要了解一个LINUX工程的结构必须看懂Makefile
linux中的make命令的详细解释
linux中的make命令的详细解释linxu下的make命令是一个GNU下的工程化编译工具。
下面由店铺为大家整理了linux的make命令的详细解释的相关知识,希望对大家有帮助!一、linux中的make命令的详细解释make命令是GNU的工程化编译工具,用于编译众多相互关联的源代码问价,以实现工程化的管理,提高开发效率。
语法make(选项)(参数)选项-f:指定“makefile”文件;-i:忽略命令执行返回的出错信息;-s:沉默模式,在执行之前不输出相应的命令行信息;-r:禁止使用build-in规则;-n:非执行模式,输出所有执行命令,但并不执行;-t:更新目标文件;-q:make操作将根据目标文件是否已经更新返回"0"或非"0"的状态信息;-p:输出所有宏定义和目标文件描述;-d:Debug模式,输出有关文件和检测时间的详细信息。
Linux下常用选项与Unix系统中稍有不同,下面是不同的部分:-c dir:在读取 makefile 之前改变到指定的目录dir;-I dir:当包含其他 makefile文件时,利用该选项指定搜索目录;-h:help文挡,显示所有的make选项;-w:在处理 makefile 之前和之后,都显示工作目录。
参数目标:指定编译目标。
二、Linux中的make命令详解实例1. 一个简单的例子为了编译整个工程,你可以简单的使用 make 或者在 make 命令后带上目标 all。
$ makegcc -c -Wall test.cgcc -c -Wall anotherTest.cgcc -Wall test.o anotherTest.o -o test你能看到 make 命令第一次创建的依赖以及实际的目标。
如果你再次查看目录内容,里面多了一些 .o 文件和执行文件:$ lsanotherTest.c anotherTest.o Makefile test test.c test.h test.o 现在,假设你对 test.c 文件做了一些修改,重新使用 make 编译工程:$ makegcc -c -Wall test.cgcc -Wall test.o anotherTest.o -o test你可以看到只有 test.o 重新编译了,然而另一个 Test.o 没有重新编译。
Linux系统的Makefile和Kconfig及模块简介
Linux系统的Makefile、Kconfig和模块1Makefile1.1Makefile组织层次Linux的Make体系由如下几部分组成:Ø顶层Makefile顶层Makefile通过读取配置文件,递归编译内核代码树的相关目录,从而产生两个重要的目标文件:vmlinux和模块。
Ø内核相关Makefile位于arch/$(ARCH) 目录下,为顶层Makefile提供与具体硬件体系结构相关的信息。
Ø公共编译规则定义文件。
包括Makefile.build 、Makefile.clean、Makefile.lib、Makefile.host等文件组成。
这些文件位于scripts目录中,定义了编译需要的公共的规则和定义。
Ø内核配置文件 .config通过调用make menuconfig或者make xconfig命令,用户可以选择需要的配置来生成期望的目标文件。
Ø其他Makefile主要为整个Makefile体系提供各自模块的目标文件定义,上层Makefile根据它所定义的目标来完成各自模块的编译。
1.2Makefile的使用在编译内核之前,用户必须首先完成必要的配置。
Linux内核提供了数不胜数的功能,支持众多的硬件体系结构,这就需要用户对将要生成的内核进行裁减。
内核提供了多种不同的工具来简化内核的配置。
make config,字符界面下命令行工具,这个工具会依次遍历内核所有的配置项,要求用户进行逐项的选择配置。
这个工具会耗费用户太多时间,除非万不得以(你的编译主机不支持其他配置工具)一般不建议使用。
make menuconfig,基于ncurse库编制的图形界面工具,一般台式机使用该工具。
make xconfig,基于X11的图形配置工具,一般用于工作站环境。
当用户完成配置后,配置工具会自动生成.config文件,它被保存在内核代码树的根目录下。
linux make的命令行参数
linux make的命令行参数Linux make是一个非常重要的工具,用来自动构建项目和生成软件。
make命令行参数可以用来指定构建目标、编译器选项、目标平台等参数。
以下是常见的Linux make命令行参数:1. -f:指定目标文件名。
例如make -f makefile表示使用makefile文件构建项目。
2. -j:指定并行构建的进程数。
例如make -j4表示使用4个进程并行构建。
3. -C:指定目标目录。
例如make -C /usr/src/kernel表示在/usr/src/kernel目录下构建项目。
4. -k:表示忽略错误,继续构建。
例如make -k表示继续构建即使出现错误。
5. -n:表示模拟构建,不实际执行构建。
例如make -n表示打印出构建过程但不实际构建。
6. -B或--always-make:表示强制重新构建。
例如make -B表示强制重新构建所有目标文件。
7. -r或--no-builtin-rules:表示禁用内置规则。
例如make -r表示禁用内置规则,只使用自定义规则。
8. -s或--silent或--quiet:表示禁止输出构建详细信息。
例如make -s表示禁止输出构建详细信息。
9. -v或--version:表示显示make版本信息。
例如make -v表示显示make版本信息。
10. -h或--help:表示显示make命令的帮助信息。
例如make -h表示显示make命令的帮助信息。
以上命令是常见的make命令行参数,可以根据实际需求选择使用。
Make命令完全详解教程
Make命令完全详解教程无论是在Linux还是在Unix环境中,make都是一个非常重要的编译命令。
不管是自己进行项目开发还是安装应用软件,我们都经常要用到make或make install。
利用make工具,我们可以将大型的开发项目分解成为多个更易于管理的模块,对于一个包括几百个源文件的应用程序,使用make和makefile工具就可以简洁明快地理顺各个源文件之间纷繁复杂的相互关系。
而且如此多的源文件,如果每次都要键入gcc命令进行编译的话,那对程序员来说简直就是一场灾难。
而make工具则可自动完成编译工作,并且可以只对程序员在上次编译后修改过的部分进行编译。
因此,有效的利用make和makefile工具可以大大提高项目开发的效率。
同时掌握make和makefile之后,您也不会再面对着Linux下的应用软件手足无措了。
一、Make程序的命令行选项和参数Make命令参数的典型序列如下所示:make [-f makefile文件名][选项][宏定义][目标]这里用[]括起来的表示是可选的。
命令行选项由破折号“–”指明,后面跟选项,如也可以每个选项使用一个破折号,如甚至混合使用也行,如Make命令本身的命令行选项较多,这里只介绍在开发程序时最为常用的三个,它们是:–k:如果使用该选项,即使make程序遇到错误也会继续向下运行;如果没有该选项,在遇到第一个错误时make程序马上就会停止,那么后面的错误情况就不得而知了。
我们可以利用这个选项来查出所有有编译问题的源文件。
–n:该选项使make程序进入非执行模式,也就是说将原来应该执行的命令输出,而不是执行。
–f :指定作为makefile的文件的名称。
如果不用该选项,那么make程序首先在当前目录查找名为makefile的文件,如果没有找到,它就会转而查找名为Makefile的文件。
如果您在Linux下使用GNU Make的话,它会首先查找GNUmakefile,之后再搜索makefile和Makefile。
粗略走走kbuild makefile编译流程
kbuild是Linux内核源码中用于管理和构建内核的工具,而makefile 是kbuild的一种配置文件,用于定义内核的编译规则和依赖关系。
本文将对kbuild makefile的编译流程进行详细介绍,包括编译环境的搭建、makefile的结构和语法、编译过程中各个阶段的功能以及常见问题的解决方法。
一、编译环境的搭建1. 安装必要的工具和软件在开始编译之前,首先需要在系统中安装必要的工具和软件,包括gcc、g++、make等。
这些工具和软件通常可以通过系统自带的包管理工具进行安装,或者从官方全球信息湾下载安装包手动安装。
2. 下载内核源码要进行内核的编译,首先需要下载Linux内核的源码。
可以通过git clone命令从官方git仓库中下载源码,也可以从官方全球信息湾下载压缩包并解压缩到本地。
3. 配置编译环境在下载完内核源码后,需要对编译环境进行配置,包括设置环境变量、配置编译选项等。
可以通过修改bashrc文件或者使用export命令来设置环境变量,也可以通过配置.config文件来设置编译选项。
二、makefile的结构和语法1. makefile的基本结构makefile是一个文本文件,通常包含了一系列的规则、变量和注释。
makefile的基本结构如下:target: dependencies[tab] mand其中,target表示目标文件,dependencies表示target依赖的文件mand表示生成target的命令。
每条规则都必须以tab键开始,表示该规则的命令。
2. makefile的语法makefile支持一些基本的语法和操作符,包括赋值运算符、条件语句、循环语句等。
通过这些语法和操作符,可以方便地定义编译规则和依赖关系,实现自动化编译。
三、编译过程中各个阶段的功能1. 准备阶段在准备阶段,make工具会读取makefile文件,并解析其中的规则和依赖关系。
它会根据目标文件和依赖文件的时间戳来确定哪些文件需要重新编译,哪些文件可以跳过。
Linux之make的用法讲解
Linux之make的⽤法讲解在 Linux环境下使⽤ GNU 的 make⼯具能够⽐较容易的构建⼀个属于你⾃⼰的⼯程,整个⼯程的编译只需要⼀个命令就可以完成编译、连接以⾄于最后的执⾏。
不过这需要我们投⼊⼀些时间去完成⼀个或者多个称之为 Makefile ⽂件的编写。
此⽂件正是 make 正常⼯作的基础。
make 是⼀个命令⼯具,它解释 Makefile 中的指令(应该说是规则)。
在 Makefile⽂件中描述了整个⼯程所有⽂件的编译顺序、编译规则。
准备知识:编译,链接,静态库,共享库编译:把⾼级语⾔所书写的代码转换成机器可识别的指令,此时还不能够被执⾏,编译器通过检查⾼级语⾔的语法,函数和变量的声明是否正确!如果正确则产⽣中间⽬标⽂件(⽬标⽂件在Liunx中默认后缀为“.o”)链接:将多.o ⽂件,或者.o ⽂件和库⽂件链接成为可被操作系统执⾏的可执⾏程序静态库:⼜称为⽂档⽂件(Archive File)。
它是多个.o⽂件的集合。
Linux中静态库⽂件的后缀为“.a”共享库:也是多个.o ⽂件的集合,但是这些.o ⽂件时有编译器按照⼀种特殊的⽅式⽣成(共享库已经具备了可执⾏条件)在执⾏ make 之前,需要⼀个命名为 Makefile 的特殊⽂件(本⽂的后续将使⽤Makefile 作为这个特殊⽂件的⽂件名)来告诉 make 需要做什么(完成什么任务),该怎么做。
当使⽤make ⼯具进⾏编译时,⼯程中以下⼏种⽂件在执⾏make 时将会被编译(重新编译):1.所有的源⽂件没有被编译过,则对各个 C 源⽂件进⾏编译并进⾏链接,⽣成最后的可执⾏程序;2.每⼀个在上次执⾏ make 之后修改过的 C 源代码⽂件在本次执⾏make 时将会被重新编译;3.头⽂件在上⼀次执⾏make 之后被修改。
则所有包含此头⽂件的 C 源⽂件在本次执make 时将会被重新编译。
Makefile规则介绍⼀个简单的 Makefile 描述规则组成:TARGET... : PREREQUISITES...COMMAND......target:规则的⽬标。
linux vscode makefile语法
linux vscode makefile语法在Linux 系统中,如果您想使用VSCode 编写Makefile 相关的项目,可以参考以下步骤进行安装和配置:1. 首先,确保已经正确安装了Visual Studio Code。
如果尚未安装,可以参考[1] 中的教程进行安装。
2. 安装Makefile 插件。
打开VSCode,转到“扩展”选项卡(快捷键:Ctrl+Shift+X),搜索“Makefile”,找到名为“Makefile Support”的插件,点击“安装”。
3. 创建一个新的Makefile 项目。
在VSCode 中,创建一个新的文件夹,然后在该文件夹中打开终端(快捷键:Ctrl+`)。
4. 编写Makefile 语法。
在项目根目录下创建一个名为“Makefile”的文件,然后编写相应的Makefile 语法。
以下是一个简单的示例:```make# 设置变量MY_PROJECT_NAME = MyProjectMY_PROJECT_VERSION = 1.0# 设置目标all: build# 构建目标build:echo "Building $MY_PROJECT_NAME $MY_PROJECT_VERSION"# 在这里添加您的构建命令,例如:cmake、make等# 清理目标clean:echo "Cleaning $MY_PROJECT_NAME"# 在这里添加您的清理命令,例如:rm -rf build/# 默认执行构建目标default: build```5. 保存Makefile 文件并按F5 键运行项目。
VSCode 将会自动使用内置的终端执行Makefile 中的命令。
6. 如果需要使用GPU 加速构建,可以在Makefile 中添加相应的NVIDIA CUDA 或者AMD OpenCL 命令。
例如,如果您使用的是NVIDIA GPU,可以添加以下命令:```makebuild_gpu:echo "Building $MY_PROJECT_NAME $MY_PROJECT_VERSION using GPU"# 在这里添加您的GPU 构建命令,例如:nvcc、cuda编译器等```7. 按照项目需求修改Makefile 中的命令和目标。
linux中make的用法
linux中make的用法
make是一个常用的Linux命令,用于自动化编译和安装程序。
它可以读取Makefile文件,根据文件中的指令来执行一系列操作。
make指令可以根据源代码的变化,只编译需要重新编译的文件,从而加快编译速度。
使用make指令需要掌握基本的语法和参数,例如: 1. make [目标文件]:编译指定目标文件,如果不指定则编译Makefile中的默认目标。
2. make clean:清除已编译的文件。
3. make all:编译当前目录下的所有文件。
4. make install:安装已编译的文件。
在使用make指令前,需要确保已安装相关开发工具和编译器。
此外,对于不同的编程语言和工具链,make指令的使用也存在差异。
因此,在使用make指令时需要结合具体情况进行学习和实践。
- 1 -。
linux 顶层makefile分析
Linux顶层Makefile文件分析分类:Linux 系列2013-05-06 17:05 585人阅读评论(0) 收藏举报1、make menuconfigVERSION = 2PATCHLEVEL = 6SUBLEVEL = 26EXTRAVERSION =NAME = Rotary Wombat# *DOCUMENTATION*# To see a list of typical targets execute "make help"# More info can be located in ./README# Comments in this file are targeted only to the developer, do not# expect to learn how to build the kernel reading this file.# Do not:# o use make's built-in rules and variables# (this increases performance and avoids hard-to-debug behaviour);# o print "Entering directory ...";MAKEFLAGS += -rR --no-print-directory#-r禁止使用build-in规则#--no-print-directory是:不要再屏幕上打印"Entering directory.."#记住变量SHELL,MAKEFLAGS在整个make的执行过程中#始终被自动的传递给所有的子make# We are using a recursive build, so we need to do a little thinking# to get the ordering right.## Most importantly: sub-Makefiles should only ever modify files in# their own directory. If in some directory we have a dependency on# a file in another dir (which doesn't happen often, but it's often# unavoidable when linking the built-in.o targets which finy# turn into vmlinux), we will call a sub make in that other dir, and# after that we are sure that everything which is in that other dir# is now up to date.## The only cases where we need to modify files which have global# effects are thus separated out and done before the recursive# descending is started. They are now explicitly listed as the# prepare rule.# To put more focus on warnings, be less verbose as default# Use 'make V=1' to see the full commandsifdef V #v=1ifeq ("$(origin V)", "command line")KBUILD_VERBOSE = $(V) #把V的值作为KBUILD_VERBOSE的值 endifendififndef KBUILD_VERBOSE #即默认我们是不回显的#回显即在命令执行前显示要执行的命令KBUILD_VERBOSE = 0endif# 函数origin并不操作变量的值,只是告诉你你的这个变量是哪里来的。
makefile规则
makefile规则makefile规则是指在编译和链接源程序时使用的指令说明集合,它主要实现对源程序进行编译和链接操作。
makefile规则通常包括定义、变量( macro )、条件语句、文件名模式、关系性质,以及各种命令的执行。
定义是指在 makefile 中定义一些环境变量,这样可以同时供make 命令和源程序使用。
变量就是把变量名称定义为字符内容或者字符串。
条件语句是指在 makefile 中可以使用 if-then-else 语句条件判断,实现对不同平台的兼容和不同编译器的支持。
文件名模式是指在 makefile 中,可以使用文件名模式来精确针对特定文件和目录,完成不同操作。
关系性质是指 makefile 支持多个文件之间的依赖关系,即如果文件 A 依赖于文件 B,当文件 B 的内容发生变化时,系统自动执行文件 A 的操作。
makefile 还支持各种命令的执行,包括编译、链接、拷贝、安装等操作。
通过这些命令的执行,可以非常方便地把源程序编译和链接,实现最终的编译和链接结果。
通常,makefile 规则是由多个项目构成的,每一项都有一个名称,每一个项目都可以包含一些变量,关系和命令等,用于指定 make 命令的行为。
每个规则以一个制表符开头,然后是目标文件、依赖文件、变量名和命令,分别以冒号、逗号、空格和分号等符号隔开。
每个 makefile 都有一个默认的目标,如果在编译和链接时没有指定特定的目标,则 make 命令会执行默认的目标。
因此,完整的makefile 是必须设置默认目标的,才能在执行 make 命令时得到正确的结果。
Makefile经典教程(最掌握这部分足够---因为汇集全部精华)!!!!!!!!!!
Makefile经典教程0 Makefile概述什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作,但我觉得要作一个好的和professional的程序员,makefile还是要懂。
这就好像现在有这么多的HTML的编辑器,但如果你想成为一个专业人士,你还是要了解HTML的标识的含义。
特别在Unix下的软件编译,你就不能不自己写makefile了,会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力。
因为,makefile关系到了整个工程的编译规则。
一个工程中的源文件不计数,其按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为makefile就像一个Shell脚本一样,其中也可以执行操作系统的命令。
makefile带来的好处就是——“自动化编译”,一旦写好,只需要一个make命令,整个工程完全自动编译,极大的提高了软件开发的效率。
make是一个命令工具,是一个解释makefile中指令的命令工具,一般来说,大多数的IDE都有这个命令,比如:Delphi的make,Visual C++的nmake,Linux下GNU的make。
可见,makefile都成为了一种在工程方面的编译方法。
现在讲述如何写makefile的文章比较少,这是我想写这篇文章的原因。
当然,不同产商的make各不相同,也有不同的语法,但其本质都是在“文件依赖性”上做文章,这里,我仅对GNU的make进行讲述,我的环境是RedHat Linux 8.0,make的版本是3.80。
必竟,这个make是应用最为广泛的,也是用得最多的。
而且其还是最遵循于IEEE 1003.2-1992 标准的(POSIX.2)。
在这篇文档中,将以C/C++的源码作为我们基础,所以必然涉及一些关于C/C++的编译的知识,相关于这方面的内容,还请各位查看相关的编译器的文档。
U-BOOT中MAKEFILE详解
U-BOOT详解U-BOOT是一个LINUX下的工程,在编译之前必须已经安装对应体系结构的交叉编译环境,这里只针对ARM,编译器系列软件为arm-linux-*。
U-BOOT的下载地址: /projects/u-boot我下载的是1.1.6版本,一开始在FTP上下载了一个次新版,结果编译失败。
1.1.6是没问题的。
u-boot源码结构解压就可以得到全部u-boot源程序。
在顶层目录下有18个子目录,分别存放和管理不同的源程序。
这些目录中所要存放的文件有其规则,可以分为3类。
第1类目录与处理器体系结构或者开发板硬件直接相关;第2类目录是一些通用的函数或者驱动程序;第3类目录是u-boot的应用程序、工具或者文档。
u-boot的源码顶层目录说明目录特性解释说明board 平台依赖存放电路板相关的目录文件,例如:RPXlite(mpc8xx)、smdk2410(arm920t)、sc520_cdp(x86) 等目录cpu 平台依赖存放CPU相关的目录文件例如:mpc8xx、ppc4xx、arm720t、arm920t、 xscale、i386等目录lib_ppc 平台依赖存放对PowerPC体系结构通用的文件,主要用于实现PowerPC平台通用的函数lib_arm 平台依赖存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数lib_i386 平台依赖存放对X86体系结构通用的文件,主要用于实现X86平台通用的函数include 通用头文件和开发板配置文件,所有开发板的配置文件都在configs目录下common 通用通用的多功能函数实现lib_generic 通用通用库函数的实现net 通用存放网络的程序fs 通用存放文件系统的程序post 通用存放上电自检程序drivers 通用通用的设备驱动程序,主要有以太网接口的驱动disk 通用硬盘接口程序rtc 通用 RTC的驱动程序dtt 通用数字温度测量器或者传感器的驱动examples 应用例程一些独立运行的应用程序的例子,例如helloworldtools 工具存放制作S-Record或者u-boot格式的映像等工具,例如mkimagedoc 文档开发使用文档u-boot的源代码包含对几十种处理器、数百种开发板的支持。
makefile 命令行参数
-C选项可以指定Makefile所在的路径。如果我们在当前路径下执行make命令,但是Makefile文件不在当前路径下,那么就需要使用-C选项来指定Makefile所在的路径。例如:
make -C /path/to/Makefile
3. -f选项
-f选项可以指定要使用的Makefile文件名。如果我们有多个Makefile文件,那么就可以使用-f选项来指定要使用哪个Makefile文件。例如:
makefile 命令行参数
Makefile是一种用来管理代码编译的工具,它可以自动化执行编译任务,帮助程序员更高效地管理代码。在Makefile中,可以定义一系列规则来指定如何编译代码。在使用Makefile时,我们可以通过命令行参数来控制编译过程的行为。本文将详细介绍makefile命令行参数的使用方法。项
-j选项可以指定并行编译时所使用的线程数。如果我们有多个CPU核心,并且要编译大型项目,那么就可以使用-j选项来加速编译过程。例如:
make -j4
5. --dry-run选项
--dry-run选项可以模拟执行make命令,并输出将要执行的命令列表,但是并不会真正地执行这些命令。这个功能非常实用,因为我们可以预先查看将要执行的命令,确保它们是正确的。例如:
这样做的好处是,我们可以在不修改Makefile的情况下,通过命令行参数来控制编译过程的行为。
四、总结
本文介绍了Makefile命令行参数的用法,包括make命令、-C选项、-f选项、-j选项、--dry-run选项和--print-data-base选项。同时,本文还介绍了一些Makefile常用技巧,包括使用变量来存储编译选项、使用通配符来自动生成目标文件列表和使用命令行参数来控制编译过程。希望本文能够对大家理解和学习Makefile有所帮助。
linux make命令的工作原理
linux make命令的工作原理make命令是一个用于自动化编译和构建程序的工具,它通过读取Makefile 文件中的规则来确定如何构建目标文件。
Makefile文件包含了目标文件和依赖关系的描述,以及构建目标文件的命令。
Make命令的工作原理如下:1.读取Makefile文件:make命令首先会读取当前目录下的Makefile文件,该文件包含了目标文件和依赖关系的描述,以及构建目标文件的命令。
2.解析规则:make命令会解析Makefile文件中的规则,包括目标文件、依赖关系和命令。
3.检查依赖关系:make命令会检查目标文件的依赖关系,并判断是否需要重新构建目标文件。
如果目标文件不存在或者依赖的文件被修改过,则需要重新构建目标文件。
4.构建目标文件:如果需要重新构建目标文件,make命令会执行Makefile文件中对应目标文件的构建命令。
构建命令可以是编译源代码、链接目标文件等操作。
5.更新目标文件:构建完成后,make命令会更新目标文件的时间戳,以反映最新的修改时间。
6.递归构建:如果目标文件的依赖关系中还包含其他目标文件,make命令会递归地执行构建过程,以确保所有的依赖关系都得到满足。
7.完成构建:当所有的目标文件都构建完成后,make命令会输出构建成功的消息,并退出。
Make命令的优势在于它只会构建需要更新的目标文件,而不会重新构建所有的文件。
这样可以提高编译和构建的效率,尤其是在大型项目中。
另外,Make命令还支持并行构建,可以同时构建多个目标文件,进一步提高构建的效率。
总结起来,Make命令的工作原理是通过读取Makefile文件中的规则来确定如何构建目标文件,检查目标文件的依赖关系并判断是否需要重新构建,执行构建命令来生成目标文件,递归构建所有的依赖关系,最后输出构建成功的消息。
Make命令的优势在于只构建需要更新的文件,提高构建效率。
面试题----makefile文件的作用
⾯试题----makefile⽂件的作⽤
make⼯具和makefile⽂件
make⼯具和makefile⽂件简介
make命令和makefile⽂件的结合提供了⼀个在项⽬管理领域⼗分强⼤的⼯具。
它不仅常被⽤于控制源代码的编译和链接,⽽且还⽤于⼿册页的编写以及将应⽤程序安装到⽬标⽬录。
makefile⽂件由⼀组依赖关系和规则构成。
每个依赖关系⼜⼀个⽬标(即将要创建的⽂件)和⼀组该⽬标所依赖的源⽂件组成。
⽽规则描述了如何通过这些依赖⽂件创建⽬标。
⼀般来说,⽬标是⼀个单独的可执⾏⽂件。
make命令会读取makefile⽂件的内容,它先确定⽬标⽂件和要创建的⽂件,然后⽐较该⽬标所依赖的源⽂件的⽇期和时间以决定该采取那条规则来构建⽬标。
通常在创建最终的⽬标⽂件之前,它需要先创建⼀些中间⽬标。
make命令会根据makefile⽂件来确定⽬标⽂件的创建顺序以及正确的规则调⽤顺序。
⾯试题:makefile⽂件的作⽤是什么?
makefile⽂件和make⼯具⼀起使⽤,⽤于控制⼯程项⽬的编译和链接,也可以⽤来编写⼿册页和程序的安装。
make⼯具⽤于解释执⾏makefile⽂件中的内容。
makefile⽂件中通常包含源⽂件和⽬标⽂件的依赖关系以及从源⽂件⽣成⽬标⽂件的规则。
make⼯具可以根据makefile判断哪些⽂件需要被重新编译,⽬标⽂件的构建顺序等。
linux makefile include用法
在 Linux 中,Makefile 是一种文本文件,用于定义项目的构建规则和依赖关系。
include是 Makefile 中的一个关键字,用于引入其他 Makefile 文件。
这对于将构建规则拆分为多个文件以提高可维护性非常有用。
以下是关于include在 Linux Makefile 中的用法的详细解释:include的基本语法:•include后面可以跟一个或多个文件名,用空格分隔。
•这些文件名可以包含通配符,例如*.mk。
示例:假设有两个 Makefile 文件,分别是main.mk和extra.mk。
main.mkextra.mk在上述例子中,main.mk包含了extra.mk。
这样,main.mk中的规则就可以使用extra.mk中定义的规则和变量。
使用场景和注意事项:1.模块化项目:–include用于将项目的不同部分拆分为独立的 Makefile,使得项目结构更加清晰和易于维护。
2.变量和规则共享:–通过include,可以在不同的 Makefile 文件中共享变量和规则,避免代码重复。
3.条件包含:–可以根据条件来选择是否包含某个 Makefile,例如基于不同的操作系统或构建类型。
1.文件名通配符:–include后面可以使用通配符,方便引入符合某个模式的多个文件。
注意事项:•文件名可以是相对路径或绝对路径。
•文件名中可以包含变量,这样可以动态地选择引入的文件。
•在引入文件时,Makefile 会在当前目录和系统的默认搜索路径中查找文件。
通过合理使用include,可以更好地组织和管理项目的构建规则,提高 Makefile 的可读性和可维护性。
linux makefile basename函数
linux makefile basename函数摘要:1.Linux Makefile 简介2.Makefile 中的函数3.basename 函数的作用4.basename 函数的参数5.basename 函数的返回值6.basename 函数在Makefile 中的应用示例正文:Linux Makefile 是一个用于管理编译过程的文件,它可以根据源文件之间的依赖关系自动编译、链接和安装软件。
在Makefile 中,可以定义一些函数来简化重复的操作,提高自动化程度。
basename 函数就是其中一个常用的函数。
basename 函数是用来获取文件名的函数,它可以从给定的路径名中提取文件名部分。
该函数的定义和使用方式类似于shell 脚本中的basename 命令。
在Makefile 中,basename 函数可以方便地提取源文件名,以便进行后续操作。
basename 函数的语法如下:```basename(prefix, suffix)```其中,`prefix` 参数表示路径名的前缀部分,`suffix` 参数表示路径名的后缀部分。
函数返回值是去掉前缀和后缀后的文件名。
basename 函数的参数都是可选的。
如果不提供`prefix` 参数,那么默认前缀为空字符串;如果不提供`suffix` 参数,那么默认后缀为空字符串。
basename 函数的返回值是一个字符串,表示去掉前缀和后缀后的文件名。
如果源路径名中不包含前缀或后缀,那么返回值将与源路径名相同。
下面举一个basename 函数在Makefile 中的应用示例。
假设我们有一个源文件`main.c`,我们想要提取文件名并生成一个名为`main` 的目标文件。
我们可以这样写Makefile:```all: mainmain: main.ct$(CC) $(CFLAGS) -o $@ $<.PHONY: cleanclean:trm -f main```在这个例子中,我们使用了`$(CC) $(CFLAGS) -o $@ $<` 命令来编译源文件。
海思makefile结构解析
海思makefile结构解析全文共四篇示例,供读者参考第一篇示例:海思芯片是一家领先的半导体公司,在国际市场上拥有广泛的市场份额。
海思芯片的产品广泛应用在手机、网络通信、物联网、智能家居等领域,其芯片性能卓越,在同行业内享有很高的声誉。
在海思芯片的开发中,makefile是一个非常重要的工具,它负责管理整个项目的编译、链接和部署过程,帮助开发人员更高效地完成工作。
makefile是一个用于自动化编译的脚本文件,通过编写makefile 文件,可以告诉计算机如何编译源代码,生成可执行文件。
海思makefile结构解析主要包括以下几个部分:1. 定义变量:在makefile中定义变量是非常重要的,可以方便地管理项目的路径、编译参数等信息。
海思makefile中通常会定义一些常用的变量,比如CC表示编译器的路径,CXX表示C++编译器的路径,CFLAGS表示编译参数等。
通过定义这些变量,可以在整个makefile中直接引用,减少了代码的冗余,提高了代码的可维护性。
2. 设置编译规则:在makefile中,通常会定义一些编译规则,告诉make工具如何编译源文件和生成可执行文件。
海思makefile中的编译规则通常使用模式匹配的方式,比如"%.c:%.o"表示将所有的.c文件编译为.o文件,而"%.o:%.c"则表示将所有的.o文件根据对应的.c文件进行重新编译。
通过这些编译规则,make工具可以根据需要自动化地完成整个项目的编译过程。
3. 定义目标:在makefile中通常会定义一些目标,这些目标可以是编译生成可执行文件的命令,也可以是清理生成的临时文件的命令。
海思makefile中的目标通常包括all、clean、install等,通过定义这些目标,可以方便地管理整个项目的编译和部署过程。
4. 调用外部工具:在海思makefile中,通常会调用一些外部工具来完成一些特定的任务,比如编译器、链接器、打包工具等。
makefile 条件编译
makefile 条件编译MakefileUnix/Linux译系统编写程序所必需的文件,其中包含了定义规则以及编译程序所必需的指令。
通常情况下,一个规则描述了从一个或多个源文件到一个或多个目标文件之间的变换过程。
在特定的编译环境中,定义的规则必须能够生成所有需要的目标文件及时准确的。
有时候,一个源文件或多个源文件具有不同的编译条件,此时Makefile件编译的技术就派上用场了。
这种技术可以根据指定的编译条件自动生成 Makefile则,使得编译器只有在满足编译条件时才会编译特定的源文件。
Makefile件编译基本依赖于 make令,它可以根据给定的源文件及编译条件,自动生成 Makefile则。
Make令使用 C言编写,可以从一个或多个文本文件中读取输入,比如源文件,然后根据相应的编译条件,使用 if句来生成 Makefile则。
要想理解 Makefile件编译,首先必须明白 Makefile几个基本概念。
Makefile 中有若干规则,每个规则由一个目标文件,一个或多个依赖文件,以及一系列的命令组成。
它们通常以三个元素表示: target: dependenciestcommands其中,target 代表目标文件,dependencies该目标文件的依赖文件,commands该目标文件生成所需的命令。
为了利用 Makefile件编译,可以将每个文件的编译条件定义为一个 Makefile量,这样 Make编译文件时就可以根据指定的编译条件来生成 Makefile则。
例如,对于两个源文件 A B,A编译条件为BUILD_A,B编译条件为 BUILD_B,只有当 BUILD_A 为真,A会被编译,当 BUILD_B 为真,B会被编译。
要实现 Makefile件编译,可以使用 Make 中的 if件语句:ifeq (BUILD_A,1)A: ../A.cpptg++ -o A ../A.cppendififeq (BUILD_B,1)B: ../B.cpptg++ -o B ../B.cppendif上面的 Makefile 中,对于 A B两个源文件,它们的编译条件分别是 BUILD_A BUILD_B,即 BUILD_A 为真时,A会被编译,BUILD_B 为真时,B会被编译。
Linux编程 makefile文件
Linux 编程 makefile 文件Makefile 文件中包含着一些目标文件,来告诉make 做什么,通常目标就是文件名,对每一个目标,提供了实现这个目标的一组命令以及和这个目标有依赖关系的其他目标或文件名。
可以是要执行的动作,例如clean 。
Dependencies (依赖)是用来产生目标的输入文件,一个目标通常依赖于多个文件。
Command (命令)是make 执行的动作,一个规则可以有多个命令,每个占单独一行,每个命令行的起始字符必须为Tab 字符。
提 示 规则解释如何和何时重做该规则中的文件,make 根据依赖关系执行产生或更新目标;规则也说明如何和何时执行动作。
有的规则看起来很复杂,但都符合这个模式。
例如,以下是一个简单的makefile 的例子:以上Mamefile 中定义了三个目标:prog 、prog1和prog2,分号后是依赖文件列表,中间用一个分号隔开;对于第一个目标文件prog 来说,他有两个依赖文件:prog1.o 和prog2.o ,任何一个依赖文件更新,prog 也要随之更新,命令gcc prog1.o prog2.o -o prog 是生成prog 的命令。
make 检查目标是否需要更新时采用递归的方法,递归从底层向上对过时目标进行更新,只有当一个目标所依赖的所有目标都为最新时,这个目标才会被更新。
以上面的Makefile 为例,我们修改了prog2.c ,执行make 时,由于目标prog 依赖prog1.o 和 prog2.o ,所以要先检查prog1.o 和prog2.o 是否过时,目标prog1.o 依赖prog1.c 和lib.h ,由于我们并没修改这两个文件,所以他们都没有过期,接下来再检查目标prog2.o ,他依赖prog2.c ,由于我们修改了prog2.c ,所以prog2.c 比目标文件prog2.o要新,即prog2.o过期,而导致了依赖prog2.o的所有目标都过时;这样make会先更新prog2.o再更新prog。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要了解一个LINUX工程的结构必须看懂Makefile,尤其是顶层的,没办法,UNIX世界就是这么无奈,什么东西都用文档去管理、配置。
首先在这方面我是个新手,时间所限只粗浅地看了一些Makefile规则。
以smdk_2410为例,顺序分析Makefile大致的流程及结构如下:1) Makefile中定义了源码及生成的目标文件存放的目录,目标文件存放目录BUILD_DIR可以通过make O=dir 指定。
如果没有指定,则设定为源码顶层目录。
一般编译的时候不指定输出目录,则BUILD_DIR为空。
其它目录变量定义如下:#OBJTREE和LNDIR为存放生成文件的目录,TOPDIR与SRCTREE为源码所在目录OBJTREE := $(if $(BUILD_DIR),$(BUILD_DIR),$(CURDIR))SRCTREE := $(CURDIR)TOPDIR := $(SRCTREE)LNDIR := $(OBJTREE)export TOPDIR SRCTREE OBJTREE2)定义变量MKCONFIG:这个变量指向一个脚本,即顶层目录的mkconfig。
MKCONFIG := $(SRCTREE)/mkconfigexport MKCONFIG在编译U-BOOT之前,先要执行# make smdk2410_configsmdk2410_config是Makefile的一个目标,定义如下:smdk2410_config : unconfig@$(MKCONFIG) $(@:_config=) arm arm920t smdk2410 NULL s3c24x0unconfig:@rm -f $(obj)include/config.h $(obj)include/config.mk /$(obj)board/*/config.tmp $(obj)board/*/*/config.tmp显然,执行# make smdk2410_config时,先执行unconfig目标,注意不指定输出目标时,obj,src变量均为空,unconfig下面的命令清理上一次执行make*_config时生成的头文件和makefile的包含文件。
主要是include/config.h 和include/config.mk文件。
然后才执行命令@$(MKCONFIG) $(@:_config=) arm arm920t smdk2410 NULL s3c24x0 MKCONFIG 是顶层目录下的mkcofig脚本文件,后面五个是传入的参数。
对于smdk2410_config而言,mkconfig主要做三件事:在include文件夹下建立相应的文件(夹)软连接,#如果是ARM体系将执行以下操作:#ln -s asm-arm asm#ln -s arch-s3c24x0 asm-arm/arch#ln -s proc-armv asm-arm/proc生成Makefile包含文件include/config.mk,内容很简单,定义了四个变量:ARCH = armCPU = arm920tBOARD = smdk2410SOC = s3c24x0生成include/config.h头文件,只有一行:/* Automatically generated - do not edit */#include "config/smdk2410.h"mkconfig脚本文件的执行至此结束,继续分析Makefile剩下部分。
$(obj)board/*/config.tmp $(obj)board/*/*/config.tmp3)包含include/config.mk,其实也就相当于在Makefile里定义了上面四个变量而已。
4) 指定交叉编译器前缀:ifeq ($(ARCH),arm)#这里根据ARCH变量,指定编译器前缀。
CROSS_COMPILE = arm-linux-endif5)包含config.mk:#包含顶层目录下的config.mk,这个文件里面主要定义了交叉编译器及选项和编译规则# load other configurationinclude $(TOPDIR)/config.mk下面分析config.mk的内容:@包含体系,开发板,CPU特定的规则文件:ifdef ARCH #指定预编译体系结构选项sinclude $(TOPDIR)/$(ARCH)_config.mk # include architecture dependend rulesendififdef CPU #定义编译时对齐,浮点等选项sinclude $(TOPDIR)/cpu/$(CPU)/config.mk # include CPU specific rules endififdef SOC #没有这个文件sinclude $(TOPDIR)/cpu/$(CPU)/$(SOC)/config.mk # include SoC specific rulesendififdef BOARD #指定特定板子的镜像连接时的内存基地址,重要!sinclude $(TOPDIR)/board/$(BOARDDIR)/config.mk # include board specific rulesendif@定义交叉编译链工具# Include the make variables (CC, etc...)AS = $(CROSS_COMPILE)asLD = $(CROSS_COMPILE)ldCC = $(CROSS_COMPILE)gccCPP = $(CC) -EAR = $(CROSS_COMPILE)arNM = $(CROSS_COMPILE)nmSTRIP = $(CROSS_COMPILE)stripOBJCOPY = $(CROSS_COMPILE)objcopyOBJDUMP = $(CROSS_COMPILE)objdumpRANLIB = $(CROSS_COMPILE)RANLIB@定义AR选项ARFLAGS,调试选项DBGFLAGS,优化选项OPTFLAGS 预处理选项CPPFLAGS,C编译器选项CFLAGS,连接选项LDFLAGSLDFLAGS += -Bstatic -T $(LDSCRIPT) -Ttext $(TEXT_BASE) $(PLATFORM_LDFLAGS) #指定了起始地址TEXT_BASE@指定编译规则:$(obj)%.s: %.S$(CPP) $(AFLAGS) -o $@ $<$(obj)%.o: %.S$(CC) $(AFLAGS) -c -o $@ $<$(obj)%.o: %.c$(CC) $(CFLAGS) -c -o $@ $<回到顶层makefile文件:6)U-boot需要的目标文件。
OBJS = cpu/$(CPU)/start.o # 顺序很重要,start.o必须放第一位7)需要的库文件:LIBS = lib_generic/libgeneric.aLIBS += board/$(BOARDDIR)/lib$(BOARD).aLIBS += cpu/$(CPU)/lib$(CPU).aifdef SOCLIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).aendifLIBS += lib_$(ARCH)/lib$(ARCH).aLIBS += fs/cramfs/libcramfs.a fs/fat/libfat.a fs/fdos/libfdos.afs/jffs2/libjffs2.a /fs/reiserfs/libreiserfs.a fs/ext2/libext2fs.aLIBS += net/libnet.aLIBS += disk/libdisk.aLIBS += rtc/librtc.aLIBS += dtt/libdtt.aLIBS += drivers/libdrivers.aLIBS += drivers/nand/libnand.aLIBS += drivers/nand_legacy/libnand_legacy.aLIBS += drivers/sk98lin/libsk98lin.aLIBS += post/libpost.a post/cpu/libcpu.aLIBS += common/libcommon.aLIBS += $(BOARDLIBS)LIBS := $(addprefix $(obj),$(LIBS)).PHONY : $(LIBS)根据上面的include/config.mk文件定义的ARCH、CPU、BOARD、SOC这些变量。
硬件平台依赖的目录文件可以根据这些定义来确定。
SMDK2410平台相关目录及对应生成的库文件如下。
board/smdk2410/ :库文件board/smdk2410/libsmdk2410.acpu/arm920t/ :库文件cpu/arm920t/libarm920t.acpu/arm920t/s3c24x0/ :库文件cpu/arm920t/s3c24x0/libs3c24x0.alib_arm/ :库文件lib_arm/libarm.ainclude/asm-arm/ :下面两个是头文件。
include/configs/smdk2410.h8)最终生成的各种镜像文件:ALL = $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map$(U_BOOT_NAND)all: $(ALL)$(obj)u-boot.hex: $(obj)u-boot$(OBJCOPY) ${OBJCFLAGS} -O ihex $< $@$(obj)u-boot.srec: $(obj)u-boot$(OBJCOPY) ${OBJCFLAGS} -O srec $< $@$(obj)u-boot.bin: $(obj)u-boot$(OBJCOPY) ${OBJCFLAGS} -O binary $< $@#这里生成的是U-boot 的ELF文件镜像$(obj)u-boot: depend version $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT) UNDEF_SYM=`$(OBJDUMP) -x $(LIBS) |sed -n -e''''''''''''''''''''''''''''''''s/.*/(__u_boot_cmd_.*/)/-u/1/p''''''' '''''''''''''''''''''''''|sort|uniq`;/cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) /--start-group $(__LIBS) --end-group $(PLATFORM_LIBS) /-Map u-boot.map -o u-boot分析一下最关键的u-boot ELF文件镜像的生成:@依赖目标depend:生成各个子目录的.depend文件,.depend列出每个目标文件的依赖文件。