无人机应用技术论文优秀范文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无人机应用技术论文优秀范文
导读:我根据大家的需要整理了一份关于《无人机应用技术论文优秀范文》的内容,具体内容:随着技术的不断发展,无人机在我国的军事应用方面越来越广泛了,作出了杰出的贡献。下面是我为大家精心推荐的无人机技术论文,希望能对大家有所帮助。无人机技术论文篇一:《试谈无人...随着技术的不断发展,无人机在我国的军事应用方面越来越广泛了,作出了杰出的贡献。下面是我为大家精心推荐的无人机技术论文,希望能对大家有所帮助。
无人机技术论文篇一:《试谈无人机测量技术》
[摘要]文章分析了红外传感原理并自行设计红外传感器应用于无人机姿态测量方向,通过场地实验寻找倾角与电压关系,建立函数模型,进一步坐标变换找出测量信息与姿态角的关系。在红外探头前端放置滤光片有效抑制太阳干扰情况下,进行机载飞行实验,通过与传统IMU测量的姿态信息做比对验证设计的可行性。
[关键词]无人机测量技术
无人机稳定控制和导航的最基本、最核心的参数之一是姿态角。传统姿态测量方法主要是惯性测量系统,但由于其硬件系统设计复杂,成本较高,陀螺仪在长时间工作时还存在累积误差,因此,想低成本地完成无人机自主控制仍旧比较困难考虑到红外温度传感器能感知天空地而间的热辐射
的特点,本文提出一种新型的测量姿态信息的方法,相比传统姿态测量系统,其具有体积小、重量轻、成本低等特点。采用新型的ARMCortex-M3
内核微处理器STM32F103ZET6作为处理单元,使用两对红外温度传感器对飞机的俯仰和横滚信息进行姿态捕获,实验表明:该方法能有效满足一般无人机姿态测量的需求。
一、硬件设计
飞机的稳定性是飞机设计中最为重要的参数,它直接表征飞机在受到扰动后恢复到原始状态的能力。其中,飞机的稳定性包括纵向、横向和航向稳定性,分别反映俯仰、滚转及方向的稳定特性。本文所设计的基于红外传感原理的无人机姿态测量系统是无人机飞行控制系统的重要组成部分之一,主要针对飞机飞行中在纵向和横向稳定性的控制。主要由红外传感器、气压传感器、处理器、执行机构、遥控接收机、电台等部分组成。其中处理器作为数据处理和飞行控制的核心,主要完成采集各只传感器的数据,对数据进行综合处理并解算出飞机的姿态,从而实现对飞机稳定飞行的控制。综合数字信号处理能力和体积大小,选择性价比较高的
STM32F103ZET6型微处理器作为主控模块,可使用其内部A/D转换口接收信息,经计算产生多路PWM信号驱动执行机构,用以调整飞行姿态。传感器单元包括两对红外传感器和气压传感器构成,主要完成对飞行中的姿态和高度信息的采集。地而控制用以稳定飞行中的模式切换和危险保护。
二、红外传感器设计
1、MLX90247型红外线温度传感器
MLX90247型红外线温度传感器是由集成电路组成并且能够检测很小的热量辐射,包括热吸收区(热端)、硅基片(冷端)及外封装组成。基本工作原理类似于普通的热电偶原理,也即吸收红外线能量后输出一个与温度呈
相应比例的电压信号。有效感知-20-85℃的温度变化范围,视角范围约1000C,使其可探测视角范围内所有物体的温度值,距离为无穷远。在探头附件放置滤光片后可有效反射太阳光等其他波长的光线,大大提高了飞行中的抗干扰能力。
2、红外传感器设计
红外温度传感器测量姿态的主要原理是根据地而与天空的温度差来估
计无人机的倾斜程度,亦即无人机的姿态信息。由于天空的温度比地而的温度低,在没有干扰的情况下,2只红外温度传感器反方向放置在同一水平而,其两端感知到的视角内的温度值相同口。当倾斜使得左端偏向地而,右端偏向天空,这样将测得左边传感器温度远远高于右边,即可计算出倾斜角度的大小。
结合红外传感器良好的视场角范围并基于上述原理,设计由两对红外温度传感器组成的红外线平衡系统,水平安置于机身且与机翼中心轴线成450,综合测量无人机俯仰与横滚信息。当飞机水平飞行时,两对相反放置的传感器感知到相同温度,输出电压值也相同,处理器判断此时的电压差为基值电压,飞行状态为稳定。而当飞机不稳定飞行时,两端感知温度不同,输出的电压差也不处于基值电压,此时电压差值由处理器A/D转换后进行判断飞行姿态,进而通过向舵机输出PWM信号做出相应的调整。
基于上述原理设计的红外传感器板,电路使用SV供电并由2.5V作为基准电压,这样传感器水平放置输出理论为2.5V,正倾和负倾分别向OV和SV电压靠近。设计的红外传感器板通过实验寻找出温度与倾角间的关系,确定相应的函数模型。实验仪器主要有水平转台、红外传感器板、万用表
等。选择户外开阔的场地,避免其他干扰热源的影响,分别在不同温度,不同时间段进行测量。将水平传感器固定于转台上,测量从-900-90。范围间,每旋转10。记录一次数据,由于飞机大部分处于稳定飞行状态,故在-500-50。范围间,每旋转5。记录一次数据。由多组实验数据,绘出散点图并进行曲线拟合。图中A是天阴,温度为40C;B是天晴,温度为60C;C 是天阴,温度为90C;D是天晴,温度为100C。由大量数据绘成的曲线图可看出,单对红外传感器其倾角与电压存在函数关系式
三、机载实验
为了验证上述算法与相关理论,将红外传感器与传统IMU一同安装在小型固定翼无人机上进行机载飞行实验。实验场地选择空旷的操场以避免地而其他热源干扰,气候适宜,正午晴天15℃时。其中,1#实线是红外传感器测量数据,2#实线是IMU所测量数据。
分别是同时段的滚转运动曲线和俯仰运动曲线,由图所测数据可知,前30期间飞机基本稳定飞行,此时IMU与红外传感器测量数据误差保持在10。以内;30后飞机转弯,此时姿态发生大角度的变换,红外传感器所测量数据也能控制在理想范围内;之后又继续稳定飞行。整个直飞、转弯、在直飞的过程可以看出红外传感器均能有效感知姿态信息的变化,并且与传统的IMU相比测量误差均能满足试飞要求。
实验截取的是当中一段数据进行分析,在起飞和降落时,飞机发生大幅度的姿态变化,此时数据会有较大的震荡,其余过程均在允许范围内。由于太阳辐射功率比地球辐射功率大数百倍,很可能会进入红外视场,干扰红外传感器工作的光谱波段,这严重影响了红外传感器的正常工作。在红