示波器的各种测量技术

合集下载

第三章示波测试技术

第三章示波测试技术
测会产生失真,下降不够快时,会出现回扫。
扫描门
积分器
至X放大器
增辉 E
比较和释抑 电路
扫描发生器环
(1)、扫描门:采用施密特电路
又称为时基闸门,
t
连续扫描时,没有触发 信号也有门控信号输出;
E1
触发扫描时只有在触发 脉冲作用下才应产生触
E2
发信号。
V0
输入端由三个方面信号控制:
稳定度——提供直流电位
MORE INFO... [F5] STOP [F4]
A B A&B
TRIGGER
Source Slope
0.050
CH B
POS
EXT
NEG
POSITION
Level
0
-
+
Time Base
10 ms/div
Volts/Div
1 V/DIV
5 ms/div 20 ms/div .5 V/DIV 2 V/DIV
(三)、通用示波器原理及使用
一.原理框图
Y通道
衰 Y减 输 入
Y前置 放大器
延迟线
Y输出 放大器
外触发输入 50Hz电源
s1 X通道
触发 电路
扫描 发生器环
X
X
放大器 输
s2

校准输出 校准信号 发生器
电源
二.水平通道 X通道主要功能即为产生扫描信号。
•对于扫描信号要求: 要求波形线性好,下降快;如线性不好时,信号观
余辉时间:从电子束移去到光点亮度下降为原始值的10% 所延续的时间称为余辉时间。
不同的材料余辉时间不一样。

绿
白、黄
小于10μs 10 μs ~1ms 1ms~0.1s 0.1~1s 大于1s

示波器的各种测量技术

示波器的各种测量技术

浮地测量和隔离输入示波器基础知识应用指南本应用指南将介绍电源测量术语,阐述为进行浮地测量提供的不同选项,重点介绍每种选项的优点和缺点。

最苛刻的浮地测量要求源自电源控制电路,如马达控制器、不间断电源和工控设备。

在这些应用领域中,电压和电流可能会很大,足以给用户和/或测试设备带来危险。

在测量浮地高压信号时,有许多选项可以考虑。

每个选项都有自己的优点和缺点。

差分测量与浮地测量比较所有电压测量都是差分测量。

差分测量定义为两点之间的电压差。

电压测量分成两类:1. 参考地电平测量2. 非参考地电平测量(也称为浮地测量)传统示波器大多数传统示波器把“信号参考”端子连接到保护接地系统上,通常称为“接地”。

通过这种方式,所有应用到示波器的信号或示波器提供的信号都会有一个公共连接点。

这个公共连接点通常是示波器机箱,通过AC供电设备电源线中的第三条线接地,来保持在(或接近)零伏。

这意味着每个输入通道参考点都捆绑在一个接地参考源上。

不应该使用传统无源探头,直接在参考地电平的示波器上进行浮地测量。

视流经参考引线的电流数量,传统无源探头会开始变热;在电流足够高时,它会类似熔丝那样熔化断开。

浮地测量技术为进行高压浮地测量提供的不同选项包括:n隔离输入示波器n差分探头n电压隔离装置n“A - B” 测量技术n示波器“浮地”技术术语表共模信号两个输入上共同的输入信号成分(幅度和相位完全相同)。

共模范围差分放大器可以抑制的共模信号的最大电压(从接地)。

共模抑制比衡量差分放大器抑制共模信号能力的一个性能指标。

由于共模抑制一般会随着频率提高而下降,因此通常会指定特定频率的CMRR。

差分模式或差模差分放大器两个输入之间的不同信号。

差模信号(VDM)可以表达为:VDM = (V+input) - (V-input)差模信号两个输入之间不同的信号。

差分测量两点之间的电压差。

差分探头为差分应用专门设计的探头。

有源差分探头在探头尖端包含一个差分放大器。

示波器 参数

示波器 参数

示波器参数一、示波器的概述示波器是一种测量电信号波形的仪器,可以将电信号转换成图像显示出来,以便分析和判断电路的性能。

示波器主要由输入部分、信号处理部分和显示部分组成。

二、示波器参数1. 带宽:示波器的带宽是指其能够测量的最高频率。

带宽越高,表示示波器可以测量更高频率的信号。

2. 采样率:示波器采样率是指每秒钟采集到的样本数。

采样率越高,表示示波器可以更准确地捕捉到信号变化。

3. 垂直灵敏度:垂直灵敏度是指示波器能够检测到的最小电压值。

垂直灵敏度越高,表示示波器可以检测到更小的信号变化。

4. 水平扫描速率:水平扫描速率是指示波器屏幕上每秒钟扫描多少个点。

水平扫描速率越快,表示示波器可以更快地显示出信号变化。

5. 记录长度:记录长度是指示波器能够存储多少个采样点。

记录长度越长,表示示波器可以存储更多的信号数据。

6. 触发功能:触发功能是指示波器可以根据特定的条件来触发信号的显示,以便更好地分析信号的特性。

三、示波器类型1. 模拟示波器:模拟示波器是最早出现的一种示波器,它使用模拟电路将输入信号转换成图像显示出来。

模拟示波器具有灵敏度高、响应快等优点,但由于其本身存在噪声和漂移等问题,因此在测量精度方面存在一定局限性。

2. 数字示波器:数字示波器是利用数字信号处理技术将输入信号转换成数字化数据,并通过计算机进行处理和显示的一种示波器。

数字示波器具有精度高、稳定性好等优点,但由于其采样率和带宽受到限制,因此在测量高频率信号时可能存在误差。

3. 存储式示波器:存储式示波器是一种结合了模拟和数字技术的新型示波器。

它可以将输入信号进行数码化处理,并将其存储在内存中,在需要时再进行显示和分析。

存储式示波器具有灵敏度高、带宽宽等优点,同时还可以存储大量的数据,方便后续分析。

四、示波器应用1. 电子工程:示波器是电子工程中常用的测试仪器,可以用于测量各种电路的性能和信号特性。

2. 通信工程:示波器可以用于测量通信系统中的各种信号,以便分析和调试通信系统。

利用示波器进行频率测量的实验技术

利用示波器进行频率测量的实验技术

利用示波器进行频率测量的实验技术频率是一个物理量,它表示单位时间内发生的周期性事件的次数。

在科学研究和实验中,频率测量是非常重要的。

频率测量的方法有很多种,其中一种常用的方法就是利用示波器进行频率测量。

本文将介绍利用示波器进行频率测量的实验技术。

一、示波器的原理和基本操作示波器是一种能够显示波形图像的电子仪器。

它通过探头采集电压信号,并将其转换成图形显示出来。

示波器的采样速率和带宽决定了它对信号的精确度和灵敏度。

在进行频率测量之前,首先需要了解示波器的基本操作。

通常,示波器的屏幕会显示一个波形图像,波形图像是由时间和电压两个轴构成的。

示波器上有多种控制按钮,包括触发按钮、时间和电压调节按钮等。

触发按钮是示波器中最重要的按钮之一。

它的作用是让示波器能够捕捉并显示特定的波形。

通过调节触发按钮,可以确定示波器何时开始显示波形,并能够控制波形的稳定性。

二、利用示波器进行频率测量的方法利用示波器进行频率测量的方法有许多种,下面将介绍两种常用的方法。

方法一:利用示波器的时间和垂直标尺测量通过示波器的时间和垂直标尺,可以测量出波形的周期和振幅。

假设示波器垂直标尺的最大刻度为Vmax,水平标尺的最大刻度为Tmax。

首先测量出波形的峰值电压Vp和周期T,然后可以根据以下公式计算出频率f:f = 1 / T方法二:利用示波器的频率计测量现代示波器通常都配备了内置的频率计,利用它们可以方便快捷地进行频率测量。

在使用频率计之前,需要将示波器的触发方式设置为“自动触发”,并调整显示时间和波形的放大倍数。

将示波器的探头连接到待测信号源,然后观察示波器屏幕上出现的波形图像。

通过观察波形的周期,可以直接从频率计上读取出频率值。

有些示波器还可以根据触发的信号类型,自动切换到合适的触发方式。

三、示波器频率测量的注意事项虽然利用示波器进行频率测量是一种方便快捷的方法,但在实际操作中还是需要注意一些事项。

首先,选择合适的触发方式非常重要。

示波器的测量方法

示波器的测量方法

示波器的测量方法
示波器测量方法如下:
1. 连接电路:将被测信号的输出端与示波器的输入端相连。

确保连接的稳定性和正确性。

如果需要对直流电路进行测量,应注意正确选择示波器的耦合方式。

2. 调整示波器控制按钮:示波器的控制按钮通常包括触发控制按钮、时间/水平控制按钮和垂直/幅值控制按钮等。

根据需要,逐一调整这些按钮,以便获得所需的波形图。

3. 触发信号:为了获得更清晰、稳定的波形图,可以使用触发技术来控制示波器。

设置触发的方式和水平位置,以使示波器触发在所需的时间点上。

触发信号可以是所测信号本身,也可以是和所测信号相应的外部信号。

4. 调整时间/水平:通过调整示波器的时间/水平控制按钮,设置示波器屏幕上时间的刻度。

根据所测信号的频率,适当调整时间/水平设置,以便将整个信号周期显示在屏幕上。

5. 调整垂直/幅值:通过调整示波器的垂直/幅值控制按钮,设置示波器屏幕上垂直的刻度。

根据所测信号的幅值范围,适当调整垂直/幅值设置,以便将信号完整地显示在屏幕上,并注意避免信号超出示波器的测量范围。

6. 观察和记录波形:通过示波器屏幕上的波形显示,观察被测信号的波形图形和特征。

可以使用示波器的光标测量功能,如测量峰值、频率、占空比等,对波形进行定量的测量和分析。

示波器的差分信号测量

示波器的差分信号测量

示波器的差分信号测量初步介绍差分测量、放大器类型、应用及怎样避免常见错误当存在500 mVp-p、60 Hz 的共模噪声时,使用传统示波器探头不能测量模拟的4 mVp-p 心跳波形(上图)。

差分放大器则可以从噪声中提取信号。

引论所有测量都是两点测量人们一直在一条电路的两点之间测量电压,不管是使用电压表还是使用示波器。

当示波器探头接触电路中的一点时,即使没有连接地线,通常也会在显示器上出现波形。

在这种情况下,测量的参考点是经过示波器机箱的安全接地通往电路中的电气地。

数字电压表通过两个探头测量两点之间的电位。

由于这两个探头是彼此隔离的,因此这两点可以位于电路中任何地方。

但情况并不总是如此。

在数字电压表出现前,人们使用VOM(万用表)手持式仪表测量“浮动”电路。

由于这些仪表是无源的,因此它们往往会给被测电路带来负荷。

使用高阻抗VTVM(真空管电压表),可以执行侵入性较小的测量。

VTVM 有一个重大的局限性,即其测量总是以地为参考点。

VTVM外壳接地,并连接到参考引线上。

由于固态增益电路的问世,高性能电压表可以与地线隔离,从而可以执行浮动测量。

目前的大多数示波器,如老式VTVM,只能测量以大地为参考点的电压,地线则连接到示波器机箱上。

这称为“单端”测量,探头地线提供了参考通路。

遗憾的是,有时这种局限性会降低测量的完整性,或不可能进行测量。

如果被测电压位于两个电路节点之间而且这两点均未接地,那就不能使用传统的示波器探测技术。

常见的实例是测量开关电源中的栅极驱动信号(参见图1)。

像普通电话线路中的那种平衡信号(在两条引线之间,且没有地回路)是不能直接测量的。

我们将会看到,甚至某些“以地为参考”的信号也不能如实地使用单端技术来测量。

如果地线不成其为地线我们都听说过“接地环路”,书本上教我们避免“接地环路”。

但接地环路是怎样破坏示波器测量的呢?当两条或多条单独的接地通路聚结于两点或多点时,将会产生接地环路。

其结果是导体连成了一个环。

示波器的测量精度和准确性分析

示波器的测量精度和准确性分析

示波器的测量精度和准确性分析示波器是一种广泛应用于电子测量和实验的仪器。

在电路设计和故障排除中,精确的测量结果对于确保电路性能和可靠性至关重要。

因此,了解示波器的测量精度和准确性是十分重要的。

一、测量精度示波器的测量精度指示波器测量结果与被测波形真实值之间的差异程度。

测量精度受到示波器本身技术特性和测量环境等因素的影响。

1. 垂直测量精度垂直测量精度是指示波器对输入信号幅值的测量精度。

它受到示波器的增益线性度、输入缓冲放大器的噪声以及示波器的垂直分辨率等因素的影响。

增益线性度指的是示波器在不同设置下的放大倍数是否准确。

如果示波器的线性度不高,测量结果将存在明显的偏差。

2. 水平测量精度水平测量精度是指示波器对时间和频率的测量精度。

它受到示波器时间基准的稳定性、水平缩放的准确性以及示波器的时间分辨率等因素的影响。

时间基准的稳定性是指示波器的时间刻度是否准确及其长期稳定性。

若时间基准不可靠,测量结果将受到很大影响。

二、准确性准确性是指示波器测量结果与被测信号真实值之间的接近程度。

示波器的准确性主要与校准有关,校准是确保示波器测量结果准确的重要手段。

1. 定期校准定期校准是示波器维持准确度的重要方法。

示波器制造商通常建议用户在使用一段时间后进行定期校准。

通过校准,可以检查和调整示波器各个测量通道的增益、偏移、时间基准以及补偿等参数,确保测量结果准确。

2. 外部标准使用外部标准是进行示波器校准的一种常见方法。

外部标准可以是已知准确度的信号源或者其他经过校准的设备,通过与示波器进行比较,确定示波器的测量偏差,并进行修正,从而提高示波器的准确性。

三、提高测量精度和准确性的方法1. 注意测量环境示波器的测量精度和准确性受到测量环境的影响。

应尽量避免电磁干扰和温度变化等因素对示波器的影响,确保测量结果的可靠性。

2. 合理选择示波器根据具体需求,在选择示波器时考虑其技术指标和功能。

对于要求较高的应用场景,需要选择具有高精度和准确性的示波器,以确保测量结果的可靠性。

示波器的射频测量和分析技巧

示波器的射频测量和分析技巧

示波器的射频测量和分析技巧射频测量和分析技术是现代通信、无线电和电子领域中的关键技术之一。

示波器作为一种重要的测量仪器,被广泛用于射频电路的测试和分析。

本文将介绍示波器在射频测量和分析中的常用技巧和方法,以帮助读者更好地理解和应用这一技术。

一、示波器的基本原理简介示波器是一种用于测量电信号波形的仪器。

它通过将待测信号连接到水平和垂直偏转系统,可以显示出信号的波形和特征。

示波器主要由示波管、扫描电路、触发电路和垂直放大器等组成。

二、射频信号的测量技巧1. 垂直放大器的设置在射频测量中,正确设置垂直放大器是非常关键的。

首先,选择适当的垂直增益,使得待测信号能够充分展示在示波器的屏幕上;其次,根据信号的幅度范围选择合适的垂直灵敏度,确保信号能够在示波器的垂直方向上合理分布。

2. 水平扫描的设置对于射频信号的测量,正确设置水平扫描参数也非常重要。

首先,通过调整扫描速率和时间基准,使得待测信号的周期和特征能够在示波器屏幕上得以清晰显示;其次,选择合适的水平灵敏度,确保信号能够在示波器的水平方向上合理分布。

3. 触发电路的应用射频信号的触发对于测量和分析来说是至关重要的。

通过调整触发电路的阈值和触发方式,可以实现对特定信号的检测和显示。

在射频测量中,通常选择边沿触发方式,并根据信号波形的特点调整触发电平和触发延迟,以确保触发的准确性和稳定性。

三、射频信号的分析技巧1. 频率测量示波器可以通过测量信号的周期或脉宽,计算出信号的频率。

在射频测量中,通常选择自动或单次测量模式,并利用示波器上的软件工具实现频率的测量和分析。

2. 波形分析示波器通过显示信号的波形和特征,可以对射频信号进行进一步的分析。

通过观察波形的振幅、频率、相位和时序等参数,可以判断信号的稳定性、失真情况和干扰程度,从而指导后续的电路设计和优化。

3. 频谱分析频谱分析是射频信号分析中常用的方法之一。

示波器可以通过傅里叶变换将时域信号转换为频域信号,并显示出信号的频谱分布。

示波器的峰值检测和有效值测量

示波器的峰值检测和有效值测量

示波器的峰值检测和有效值测量示波器(oscilloscope)是一种广泛应用于电子行业的仪器,用于显示和测量电信号的波形。

在信号测量过程中,峰值检测和有效值测量是示波器的两个重要功能。

本文将深入探讨这两种测量方法的原理和应用。

一、峰值检测峰值检测是指示波器测量一段时间内信号的最大振幅。

此功能对于测量脉冲信号的幅度、测量交流信号的峰峰值等都非常有用。

峰值检测采用的是峰值检测电路,电路主要由快速整流电路和保持电路组成。

快速整流电路通过快速将信号转换为单方向的电压,保持电路则将最大峰值保持在示波器屏幕上显示。

峰值检测功能使得我们能够直观地获取信号的最大振幅,帮助我们进行信号分析和故障排除。

二、有效值测量有效值测量是指示波器计算一段时间内信号的均方根值。

有效值是交流信号最基本的特性之一,常用于电压、电流和功率的测量中。

无论是正弦波还是非正弦波信号,有效值都是系统能量的平均值。

示波器通过对信号波形进行采样和计算,可以准确地测量信号的有效值。

对于非正弦波形的复杂信号,示波器采用了一些数学算法进行有效值的计算,确保测量结果具有高精度和可靠性。

有效值测量在各个领域都有广泛的应用,例如在电力系统中,用于测量电压和电流的有效值以确保系统的运行安全和稳定。

在音频领域,有效值测量被用于衡量声音的音量大小。

总结:示波器的峰值检测和有效值测量是其两种重要的测量方法。

峰值检测帮助我们确定信号的最大振幅,对于分析信号特征和解决问题至关重要。

有效值测量则能够准确地计算信号的均方根值,广泛应用于各个领域的信号测量中。

无论是调试电路、测试设备还是进行音频分析,示波器的峰值检测和有效值测量功能都是不可或缺的重要工具。

通过正确理解和应用这两种测量方法,我们可以更准确地分析信号特征,提高工作效率,并解决各种电子领域的问题。

示波器简介介绍

示波器简介介绍
示波器简介介绍
汇报人:文小库 2023-11-25
目 录
• 示波器概述 • 示波器的基本原理 • 示波器的应用领域 • 示波器的选购与使用技巧 • 示波器的维护与保养 • 示波器的发展趋势与未来展望
01 示波器概述
定义与特点
定义
示波器是一种用于显示电信号波形的电子测量仪器。它能够将电信号转换成可见的波形,以便人们观察、分析和 测量信号的幅度、频率、相位等参数。

采样率
采样率越高,示波器对信号的 细节捕捉能力越强。
分辨率
分辨率决定了示波器能够显示 的信号细节,分辨率越高,显 示的波形越清晰。
触发模式
触发模式决定了示波器的启动 方式,主要有自动、正常、单
次三种模式。
示波器的使用注意事项
使用前应先检查电源线是否连 接良好,避免电源波动影响示
波器的正常工作。
使用过程中应避免对示波器进 行剧烈振动或碰撞,以免损坏
示波器的发展历程
发展历程
示波器自20世纪初问世以来,经历了模 拟示波器、数字示波器和现代智能示波 器三个阶段。随着技术的不断发展,示 波器的性能和功能也不断提升,使得它 能够更好地满足各种应用需求。
VS
技术进步
现代智能示波器采用了高速数字信号处理 技术,能够实现高精度、高稳定的测量, 同时还可以进行自动校准、自动设置等智 能化操作,大大提高了测量效率和准确性 。
02 示波器的基本原理
示波器的结构与工作原理
01
示波器主要由垂直通道和水平通 道组成。
02
垂直通道负责接收被测信号,并 将其转换为电子束。
水平通道则控制电子束的扫描速 度。
03
在示波器的屏幕上,垂直方向的 电子束与水平方向的扫描束交叉

示波器的波形显示和测量方法

示波器的波形显示和测量方法

示波器的波形显示和测量方法示波器是一种常用的电子测试设备,用于显示和测量电信号的波形。

它广泛应用于电子工程、通信、医疗、教育和科研等领域。

本文将介绍示波器的波形显示原理和常用的波形测量方法。

一、波形显示原理示波器通过采集被测信号并将其转换为电压值,然后将这些离散的电压值通过水平和垂直扫描进行扫描和显示,从而形成连续的波形图像。

具体的波形显示原理有两种常见的类型:模拟示波器和数字示波器。

1. 模拟示波器模拟示波器使用电子光束和电磁偏转来显示被测信号的波形。

它通过电子束在阴极射线示波管(CRT)屏幕上作二维扫描,利用电磁偏转系统来控制电子束的水平和垂直移动,从而将电压信号转换为可见的波形图像。

2. 数字示波器数字示波器将被测信号转换为数字信号,并通过模数转换器将其转换为离散的电压值。

然后,这些离散的电压值可以通过数字信号处理技术重新恢复成连续的波形,最终在示波器屏幕上显示出来。

数字示波器具有高精度、稳定性好以及多种自动化功能,因此在现代电子测试中得到了广泛应用。

二、波形测量方法示波器不仅可以显示波形,还可以进行各种波形测量。

常用的波形测量方法有以下几种:1. 幅值测量示波器可以测量波形的峰值、峰峰值、平均值和有效值等幅值参数。

通过在示波器上设置合适的垂直量程和触发模式,可以准确地测量波形的幅度。

2. 频率测量示波器可以通过测量波形的周期或脉冲宽度来获取频率信息。

利用示波器上的时间测量功能,可以轻松地获取波形的频率,并通过适当的设置还可以获得频谱分析图。

3. 相位测量对于多个信号或者周期信号,示波器可以通过设置触发源和触发级来测量信号之间的相位关系,从而获取波形的相位信息。

相位测量对于频率合成、通信系统和控制系统等领域非常重要。

4. 上升时间和下降时间测量对于快速变化的信号,示波器可以测量信号的上升时间和下降时间,这对于分析信号的传输特性和约束等参数是至关重要的。

5. 示波器中的数学运算现代数字示波器经常配备各种数学运算功能,例如傅里叶变换、微分、积分和滤波等。

用示波器测量相位差的方法

用示波器测量相位差的方法

用示波器测量相位差的方法一、前言在电子技术领域中,相位差是非常重要的一个参数。

它可以用来描述两个信号之间的时间差,是许多电路和系统设计中必须考虑的因素。

而测量相位差的方法也是非常关键的,因为只有准确地测量了相位差,才能保证电路或系统的正常运行。

本文将介绍用示波器测量相位差的方法,包括仪器准备、接线方法、操作步骤等方面。

二、仪器准备1. 示波器:必须具有双通道功能,并且能够显示两个信号波形。

2. 信号源:提供两个相位不同但频率相同的信号。

信号源可以是任何可以输出正弦波或方波的设备,如函数发生器、信号发生器等。

3. 接线:需要一些连接线和探头来连接示波器和信号源。

三、接线方法1. 将示波器通道1和通道2分别与信号源输出端口连接。

通常情况下,通道1连接到主要信号源输出端口,而通道2连接到参考信号源输出端口。

2. 如果使用探头,则将探头插入示波器输入端口,并将另一端连接到信号源输出端口。

3. 确保连接正确无误,并且所有设备都已打开和调整好参数。

四、操作步骤1. 打开示波器,并将它设置为双通道模式。

确保通道1和通道2均已启用,并且它们的垂直灵敏度和时间基准已经调整好。

2. 设置示波器触发模式为“内部触发”,并选择一个适当的触发电平。

3. 调整信号源,使其产生两个相位不同但频率相同的信号。

可以使用正弦波或方波信号,但必须确保两个信号具有相同的频率。

4. 将通道1和通道2分别与两个信号源连接。

如果使用探头,则将其插入示波器输入端口,并将另一端连接到信号源输出端口。

5. 调整示波器水平扫描控制,使得两个信号在屏幕上能够清晰地显示出来,并且它们之间的时间差可以直观地看出来。

6. 测量相位差:在示波器屏幕上选择一个参考位置,如正弦波或方波的峰值位置。

然后测量第二个信号与参考位置之间的时间差。

这个时间差就是两个信号之间的相位差。

7. 重复以上步骤,直到得到准确的相位差测量结果。

五、注意事项1. 在进行测量时,必须确保两个信号具有相同的频率。

使用示波器测量电流和电压的方法

使用示波器测量电流和电压的方法

使用示波器测量电流和电压的方法
使用示波器测量电流和电压是一项技术性任务,需要正确理解示波器的基本知识,并
正确处理信号,才能正确测量出电流和电压的大小。

首先,根据情况选择合适的示波器,一般情况下,当测量范围较大时,可以采用脉冲
变压器示波器;当测量范围较小时,可以考虑将普通示波器和电压表相结合使用,也可以
考虑采用多部件组合的示波器;当希望查看特定信号的指示时,可以采用多达48线以上
的示波器组合仪。

其次,安装示波器正确。

一般来说,示波器得到的输出信号是地、零电压信号,在此
基础上测量信号上的偏移;如果是普通示波器,则可以通过一个调节旋钮来调整偏移量,
具体方法是将调节旋钮调节到示波器盘上的0点位,则得到的电压读数即为0。

第三,连接示波器,将示波器的输入端接在信号源的输出端和想要测量的部分之间,
接好后从示波器上可以读出微小的电压和电流,并根据读号是否符合工程资料上的值来判
断合不合格。

最后,测量电压和电流值。

将预设参数设定好后,将按钮置于示波器的“测量”模式,这样可以精确的检测到电流或电压的大小;采用视觉图像方法,通过对示波器屏幕上的振
动线来判断电压和电流的大小,也可以根据比较的坐标来确定此时的电压大小或电流大小。

正确使用示波器测量电流和电压,不仅可以更准确的检测出系统性能,而且可以根据
之前测量结果,快速修复某些故障,提高工作效率。

示波器测数字信号的方法

示波器测数字信号的方法

示波器测数字信号的方法
使用示波器测量数字信号的方法可以分为以下步骤:
1. 设置示波器:首先,需要设置示波器的参数,以便准确地捕捉和测量信号。

这包括设置垂直灵敏度、垂直偏移、时基范围和水平位置等。

2. 触发源选择:确保示波器的触发源正确设置,以便当信号出现在屏幕上时,能够准确地进行测量。

3. 信号捕获:使用示波器的探头连接到信号源,确保信号被正确地捕获。

调整时基范围,以便观察信号的整个周期或所需的时间段。

4. 测量参数:使用示波器的测量工具测量信号的关键参数,如幅度、频率、周期、上升时间等。

这些参数对于评估信号的质量和特性非常重要。

5. 分析结果:根据测量的参数,分析信号的特性。

例如,如果测量到的频率与预期不符,可能需要检查信号源或电路是否存在问题。

6. 记录结果:将测量的结果记录下来,以便后续的分析和报告。

记录的结果应该包括测量的参数、示波器的设置以及任何观察到的异常或问题。

请注意,以上步骤可能会根据示波器的型号和具体的测量需求有所不同。

在进行实际测量时,建议参考示波器的用户手册或操作指南,以确保正确和准确地测量信号。

micsig示波器用法

micsig示波器用法

micsig示波器用法
Micsig示波器是一种用于测量电子设备中电压信号的仪器,它
可以帮助工程师和技术人员分析和诊断电路中的问题。

以下是
Micsig示波器的用法:
1. 波形测量,Micsig示波器可以用来测量电压随时间变化的
波形。

通过连接探头到被测电路上,可以观察到电压信号的波形,
从而分析信号的频率、幅度、周期等特性。

2. 故障诊断,当电路出现故障时,Micsig示波器可以帮助定
位问题。

通过观察信号的波形,可以发现信号的失真、噪音、幅度
异常等情况,从而找出故障的原因。

3. 波形存储与分析,Micsig示波器通常具有波形存储和回放
功能,可以记录并保存波形数据,方便后续分析。

一些高级示波器
还可以进行波形的数学运算、频谱分析等,帮助工程师深入分析信
号特性。

4. 自动测量功能,Micsig示波器通常具有多种自动测量功能,可以快速测量波形的各项参数,如周期、频率、峰峰值等,提高工
作效率。

5. 外部触发功能,Micsig示波器可以通过外部触发信号来控制波形的显示和采集,适用于复杂的触发条件下的波形分析。

6. 数据导出和报告,Micsig示波器通常支持将测量数据导出到计算机或存储设备,以便生成报告或进行进一步的数据处理。

总之,Micsig示波器是一种功能强大的电子测量仪器,可以广泛应用于电子、通信、医疗等领域,帮助工程师和技术人员进行电路分析、故障诊断和信号测试。

在使用Micsig示波器时,需要根据具体测量需求选择合适的测量范围、触发条件和测量参数,以确保准确测量并得出正确的分析结论。

示波器的测量方法

示波器的测量方法
1 20 ns / div

3.5.2 示波器的正确使用
首先要认真阅读示波器的技术说明书,掌握其使用 方法,熟悉各旋钮、按键的功能。 使用示波器之前,要仔细检查旋钮、开关、电源线 有无损坏,发现问题即时修理或换新。 使用示波器时,“辉度”旋钮不宜开得过亮,不能 使光点长期停留在荧光屏一处,因为高速的电子束轰 击荧光屏时,只有少部分能量转化为光能,大部分则 变成热能。所以不应当使亮点长时间停留在一点上, 以免烧坏荧光粉而形成斑点。
3.6.2 示波器的正确使用(续)
(2)X轴通道:包括时基因数、工作方式、触发方式、 耦合方式及外触发最大输入电压等。 (3)主机:包括显示尺寸、后加速阳极电压、校准信 号等。 通用示波器的面板示意图
3.6.2 示波器的正确使用(续)
3.几点操作注意事项
(1)用光点聚焦,不用扫描线聚焦。光点细小,显示 图形分辨力高,测量准确。辉度调暗些,使亮点尽量小, 利于提高分辨力,对荧光屏也有保护作用。 (2)充分利用“灵敏度”、“扫描速度”、衰减探头、 “倍乘”、“扩展”等旋纽,使波形大小适中。 (3)“灵敏度”、“扫描速度”应校准,以便定量测 量。 (4)注意扫描稳定度、触发电平、触发极性等旋纽的 配合调节。扫描稳定度调节扫描电路的触发灵敏度,通 常应调节在约低于连续扫描临界状态,可获得最大触发 灵敏度,利于扫描同步;调触发电平选择合适的起扫时 刻;而触发极性对应于被测信号的前后沿问题。在测脉
3.6.1 示波器的选用
根据被测信号的特点来选择示波器。
(1)根据要显示的信号数量,选择单踪或双踪示波器。 (2)根据被测信号的频率特点,选择示波器频带、余辉 时间,以及是否选用取样示波器。 (3)根据被测信号的重现方式,选择是否用记忆存储示 波器。 (4)根据被测信号是否含有交直流成分选择。 (5)根据被测信号的测试重点选择。

如何正确使用示波器进行电路测量

如何正确使用示波器进行电路测量

如何正确使用示波器进行电路测量在电子技术领域中,示波器是一种重要的测试仪器,用于测量电路中的电压信号和波形。

正确使用示波器能够帮助工程师准确分析和诊断电路故障,提高电路设计和调试的效率。

本文将详细介绍如何正确使用示波器进行电路测量,并提供一些实用的技巧和注意事项。

一、示波器的基本原理和结构示波器通过探头(或探头配件)将被测电路的电压信号输入示波器主机,在示波器主机内部,该电压信号经过放大、滤波、采样和显示等处理,最终以波形的形式显示在示波器的屏幕上。

示波器主要由探头、垂直放大器、水平系统、触发系统、显示系统等组成。

二、选择合适的探头探头是连接被测电路和示波器主机的重要装置,它直接影响到测量的准确性和信号质量。

在选择探头时,需要考虑被测信号的频率范围、波形特性以及电路的输入阻抗等因素。

一般常用的探头有被动探头、差分探头和高压探头等。

三、设置示波器的基本参数在进行电路测量前,需要正确设置示波器的各项参数,以确保所测量到的波形准确可靠。

主要包括以下几个方面:1. 垂直尺度的设置:根据被测电压信号的幅值范围和波形特点,设置示波器的垂直尺度,使得波形能够占满屏幕,既保证了测量的灵敏度,又避免了波形的失真。

2. 水平尺度的设置:根据被测信号的频率和时间特性,设置示波器的水平尺度,使得波形在屏幕上显示完整,方便观察和分析。

3. 触发方式和触发电平的设置:触发方式一般有边沿触发、脉冲触发、视频触发等,根据被测波形的特点选择合适的触发方式,并根据波形的幅值调整触发电平,确保稳定触发。

四、测量直流和交流电压示波器可以用来测量直流和交流电压。

在测量直流电压时,选择直流耦合方式,并确保示波器的直流偏置为零,可减小测量误差。

在测量交流电压时,选择交流耦合方式,并选择合适的交流耦合通带范围,以保证测量结果的准确性。

五、测量电流和功率示波器可以通过电流探头测量电路中的电流信号,并根据电流和电压的关系计算功率。

在测量电流时,需要将电流探头连接到被测电路的合适位置,并根据电流大小选择合适的量程。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浮地测量和隔离输入示波器基础知识应用指南本应用指南将介绍电源测量术语,阐述为进行浮地测量提供的不同选项,重点介绍每种选项的优点和缺点。

最苛刻的浮地测量要求源自电源控制电路,如马达控制器、不间断电源和工控设备。

在这些应用领域中,电压和电流可能会很大,足以给用户和/或测试设备带来危险。

在测量浮地高压信号时,有许多选项可以考虑。

每个选项都有自己的优点和缺点。

差分测量与浮地测量比较所有电压测量都是差分测量。

差分测量定义为两点之间的电压差。

电压测量分成两类:1. 参考地电平测量2. 非参考地电平测量(也称为浮地测量)传统示波器大多数传统示波器把“信号参考”端子连接到保护接地系统上,通常称为“接地”。

通过这种方式,所有应用到示波器的信号或示波器提供的信号都会有一个公共连接点。

这个公共连接点通常是示波器机箱,通过AC供电设备电源线中的第三条线接地,来保持在(或接近)零伏。

这意味着每个输入通道参考点都捆绑在一个接地参考源上。

不应该使用传统无源探头,直接在参考地电平的示波器上进行浮地测量。

视流经参考引线的电流数量,传统无源探头会开始变热;在电流足够高时,它会类似熔丝那样熔化断开。

浮地测量技术为进行高压浮地测量提供的不同选项包括:n隔离输入示波器n差分探头n电压隔离装置n“A - B” 测量技术n示波器“浮地”技术术语表共模信号两个输入上共同的输入信号成分(幅度和相位完全相同)。

共模范围差分放大器可以抑制的共模信号的最大电压(从接地)。

共模抑制比衡量差分放大器抑制共模信号能力的一个性能指标。

由于共模抑制一般会随着频率提高而下降,因此通常会指定特定频率的CMRR。

差分模式或差模差分放大器两个输入之间的不同信号。

差模信号(VDM)可以表达为:VDM = (V+input) - (V-input)差模信号两个输入之间不同的信号。

差分测量两点之间的电压差。

差分探头为差分应用专门设计的探头。

有源差分探头在探头尖端包含一个差分放大器。

无源差分探头与差分放大器一起使用,可以进行校准,精确匹配两条信号路径中(包括参考引线)的DC和AC衰减。

浮地测量任何一点都没有参考地电平(地电位)的差分测量。

接地环路当两个或两个以上的单独接地路径在两个或两个以上的点捆绑在一起时,会出现接地环路。

结果是一个导体环路。

在存在变化的磁场时,这个环路会变成变压器的次级电路,作为短路线圈操作。

附近承载非DC电流的任何导体都会产生磁场,激发变压器。

许多导线、甚至数字IC输出引线中的AC线路电压都会产生这种激发作用。

环路中循环的电流会在环路内部任何阻抗中积聚电压。

这样,在任何给定时点上,接地环路中的各个点都不会位于相同的AC电位。

把示波器探头地线连接到被测电路上,如果电路“接地到”接地装置,那么会产生接地环路。

作用在路径内部阻抗上的循环电流会导致电压电位积聚在探头接地路径中。

这样,示波器输入BNC连接器上的“接地”电位与被测电路中的接地不同(即“此接地非彼接”)。

这种电位差可以是几微伏,也可以高达几百毫伏。

由于示波器从输入BNC连接器的外壳上参考测量,因此显示的波形可能并不表示探头输入上的实际信号。

随着被测信号的幅度下降,误差变得更加明显。

“单一测量”在使用AC线路电源及使用标准三线电源线操作时,带有接地输入通道、电池供电的示波器表现出来的局限性与传统示波器一样。

然而,在使用电池操作时,这些示波器可以一次进行高达30VRMS的单一安全浮地测量。

记住,所有输入公共源都捆在一起共享参考点和隔离通道结构比较大多数台式示波器共享下面所示的结构。

在这种结构中,在进行多通道测量时,所有输入信号必须有相同的电压参考,共享的默认参考是“大地”接地。

如果没有差分前置放大器或外部信号隔离器,这些台式示波器则不适合进行浮地测量。

与传统台式示波器结构相比,这种隔离通道结构中的电压参考没有在仪器内部连接在一起。

因此,使用的输入的每个参考点必须连接到参考电压上。

独立浮地隔离输入仍由寄生电容耦合。

这可能会发生在输入参考和环境之间,及手动发生在输入参考点之间。

基于这一原因,建议把参考点连接到系统接地或另一个稳定电压上。

如果输入的参考点连接到高速和/或高压信号上,那么您应该了解寄生电容。

隔离输入示波器测量采用IsolatedChannelÔ输入结构的示波器,如TPS2000B或THS3000系列,提供了真正的、完整的通道到通道和通道到电源线隔离能力。

每条通道相互单独隔离,同时与其它非隔离器件隔离。

在使用IsolatedChannelÔ示波器进行浮地测量时,必须使用专门设计的无源探头,如TPP0201,进行高达30 VRMS的浮地测量;或使用THP0301,进行高达300 VRMS的浮地测量;或使用P5122/P5150探头,进行高达600 VRMS的浮地测量。

与大多数传统示波器使用的无源探头不同,这些类型的探头在BNC连接上绝缘,防止发生触电;参考引线是为耐受额定浮地电压而设计的。

(如需更多信息,请参阅本应用指南后面“注意类别和电压”一节中的讨论)差分探头测量通过使用差分探头系统,可以通过泰克TDS/DPO/MSO和大多数其它接地示波器进行浮地测量。

某些差分探头(如P6246、P6247、P6248和P6330)是为幅度较低的快速信号优化的。

其它探头(如P5200A、P5205A和P5210A)则处理速度较慢、电压幅度较高的信号。

ADA400A差分前置放大器即使在高噪声环境中,仍能显示低频率、超低幅度的差分信号。

电压隔离器测量顾名思义,隔离器在浮地输入与参考地电平输出之间没有直接的电气连接。

信号通过光学或分路光学/变压器手段耦合。

“A - B”测量(也叫伪差分测量)“A - B”测量技术可以使用传统示波器及无源电压探头,间接进行浮地测量。

一条通道测量“正”测试点,另一条通道测量“负”测试点。

从第一个测量值中减去第二个测量值,去掉两个测试点的公共电压,以便观察不能直接测量的浮地电压。

示波器通道必须设置成相同的伏特/格;探头应与示波器配套,使共模抑制比达到最大。

测量参考地电平电压的两只探头实例“浮地”传统接地示波器使用不会把接地传送到次级电路的隔离变压器,或通过把示波器的AC市电电源线接地连接器,是一种常用的有风险的示波器浮地测量方式。

“浮地”参考地电平示波器把所有可以接触的相同电压的金属(包括机箱、机壳和连接器)作为探头参考引线连接的测试点。

浮地测量,危险电压发生在示波器机箱上。

V1可能有几百伏!优点和缺点它从测量中有效消除了接地环路电压。

优点尽管浮地设备是一种利用现有设备进行浮地测量,消除频率较低的信号上接地环路的方法,但它是一种不安全的、危险的作法,不应采用这种方法。

缺点不管是从示波器上的升压角度(对操作人员可能会发生电击),还是由于地波器变压器绝缘装置上累积的应力,这种技术都是危险的。

这种应力可能不会立即导致故障,但即使示波器恢复到正确接地操作,将来仍可能会导致发生危险故障(电击和危险)。

在较高的频率上,切断接地可能不会中断接地环路,因为电源线供电的仪器在接地以上浮地时会表现出大的寄生电容。

振铃可能会破坏浮地测量。

浮地示波器没有均衡输入。

参考一侧(探头上的“接地”夹)有一个明显的到地电容。

参考点连接的任何源阻抗将在快速共模跳变中加载,使信号发生衰减。

更糟糕的是,高电容可能会损坏某些电路。

连接逆电器上方门中共用的示波器可能会使门驱动信号速度下降,防止被测器件关闭,防止破坏输入桥接器。

这种故障通常伴随着工作台上出现小的火花。

另一个缺点是其一次只能进行一项测量。

记住,所有输入参考都相互捆绑在一起。

一旦浮地一个输入参考,所有输入参考现在都在同一水平上浮地。

寄生电感和电容导致的振铃使信号失真,使测量无效泰克TPS2000B和THS3000系列IsolatedChannelÔ示波器TPS2000B系列把泰克经过验证的台式示波器性能与专为测量工用电池操作的产品设计的4条隔离通道结构结合在一起。

这种仪器与选配的电源捆绑套件(TPS2PBND2)配套使用时,确立了同类产品中的高级浮地测量标准。

电源捆绑套件包括4只无源高压探头(P5122)及电源测量和分析软件包(TPS2PWR1)。

电源测量和分析软件包提供了电源分析测量(真实功率、无功功率、真实功率因数、相角)、波形分析测量(RMS、波峰因数、频率)、谐波测量及开关损耗测量。

THS3000系列是为使用示波器时要求更高流动性、而又不降低台式仪器性能或执行浮地测量能力的工程师们设计的。

这种手持式仪器坚固耐用,重量型,一块电池可连续工作7个小时,支持自动测量功能,在实验室操作和现场操作中都提供了很大的通用性。

该仪器的隔离通道、高压采集(高达1000 VRMS CAT II)及高级波形记录功能可以安全进行浮地测量,特别适合经常需要把实验室中的测量与现场中的测量关联起来的用户。

注意CAT和电压为进行浮地测量选择适当的电压探头怎样选择探头和示波器组合:1. 确定测量(或过压)类别IEC 61010-1国际标准为电压测量仪器规定了四种过压类别。

一类到四类过压都是依据瞬态信号期间可能存在的电气能量多少确定的。

在IEC 61010-1中,电压测量仪器根据耐受电压瞬态信号的能力来划分等级。

2. 确定最大浮地电压类别描述摘要四类用来对低压项目中的电压执行测量(<1,000 V)。

三类用来在楼宇系统中执行测量。

二类用来在直接连接低压系统的电路上执行测量。

一类用来在没有直接连接市电的电路上执行测量。

3. 确定最大尖端到接地电压。

4. 确定从探头尖端到参考引线的最大电压。

5. 确定屏幕上希望的最大峰峰值读数。

为TPS2000B和THS3000系列示波器选择适当的电压探头探头名称TPP0201 THP0301 P5150 P5122*1最大探头尖端到接地电压300 VRMS CAT II 300 VRMS CAT III 1000 VRMS CAT IIDC耦合时1000 VRMSCAT II最大参考地电平(浮地)电压30 VRMS 300 VRMS CAT III 600 VRMS CAT II600 VRMS CATII衰减设置10x 10x 50x 100x 带宽200 Mhz 300 Mhz 500 Mhz 200 Mhz 探头类型无源无源无源无源屏幕上峰峰值电压2 TPS 400 VP-P 400 VP-P 2000 VP-P 2828 VP-P THS849 VP-P849 VP-P2828 VP-P2828 VP-P屏幕上RMS电压2 TPS 141 VRMS 141 VRMS 707 VRMS 1000 VRMS THS300 VRMS300 VRMS1000 VRMS1000 VRMS1 P5122 探头不应该用来在TPS2000 上对DC > 300 V的信号进行AC耦合测量。

相关文档
最新文档