值;⑤用“{”联立两个未知数的值,就是方程组的解.要点进阶:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点进阶:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.(3)图像法解二元一次方程组的一般过程:①把二元一次方程化成一次函数的形式.②在直角坐标系中画出两个一次函数的图像,并标出交点.③交点坐标就是方程组的解.要点进阶:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、实际问题与二元一次方程组要点进阶:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、二元一次方程(组)与一次函数1.二元一次方程与一次函数的关系(1)任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a c y x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数. (2)我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点进阶:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同.2. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.3.用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.要点五、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组.要点进阶:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点进阶:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点进阶:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念 例1. 下列方程组中,不是二元一次方程组的是( )A. 123x y =⎧⎨+=⎩B. 10x y x y +=⎧⎨-=⎩C. 10x y xy +=⎧⎨=⎩D. 21y x x y =⎧⎨-=⎩举一反三:【变式1】若关于x 、y 的方程()12m m x y++=是二元一次方程,则m = .【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .类型二、二元一次方程组的解法例2.解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②举一反三:【变式】若关于x ,y 的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k 的值.例3.方程2311x y x y --+++=的整数解的个数是 .举一反三:类型三、实际问题与二元一次方程组例4.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少? 阶梯 电量 电价一档 0﹣180度 0.6元/度二档 181﹣400度 二档电价三档 401度及以上 三档电价举一反三:【变式】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法 1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩. 3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。