数学-高一-人教A必修一红对勾单元综合测试一
高中数学人教A版必修第一册全册测试卷(含答案)
……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
(红对勾)人教版高中数学高一必修一答案
人教版高中数学高一必修一答案目录•第一章线性方程与不等式•第二章函数基础•第三章函数的初等函数•第四章三角函数•第五章数列•第六章概率第一章线性方程与不等式1. 解答:(1)解:因为$$ \\begin{aligned} x+y&=-2\\\\ 2x-y&=1 \\end{aligned} $$(2)解得:$$ \\begin{aligned} x&=-\\frac{3}{5}\\\\ y&=-\\frac{7}{5} \\end{aligned} $$(3)所以方程的解为$x=-\\frac{3}{5}$,$y=-\\frac{7}{5}$。
(2)解:因为$$ \\begin{aligned} 2x+y&=-3\\\\ 3x-2y&=4 \\end{aligned} $$(3)解得:$$ \\begin{aligned} x&=-\\frac{11}{5}\\\\ y&=\\frac{7}{5} \\end{aligned} $$(4)所以方程的解为$x=-\\frac{11}{5}$,$y=\\frac{7}{5}$。
2. 解答:(1)解:根据题意,2x−3<4,移项得2x<7,再除以2得$x<\\frac{7}{2}$,所以不等式的解集为$x<\\frac{7}{2}$。
(2)解:根据题意,$3x+2\\leq 5$,移项得$3x\\leq 3$,再除以3得$x\\leq 1$,所以不等式的解集为$x\\leq 1$。
第二章函数基础1. 解答:(1)解:由题意,函数x(x)的定义域是$x\\geq -3$,根据函数的图象可得:当$x\\geq -3$时,x(x)的值为正;当x<−3时,x(x)的值为负。
(2)解:由题意,函数x(x)的定义域是$x\\leq 2$,根据函数的图象可得:当$x\\leq 2$时,x(x)的值为负;当x>2时,x(x)的值为正。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
《红对勾》2015-2016学年人教版高中数学必修一习题第1章课时作业6函数的概念
课时作业6 函数的概念时间:45分钟 分值:100分一、选择题(每小题6分,共计36分) 1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了 解析:由函数定义可知. 答案:C2.函数y =x +2+4-x 的定义域为( ) A .{x |x ≤-1} B .{x |-2≤x ≤4} C .{x |x ≤-2或x ≥4}D .{x ≥4}解析:要使函数有意义,需⎩⎪⎨⎪⎧2+x ≥0,4-x ≥0.解得-2≤x ≤4. 答案:B3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析:由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}.答案:A4.若f (x )=x -1x ,则方程f (4x )=x 的根是( ) A.12 B .-12 C .2D .-2解析:f (4x )=4x -14x =x ,∴4x 2-4x +1=0,∴x =12. 答案:A5.函数的图象与直线x =1的交点最多有( ) A .0个 B .1个 C .2个D .以上都不对解析:由函数定义知. 答案:B6.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( )A .p +qB .3p +2qC .2p +3qD .p 3+q 2 解析:∵f (ab )=f (a )+f (b ),∴f (9)=f (3)+f (3)=2q ,f (8)=f (2)+f (2)+f (2)=3p ,∴f (72)=f (8×9)=f (8)+f (9)=3p +2q . 答案:B二、填空题(每小题8分,共计24分) 7.设集合A =f (a -1)=(a -1)+3+1(a -1)+2=a +2+1a +1.11.(15分)已知函数f (x )=x 2+1,x ∈R .(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.(2)由(1)你发现了什么结论?并加以证明.解:(1)f(1)-f(-1)=(12+1)-=2-2=0;f(2)-f(-2)=(22+1)-=5-5=0;f(3)-f(-3)=(32+1)-=10-10=0.(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:由题意得f(-x)=(-x)2+1=x2+1=f(x).∴对任意x∈R,总有f(x)=f(-x).——能力提升——12.(15分)已知函数y=1a x+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.解:已知函数y=1a x+1(a<0且a为常数),∵1a x+1≥0,a<0,∴x≤-a,即函数的定义域为(-∞,-a],∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-a],∴-a≥1,即a≤-1,∴a的取值范围是(-∞,-1].。
【红对勾】人教版高中数学必修一第1章课件+课时作业+章末总结(41份)(1.2.1.2)
函数的值域
求函数的值域是一个较复杂的问题,要首先明确两 点:
RJA版·数学·必修1
进入导航
第一章·1.2·1.2.1·第2课时
一是值域的概念,即对于定义域A上的函数y=f(x),其 值域就是指其函数值的集合:{f(x)|x∈A};二是函数的 定义域、对应关系 是确定函数的依据.另外,在求函 数的值域时,要根据所给的函数的形式,采用相应的方 法.
下列各组中两个函数是否表示相等函数?
(1)f(x)=6x,g(x)=63 x3; (2)f(x)=xx2--39,g(x)=x+3; (3)f(x)=x2-2x-1,g(t)=t2-2t-1.
RJA版·数学·必修1
进入导航
第一章·1.2·1.2.1·第2课时
解:(1)g(x)=63 x3=6x,它与f(x)=6x定义域相同,对 应关系也相同,所以是相等函数.
3.求值域的方法有:(1)观察法:根据定义域和对应关 系求出;(2)数形结合法:作出函数的图象,然后求解;(3) 配方法:配方求解;(4)分离常数法:添一项、减一项,分 离出常数再求解;(5)换元法:可以将无理函数转换成有理 函数再求解.
RJA版·数学·必修1
进入导航
第一章·1.2·1.2.1·第2课时
1.若两个函数的定义域和值域相同,它们是否为同一 函数?对应关系和值域相同呢?
RJA版·数学·必修1
进入导航
第一章·1.2·1.2.1·第2课时
提示:观察下表:
函数 定义域 对应关系 值域
f1(x)=x R
x→x
f2(x)=2x R
x→2x
f3(x)=x2 [0,2] x→x2
f4(x)=x2 [-1,2] x→x2
第一章·1.2·1.2.1·第2课时
【红对勾】2015-2016学年人教版高中数学必修一习题第1章单元综合测试一(第一章)集合与函数的概念
单元综合测试一(第一章)时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知集合A ={1,2},B ={2,4},则A ∪B =( ) A .{2} B .{1,2,2,4} C .{1,2,4} D .∅答案:C2.设全集U ={1,2,3,4},M ={1,3,4},N ={2,4},P ={2},那么下列关系正确的是( )A .P =(∁U M )∩NB .P =M ∪NC .P =M ∩(∁U N )D .P =M ∩N 解析:∁U M ={2},故P =(∁U M )∩N . 答案:A3.设全集U =R ,集合M ={y |y =x 2+2,x ∈U },集合N ={y |y =3x ,x ∈U },则M ∩N 等于( )A .{1,3,2,6}B .{(1,3),(2,6)}C .MD .{3,6}解析:M ==f ⎝ ⎛⎭⎪⎫12=1.答案:A8.已知函数f (x )的定义域为(0,1),则函数f (2x +1)的定义域为( )A .(0,1)B .(0,2)C .(0,3)D.⎝ ⎛⎭⎪⎫-12,0 解析:令0<2x +1<1,∴-12<x <0.故选D. 答案:D9.函数y =x 2-2x +3,-1≤x ≤2的值域是( ) A .R B .C .D .,所以值域是.答案:C10.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)解析:xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论. 答案:D11.如果奇函数y =f (x )(x ≠0)在x ∈(0,+∞)时,f (x )=x -1,那么使f (x -1)<0成立的x 的取值范围是( )A .x <0B .1<x <2C .x <0或1<x <2D .x <2且x ≠0 解析:画出y =f (x )的图象如图(1)所示,向右平移得到f (x -1)的图象,如图(2)所示.故由f(x-1)<0,得x<0或1<x<2.也可以利用整体代换,x-1<-1或0<x-1<1,得x<0或1<x<2.故选C.答案:C12.设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x<0的解集为()A.{x|-1<x<0或x>1}B.{x|x<-1或0<x<1}C.{x|x<-1或x>1}D.{x|-1<x<0或0<x<1}解析:x>0时,f(x)-f(-x)<0,f(x)<f(-x)=-f(x),即f(x)<0,又f(1)=0,∴0<x<1.x<0时,f(x)-f(-x)>0,f(x)>f(-x)=-f(x),即f(x)>0,又f(-1)=-f(1)=0∴-1<x<0.故-1<x<0或0<x<1.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知A={x|x≤1或x>3},B={x|x>2},则(∁R A)∪B=________.解析:∁R A={x|1<x≤3},(∁R A)∪B={x|x>1}.答案:{x|x>1}14.函数y=x2+2x-3的单调递减区间是________.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3, ∴函数减区间为(-∞,-3]. 答案:(-∞,-3]15.已知函数f (x )是R 上的奇函数,且f (x +2)=-f (x ),当x ∈(0,2)时,f (x )=x 2,则f (7)=________.解析:由题意,f (2-x )=-f (2+x ),f (7)=f (2+5)=-f (2-5)=-f (-3)=f (2+1)=-f (2-1)=-f (1)=-1.答案:-116.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y=12的图象的交点个数是________.解析:函数y =f (x )的图象如图所示,则函数y =f (x )与y =12的图象的交点个数是4.答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围. 解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6} ={x |1<x ≤8}. ∁U A ={x |x <2或x >8}.∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.(12分)已知集合A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∩B =A ,求a 的取值范围.解:(1)由A ∩B =∅,得⎩⎪⎨⎪⎧a ≥-1,a +3≤5.解得-1≤a ≤2.(2)由A ∩B =A 知A ⊆B ,∴a +3<-1或a >5. 解得a <-4或a >5.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数.(2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.(12分)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2-4x +3.(1)求f 的值;(2)求函数f (x )的解析式.解:(1)∵f (-1)=-f (1)=0,∴f =f (0). ∵f (x )为R 上的奇函数, ∴f (0)=0,∴f =0.(2)当x =0时,由奇函数的性质知f (0)=0. 当x <0时,-x >0, ∴f (x )=-f (-x )=- =-x 2-4x -3.综上所述,f (x )=⎩⎪⎨⎪⎧x 2-4x +3(x >0),0(x =0),-x 2-4x -3(x <0).21.(12分)已知函数f (x )=2x +1x +1.(1)判断函数在区间上的最大值与最小值. 解:(1)f (x )在∴函数f (x )在上是增函数,∴最大值为f (4)=2×4+14+1=95,最小值为f (1)=2×1+11+1=32.22.(12分)已知函数f (x )的定义域为R ,对任意的实数x ,y 都有f (x +y )=f (x )+f (y )+12,且f ⎝ ⎛⎭⎪⎫12=0,当x >12时,f (x )>0.(1)求f (1);(2)判断函数f (x )的增减性,并证明你的结论.解:(1)令x =y =12,得f (1)=f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫12+12=12.(2)f (x )在R 上为增函数.证明如下:任取x 1,x 2∈R ,且x 2>x 1, 即Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=f (x 1+Δx )-f (x 1)=f (Δx )+f (x 1)+12-f (x 1)=f (Δx )+12=f (Δx )+12+f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫Δx +12,又Δx >0,∴Δx +12>12,由题意知f ⎝ ⎛⎭⎪⎫Δx +12>0,即f (x 2)>f (x 1),∴f (x )在R 上是增函数.。
【红对勾】高中数学 单元综合测试一 新人教A版选修2-1(1)
单元综合测试一时刻:120分钟分值:150分第Ⅰ卷(选择题,共60分)1.以下语句不是命题的有( )①x2-3=0;②与一条直线相交的两直线平行吗?;③3+1=5;④5x-3>6.A.①③④B.①②③C.①②④D.②③④答案:C2.命题“假设A⊆B,那么A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A.0 B.2C.3 D.4解析:可设A={1,2},B={1,2,3},知足A⊆B,但A≠B,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真.答案:B3.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:直线l与平面α内两相交直线垂直⇔直线l与平面α垂直,应选C.答案:C4.已知p:假设a∈A,那么b∈B,那么命题綈p是( )A.假设a∈A,那么b∉B B.假设a∉A,那么b∉BC.假设b∉B,那么a∉A D.假设b∈B,那么a∈A解析:命题“假设p,那么q”的否定形式是“假设p,那么綈q”.答案:A5.命题“p且q”与命题“p或q”都是假命题,那么以下判定正确的选项是( )A.命题“非p”与“非q”真假不同B.命题“非p”与“非q”最多有一个是假命题C.命题“非p”与“q”真假相同D.命题“非p且非q”是真命题解析:p且q是假命题⇒p和q中至少有一个为假,那么非p和非q至少有一个是真命题.p或q是假命题⇒p和q都是假命题,那么非p和非q都是真命题.答案:D6.已知a,b为任意非零向量,有以下命题:①|a|=|b|;②(a)2=(b)2;③(a)2=a·b,其中能够作为a=b的必要非充分条件的命题是( )A.①B.①②C.②③D.①②③解析:由向量的运算即可判定.答案:D7.已知A和B两个命题,若是A是B的充分没必要要条件,那么“綈A”是“綈B”的( )A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件解析:由于“A⇒B,A⇐/ B”等价于“綈A⇐綈B,綈A⇒/ 綈B”,故“綈A”是“綈B”的必要不充分条件.答案:B8.假设向量a=(x,3)(x∈R),那么“x=4”是“|a|=5”的( )A.充分而没必要要条件B.必要而不充分条件C.充要条件D.既不充分也没必要要条件解析:由“x=4”,得a=(4,3),故|a|=5;反之,由|a|=5,得x=±4.因此“x=4”是“|a|=5”的充分而没必要要条件.答案:A9.以下全称命题中,正确的选项是( ) A .∀x ,y ∈{锐角},sin(x +y )>sin x +sin y B .∀x ,y ∈{锐角},sin(x +y )>cos x +cos y C .∀x ,y ∈{锐角},cos(x +y )<sin x +cos y D .∀x ,y ∈{锐角},cos(x -y )<cos x +sin y解析:由于cos(x -y )=cos x cos y +sin x sin y ,而当x ,y ∈{锐角}时,0<cos y <1,0<sin x <1, 因此cos(x -y )=cos x cos y +sin x sin y <cos x +sin y ,应选项D 正确. 答案:D10.以下判定正确的选项是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈Z ,x 3>x 2”的否定是“∃x ∈Z ,x 3<x 2”C .“φ=π2”是“函数y =sin(x +φ)为偶函数”的充要条件D .“b =0”是“关于x 的二次函数f (x )=ax 2+bx +c 是偶函数”的充要条件解析:A 为全称命题;B 中否定应为∃x 0∈Z ,x 30≤x 20;C 中应为充分没必要要条件.答案:D11.已知命题p :函数f (x )=log 0.5(3-x )的概念域为(-∞,3);命题q :假设k <0,那么函数h (x )=k x在(0,+∞)上是减函数,对以上两个命题,以下结论中正确的选项是( )A .命题“p 且q ”为真B .命题“p 或綈q ”为假C .命题“p 或q ”为假D .命题“綈p ”且“綈q ”为假 解析:由题意知p 真,q 假.再进行判定. 答案:D12.已知向量a =(x ,y ),b =(cos α,sin α),其中x ,y ,α∈R ,假设|a |=4|b |,那么a ·b <λ2成立的一个必要不充分条件是( )A .λ>3或λ<-3B .λ>1或λ<-1C .-3<λ<3D .-1<λ<1解析:由已知|b |=1,∴|a |=4|b |=4.又∵a ·b =x cos α+y sin α=x 2+y 2sin(α+φ)=4sin(α+φ)≤4,由于a ·b <λ2成立,那么λ2>4,解得λ>2或λ<-2,这是a ·b <λ2成立的充要条件,因此a ·b <λ2成立的一个必要不充分的条件是λ>1或λ<-1.应选B.答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,共20分)13.“对顶角相等”的否定为________,否命题为________.解析:“对顶角相等”的否定为“对顶角不相等”,否命题为“假设两个角不是对顶角,那么它们不相等”. 答案:对顶角不相等 假设两个角不是对顶角,那么它们不相等14.令p (x ):ax 2+2x +1>0,若是对∀x ∈R ,p (x )是真命题,那么a 的取值范围是________.解析:由已知∀x ∈R ,ax 2+2x +1>0恒成立.显然a =0不合题意,因此⎩⎪⎨⎪⎧a >0Δ=4-4a <0⇒a >1.答案:a >115.试写出一个能成为(a -2)2(a -1)>0的必要不充分条件________.解析:(a -2)2(a -1)>0的解集记为B ={a |a >1且a ≠2},所找的记为集合A ,那么B A . 答案:a >1(不惟一) 16.给定以下结论:①已知命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.那么命题“p ∧綈q ”是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,那么l 1⊥l 2的充要条件是ab=-3;③假设sin(α+β)=12,sin(α-β)=13,那么tan α=5tan β;④圆x 2+y 2+4x -2y +1=0与直线y =12x ,所得弦长为2.其中正确命题的序号为________(把你以为正确的命题序号都填上).解析:关于①易知p 真,q 真,故命题p ∧綈q 假,①正确;关于②l 1与l 2垂直的充要条件应为a +3b =0;关于③利用两角和与差的正弦公式展现整理即得;关于④可求得弦长为455,④错.答案:①③三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知命题p :∀非零向量a 、b 、c ,假设a ·(b -c )=0,那么b =c .写出其否定和否命题,并说明真假.解:綈p :∃非零向量a 、b 、c ,假设a ·(b -c )=0,使b ≠c .綈p 为真命题. 否命题:∀非零向量a 、b 、c ,假设a ·(b -c )≠0,那么b ≠c .否命题为真命题.18.(12分)给定两个命题P :对任意实数x 都有ax 2+ax +1>0恒成立;Q :关于x 的方程x 2-x +a =0有实数根.若是P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.解:命题P :对任意实数x 都有ax 2+ax +1>0恒成立,那么“a =0”,或“a >0且a 2-4a <0”.解得0≤a <4. 命题Q :关于x 的方程x 2-x +a =0有实数根,那么Δ=1-4a ≥0,得a ≤14.因为P ∧Q 为假命题,P ∨Q 为真命题,那么P ,Q 有且仅有一个为真命题,故綈P ∧Q 为真命题,或P ∧綈Q 为真命题,那么⎩⎪⎨⎪⎧ a <0或a ≥4a ≤14或⎩⎪⎨⎪⎧0≤a <4a >14.解得a <0或14<a <4.因此实数a 的取值范围是(-∞,0)∪(14,4).19.(12分)求证:一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分没必要要条件是a <-1.证明:一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充要条件是:Δ=4-4a >0⇔a <1,而且a <0,从而a <0.有一个正根和一个负根的充分没必要要条件应该是{a |a <0}的真子集,a <-1符合题意.因此结论得证.20.(12分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0,且綈p 是綈q 的充分条件,求实数a 的取值范围.解:由⎩⎪⎨⎪⎧ x 2-4x +3<0,x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <3,2<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3},∵綈p ⇒綈q ,∴q ⇒p .∴B ⊆A .∴2<x <3包括于集合A ,即2<x <3知足不等式2x 2-9x +a <0.∴2<x <3知足不等式a <9x -2x 2.∵当2<x <3时,9x -2x 2=-2(x 2-92x +8116-8116)=-2(x -94)2+818∈(9,818],即9<9x -2x 2≤818,∴a ≤9. 21.(12分)给出命题p :“在平面直角坐标系xOy 中,已知点P (2cos x +1,2cos2x +2)和Q (cos x ,-1),∀x ∈[0,π],向量OP →与OQ →不垂直.”试判定该命题的真假,并证明.解:命题p 是假命题,证明如下:由OP →和OQ →不垂直,得cos x (2cos x +1)-(2cos2x +2)≠0,变形得:2cos 2x -cos x ≠0,因此cos x ≠0或cos x ≠12.而当x ∈[0,π]时,cos π2=0,cos π3=12,故存在x =π2或x =π3,使向量OP→⊥OQ →成立,因此p 是假命题.22.(12分)已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0. 证明:必要性:∵a +b =1,∴b =1-a , ∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=a 3+1-3a +3a 2-a 3+a -a 2-a 2-1+2a -a 2=0.充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0, ∴(a 2-ab +b 2)(a +b -1)=0, 又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=(a -b2)2+3b 24≠0,只有a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.。
高一(上)红对勾练习
第一章 1.3 课时作业6
第27页
撷取百家精妙·荟萃时代品牌
谢谢观赏!
Thanks!
德杰文化传媒制作
高中数学1 ·必修第一册 ·A版
45分钟作业与单元评估
二合一
13.(10 分)已知集合 A={y|y=x2-2x,x∈R},B={y|y=-x2+2x +6,x∈R}.
(1)求 A∩B; (2)若集合 A,B 中的元素都为整数,求 A∩B; (3)若集合 A 变为 A={x|y=x2-2x,x∈R},其他条件不变,求 A∩B; (4)若集合 A,B 分别变为 A={(x,y)|y=x2-2x,x∈R},B={(x, y)|y=-x2+2x+6,x∈R},求 A∩B.
个数为( A )
A.9
B.8
C.5
D.4
解析:∵x2+y2≤3,∴x2≤3,∵x∈Z,∴x=-1,0,1,当 x=-1 时,y=-1,0,1;当 x=0 时,y=-1,0,1;当 x=1 时,y=-1,0,1,∴ 共有 9 个.
第一章 1.3 课时作业6
第9页
高中数学1 ·必修第一册 ·A版
45分钟作业与单元评估
第一章 1.3 课时作业6
第13页
高中数学1 ·必修第一册 ·A版
45分钟作业与单元评估
二合一
二、填空题(每小题 5 分,共 15 分) 9.满足 M⊆{1,2,3,4},且 M∩{1,2}≠∅的集合 M 的个数是 12 .
解析:∵集合 M⊆{1,2,3,4},且 M∩{1,2}≠∅,∴满足条件的集 合 M 为{1},{1,2},{1,2,3},{1,2,4},{1,2,3,4},{1,3},{1,4},{1,3,4}, {2},{2,3},{2,4},{2,3,4},共有 12 个.
高一数学高中数学必修红对勾答案
故 PC=2,NC=45.
解:设此长方体的长、宽、高分别为 x、y、z,体 对角线长为 l,则由题意得
2xy+yz+zx=11,
①
4x+y+z=24, ②
由②得 x+y+z=6,从而由长方体的体对角线性质
得
l= x2+y2+z2 = x+y+z2-2xy+yz+zx = 62-11=5, ∴长方体的体对角线长为 5.
11.(本小题满分14分)一个正三棱柱的底面边长是4, 高是6,过下底面的一条棱和该棱所对的上底面的顶点作 截面,求此截面的面积.
体有7个顶点.
答案:B
6.如图,已知长方体ABCD-A1B1C1D1,过BC和AD 分别作一个平面交底面A1B1C1D1于EF、PQ,则长方体被 分成的三个几何体中,棱柱的个数是( )
A.0个
B.1个
C.2个
D.3个
解 析 : 共 有 3 个 : 棱 柱 AA1P - DD1Q , 棱 柱 ABEP - DCFQ,棱柱BEB1-CFC1.
B.1个
C.2个
D.3个
解析:由直棱柱的定义,知①为真命题;正棱柱是底 面为正多边形的直棱柱,②为假命题;由棱柱的定义知其 侧面是平行四边形,故③为真命题.
答案:C
5.下图是一个简单多面体的表面展开图(沿图中虚线 拆叠即可还原),则这个多面体的顶点数为( )
A.6
B.7
C.8
D.9
解析:还原几何体,如图所示.由图观察知,该几何
解析:如图,正三棱柱 ABC-A′B′C′,符合 题意的截面为△A′BC.在 Rt△A′B′B 中,A′B′ =4,BB′=6,所以 A′B= A′B′2+BB′2=
42+62=2 13.
在等腰三角形 A′BC 中,O 为 BC 的中点,连接 A′O,
最新人教A版高一数学必修一单元测试题全套及答案
最新人教A 版高一数学必修一单元测试题全套及答案第一章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U =R ,集合P ={x ∈N *|x <7},Q ={x |x -3>0},那么图中阴影部分表示的集合是( )A .{1,2,3,4,5,6}B .{x |x >3}C .{4,5,6}D .{x |3<x <7}2.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或43.下表给出函数y =f (x )的部分对应值,则f (1)=( )x -1 0 1 478y2π1 -3 1A. π C .8D .04.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+1B .f (x )=1-1xC .f (x )=x 2-5x -6D .f (x )=3-x5.函数f (x )=1+x +x 2+11-x 的定义域为( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)6.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π7.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值等于( )A.23 B .2 C .4D .68.已知函数y =k (x +2)-1的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f ⎝ ⎛⎭⎪⎫-3727等于( )A.89 B.79 C.59D.299.已知函数y =f (x )在(0,2)上为增函数,函数y =f (x +2)为偶函数,则f (1),f ⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭⎪⎫72的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72B .f (1)>f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫72C .f ⎝ ⎛⎭⎪⎫72>f ⎝ ⎛⎭⎪⎫52>f (1)D .f ⎝ ⎛⎭⎪⎫72>f (1)>f ⎝ ⎛⎭⎪⎫5210.定义运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,则函数f (x )=x 2|x |的图象是( )11.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( ) A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( )A .0B .1或2C .1D .2二、填空题(每小题5分,共20分)13.已知f (x +2)=x 2-4x ,则f (x )=________.14.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________.15.已知二次函数f (x )=x 2+2ax -4,当a ________时,f (x )在[1,+∞)上是增函数,当a ________时,函数f (x )的单调递增区间是[1,+∞).答案1.C P ={1,2,3,4,5,6},Q ={x |x >3},则阴影部分表示的集合是P ∩Q ={4,5,6}.2.A 当a =0时,方程ax 2+ax +1=0无解, 这时集合A 为空集,故排除C 、D.当a =4时,方程4x 2+4x +1=0只有一个解x =-12,这时集合A 只有一个元素,故选A. 3.A4.B A ,C ,D 选项中的三个函数在(-∞,0)上都是减函数,只有B 正确.5.D 要使函数有意义,则有⎩⎪⎨⎪⎧1+x ≥0,1-x >0,解得-1≤x <1,所以函数的定义域为[-1,1). 6.B 因为π是无理数,所以g (π)=0, 所以f (g (π))=f (0)=0.故选B.7.B 因为函数f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )关于x =1对称,所以区间(3-2a ,a +1)关于x =1对称,所以3-2a +a +12=1,即a =2,所以选B.8.A 由题知A (-2,-1).又由A 在f (x )的图象上得3×(-2)+b =-1,b =5,则f (x )=3x +5,则f ⎝ ⎛⎭⎪⎫-3727=89.故选A.9.A y =f (x +2)关于x =0对称,则y =f (x )关于x =2对称,因为函数f (x )在(0,2)上单调递增,所以函数f (x )在(2,+∞)上单调递减,所以f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72. 10.B 根据运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,得f (x )=x 2|x |=⎩⎪⎨⎪⎧x 2,x <-1或x >1,|x |,-1≤x ≤1,由此可得图象如图所示. 11.C ∵f (x )为偶函数,∴f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x <0.又f (x )在(0,+∞)上是减函数,且f (3)=0,结合图象知,当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x <0的解集为(-3,0)∪(3,+∞).12.C 二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.13.x 2-8x +12解析:设t =x +2,则x =t -2, ∴f (t )=(t -2)2-4(t -2)=t 2-8t +12. 故f (x )=x 2-8x +12. 14.-0.5解析:由题意,得f (x )=-f (x +2)=f (x +4),则f (7.5)=f (3.5)=f (-0.5)=-f (0.5)=-0.5.15.≥-1 =-1解析:∵f (x )=x 2+2ax -4=(x +a )2-4-a 2, ∴f (x )的单调递增区间是[-a ,+∞),∴当-a ≤1时,f (x )在[1,+∞)上是增函数,即a ≥-1; 当a =-1时,f (x )的单调递增区间是[1,+∞).16.定义在R 上的偶函数f (x ),当x ∈[1,2]时,f (x )<0,且f (x )为增函数,给出下列四个结论:①f (x )在[-2,-1]上单调递增; ②当x ∈[-2,-1]时,有f (x )<0; ③f (x )在[-2,-1]上单调递减; ④|f (x )|在[-2,-1]上单调递减.其中正确的结论是________(填上所有正确的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设全集为实数集R ,集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }.(1)求A ∪B 及(∁R A )∩B ;(2)若A ∩C =A ,求a 的取值范围; (3)如果A ∩C ≠∅,求a 的取值范围. 18.(12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.——————————————————————————答案16.②③解析:因为f (x )为定义在R 上的偶函数,且当x ∈[1,2]时,f (x )<0,f (x )为增函数,由偶函数图象的对称性知,f (x )在[-2,-1]上为减函数,且当x ∈[-2,-1]时,f (x )<0.17.解:(1)A ∪B ={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3,或7≤x <10}.(2)由A ∩C =A 知A ⊆C ,借助数轴可知a 的取值范围为[7,+∞). (3)由A ∩C ≠∅可知a 的取值范围为(3,+∞). 18.解:(1)当x ≥0时,f (x )=1+x -x4=1; 当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.19.(12分)已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0,且f (x )在(1,+∞)内单调递减,求a 的取值范围.20.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性;(3)求函数f (x )+g (x )在(0,2]上的最小值.答案19.(1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2).故f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1].20.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2, ∴k 1=1,k 2=2,∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-⎝ ⎛⎭⎪⎫x +2x =-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知h (x )=x +2x .设x 1,x 2是(0,2]上的任意两个不相等的实数,且x 1<x 2,则h (x 1)-h (x 2)=⎝ ⎛⎭⎪⎫x 1+2x 1-⎝ ⎛⎭⎪⎫x 2+2x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫2x 1-2x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-2x 1x 2=(x 1-x 2)(x 1x 2-2)x 1x 2. ∵x 1,x 2∈(0,2],且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,∴(x 1-x 2)(x 1x 2-2)>0.∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=22,即函数f (x )+g (x )在(0,2]上的最小值是2 2.——————————————————————————21.(12分)若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数; (3)若f (4)=5,解不等式f (3m -2)<3.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1.(1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a 的取值范围.答案21.(1)证明:因为定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,所以令x 1=x 2=0,则f (0+0)=f (0)+f (0)-1, 即f (0)=1.令x 1=x ,x 2=-x ,则f (x -x )=f (x )+f (-x )-1, 所以[f (x )-1]+[f (-x )-1]=0, 故y =f (x )-1为奇函数.(2)证明:由(1)知y =f (x )-1为奇函数, 所以f (x )-1=-[f (-x )-1].任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, 所以f (x 2-x 1)=f (x 2)+f (-x 1)-1 =f (x 2)-[f (x 1)-1]=f (x 2)-f (x 1)+1. 因为当x >0时,f (x )>1,所以f (x 2-x 1)=f (x 2)-f (x 1)+1>1, 即f (x 1)<f (x 2),故f (x )是R 上的增函数.(3)解:因为f (x 1+x 2)=f (x 1)+f (x 2)-1,且f (4)=5,所以f (4)=f (2)+f (2)-1=5,即f (2)=3,由不等式f (3m -2)<3,得f (3m -2)<f (2). 由(2)知f (x )是R 上的增函数,所以3m -2<2,即3m -4<0,即m <43, 故不等式f (3m -2)<3的解集为⎝⎛⎭⎪⎫-∞,43. 22.(1)解:因为奇函数f (x )的定义域为R ,所以f (0)=0. 故有f (0)=0+m02+n ×0+1=0,解得m =0.所以f (x )=xx 2+nx +1.由f (-1)=-f (1),即-1(-1)2+n ×(-1)+1=-112+n ×1+1,解得n =0.所以m =n =0. (2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1.则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1).因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,故1-x 1x 2>0,又因为x 1<x 2,所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上为增函数. (3)解:由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎢⎡⎦⎥⎤-13,13上为增函数,故最大值为f ⎝ ⎛⎭⎪⎫13=310.由题意可得a 3≥310,解得a ≥910.故a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.第二章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分) 1.(lg9-1)2的值等于( ) A .lg9-1 B .1-lg9 C .8D .2 22.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x B .y =log2xC .y =2xD .y =2x 2+x +13.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,那么f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18的值为( )A .27 B.127 C .-27D .-1274.函数f (x )=ln(x 2+1)的图象大致是( )5.已知a =212,b =⎝ ⎛⎭⎪⎫12-0.5,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a6.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )7.一种放射性元素,每年的衰减率是8%,那么a kg 的这种物质的半衰期(剩余量为原来的一半所需的时间)t 等于( )A .lg 0.50.92B .lg 0.920.5 C.lg0.5lg0.92D.lg0.92lg0.58.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |9.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c10.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,1B.⎝ ⎛⎭⎪⎫0,110∪(1,+∞)C.⎝⎛⎭⎪⎫110,10 D .(0,1)∪(1,+∞)11.函数f (x )=log 2|2x -1|的图象大致是( )12.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是减函数,设a =f (log 26),b =f (log 123),c =f ⎝ ⎛⎭⎪⎫13,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(每小题5分,共20分) 13.已知4a =2,lg x =a ,则x =________.14.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.15.函数y =log a (2x -3)+4的图象恒过定点M ,且点M 在幂函数f (x )的图象上,则f (3)=________.16.已知0<x <y <1,且有以下关系:①3y>3x;②log x 3>log y 3;③⎝ ⎛⎭⎪⎫13y >⎝ ⎛⎭⎪⎫13x;④log 4x <log 4y ;⑤log 14x <log 4y .其中正确的关系式的序号是________.答案1.B 因为lg9<lg10=1,所以(lg9-1)2=|lg9-1|=1-lg9.故选B.2.C 函数y =2x 为(0,+∞)上的减函数.故选C.3.B f ⎝ ⎛⎭⎪⎫18=log 218=-3,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18=f (-3)=3-3=127. 4.A 函数过定点(0,0),排除选项B 、D ,又f (-x )=ln(x 2+1)=f (x ),所以f (x )为偶函数,排除选项C.故选A.5.A ∵a =212,b =⎝ ⎛⎭⎪⎫12-0.5=2 12=2>1.∴a >b >1.又c =2log 52=log 54<1, 因此a >b >c .6.D 若a >1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈[0,1)时,y =x a 的图象应在直线y =x 的下方,故C 选项错误;若0<a <1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y =x a (x ≥0)的图象应单调递增,且当x ∈[0,1)时图象应在直线y =x 的上方,因此A ,B 均错,只有D 项正确.7.C 设t 年后剩余量为y kg ,则y =(1-8%)ta =0.92ta .当y =12a 时,12a =0.92t a ,所以0.92t =0.5,则t =log 0.920.5=lg0.5lg0.92.8.B A 项,函数y =e -x 为R 上的减函数; B 项,函数y =x 3为R 上的增函数; C 项,函数y =ln x 为(0,+∞)上的增函数;D 项,函数y =|x |在(-∞,0)上为减函数,在(0,+∞)上为增函数. 故只有B 项符合题意,应选B. 9.B 由log 5b =a ,得lg blg5=a ; 由5d =10,得d =log 510=lg10lg5=1lg5,又lg b =c ,所以cd =a .故选B.10.C 由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.选C. 11.C 当0<x <1时,f (x )=log 2(2x -1)为增函数,排除A.当x <0时,f (x )=log 2(-2x +1)<0且为减函数.故选C.12.A 由f (x )是R 上的偶函数,且在(-∞,0]上是减函数,则f (x )在[0,+∞)上是增函数,由b =f ⎝⎛⎭⎪⎫log 12 3=f (-log 23)=f (log 23),由0<13<log 23<log 26,得f ⎝ ⎛⎭⎪⎫13<f (log 23)<f (log 26),即c <b <a .故选A.13.10解析:由4a =2,可得a =log 42=12.所以lg x =12,即x =10 12=10.14.2解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.15.9解析:当2x -3=1时y =4.即函数y =log a (2x -3)+4图象恒过定点M (2,4),又M 在幂函数f (x )图象上,设f (x )=x m ,则4=2m ,解得m =2,即f (x )=x 2,则f (3)=32=9.16.①②④解析:∵3>1,y >x ,∴3y >3x ,故①正确. 由对数函数的图象知②正确; 由①正确知③不正确; ∵4>1,x <y ,∴log 4x <log 4y ,故④正确;log 14x >0,log 4y <0,∴log 12x >log 4y ,故⑤不正确.————————————————————————————三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)计算: (1)⎝⎛⎭⎪⎫21412 -(-0.96)0-⎝ ⎛⎭⎪⎫338- 23 +1.5-2+[(-32)-4]- 34 ;(2)⎝ ⎛⎭⎪⎫lg 14-lg25÷100- 12+7log 72+1.18.(12分)已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值; (2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.答案17.解:(1)原式=⎝ ⎛⎭⎪⎫94 12 -1-⎝ ⎛⎭⎪⎫278- 23 +⎝ ⎛⎭⎪⎫32-2+[(32)-4]- 34=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2+(32)3=12+2=52.(2)原式=-(lg4+lg25)÷100- 12+14=-2÷10-1+14=-20+14=-6. 18.解:(1)因为f (4)=72, 所以4m-24=72,所以m =1.(2)由(1)知f (x )=x -2x ,所以函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又f (-x )=-x +2x =-⎝ ⎛⎭⎪⎫x -2x =-f (x ).所以函数f (x )是奇函数.(3)函数f (x )在(0,+∞)上是单调增函数,证明如下: 设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-⎝ ⎛⎭⎪⎫x 2-2x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫1+2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0.所以f (x 1)>f (x 2).所以函数f (x )在(0,+∞)上为单调增函数.———————————————————————————— 19.(12分)设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值和最小值.20.(12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.答案19.解:(1)∵f (1)=2,∴log a 4=2, ∵a >0,且a ≠1,∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3). 故函数f (x )的定义域为(-1,3).(2)∵由(1)知,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数.∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.∵函数y =-(x -1)2+4的图象的对称轴是x =1,∴f (0)=f (2)<f ⎝ ⎛⎭⎪⎫32,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最小值为f (0)=log 23.20.解:∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1.(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x -1-13-x -1=0,∴a =-12.(2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴-1<3x -1<0或3x -1>0, ∴-12-13x -1>12或-12-13x -1<-12.故函数的值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y >12或y <-12. ———————————————————————————— 21.(12分)已知函数f (x )=2x 2-4x +a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[-1,2m ]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1). ①求实数a 的值;②设t 1=12f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.(12分)设函数f (x )=log 2⎝⎛⎭⎪⎫1+x 1-ax (a ∈R ),若f ⎝ ⎛⎭⎪⎫-13=-1. (1)求f (x )的解析式;(2)g (x )=log 21+x k ,若x ∈⎣⎢⎡⎦⎥⎤12,23时,f (x )≤g (x )有解,求实数k 的取值集合.答案21.解:(1)因为抛物线y =2x 2-4x +a 开口向上,对称轴为x =1, 所以函数f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[-1,2m ]上不单调, 所以2m >1,得m >12,所以实数m 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.(2)①因为f (1)=g (1),所以-2+a =0, 所以实数a 的值为2.②因为t 1=12f (x )=x 2-2x +1=(x -1)2, t 2=g (x )=log 2x , t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),t 2∈(-∞,0),t 3∈(1,2),所以t 2<t 1<t 3. 22.解:(1)f ⎝ ⎛⎭⎪⎫-13=log 21-131+a 3=-1,∴231+a 3=12,即43=1+a3,解得a =1. ∴f (x )=log 21+x1-x .(2)∵log 21+x1-x≤log21+x k=2log 21+xk =log 2⎝ ⎛⎭⎪⎫1+x k 2, ∴1+x 1-x ≤⎝ ⎛⎭⎪⎫1+x k 2. 易知f (x )的定义域为(-1,1),∴1+x >0,1-x >0,∴k 2≤1-x 2.令h (x )=1-x 2,则h (x )在⎣⎢⎡⎦⎥⎤12,23上单调递减,∴ h (x )max =h ⎝ ⎛⎭⎪⎫12=34.∴只需k 2≤34.又由题意知k >0,∴0<k ≤32.第三章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.若函数y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )A .若f (a )f (b )>0,则不存在实数c ∈(a ,b )使得f (c )=0B .若f (a )f (b )<0,则只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )f (b )>0,则有可能存在实数c ∈(a ,b )使得f (c )=0D .若f (a )f (b )<0,则有可能不存在实数c ∈(a ,b )使得f (c )=02.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定3.若函数f (x )在[a ,b ]上的图象为连续不断的一条曲线,且同时满足f (a )f (b )<0,f (a )·f (a +b 2)>0,则( )A .f (x )在[a ,a +b2]上有零点B .f (x )在[a +b2,b ]上有零点 C .f (x )在[a ,a +b2]上无零点 D .f (x )在[a +b2,b ]上无零点4.函数f (x )=1-x ln x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,2)D .(2,3)5.设f (x )=3x +3x -8,若用二分法求方程3x +3x -8=0在区间(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在的区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定6.若函数f (x )=x 2+3x +2,且f (a )>f (b )>0,则函数f (x )的区间(a ,b )内( ) A .一定无零点 B .一定有零点 C .可能有两个零点D .至多有一个零点7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗中盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的高度,则H 与下落时间t (分钟)的函数关系表示的图象可能是( )8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累 计里程(千米) 2015年5月1日 12 35 000 2015年5月15日4835 600在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升D .12升9.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-110.设a 是函数f (x )=2x -log 12x 的零点,若x 0>a ,则( ) A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定11.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2,-7,1,3}D .{-2-7,1,3}12.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞) B .(-∞,74) C .(0,74)D .(74,2) 答案1.C 当零点在区间(a ,b )内时,f (a )f (b )>0也可能成立,因此A 不正确,C 正确;若y =f (x )满足零点存在性定理的两个条件,则在该区间内必存在零点,但个数不能确定,故B ,D 都不正确.2.D 由题意,知f (x )在(-1,1)上有零点0,该零点可能是变号零点,也可能是不变号零点,∴f (-1)·f (1)的符号不确定,如f (x )=x 2,f (x )=x .3.B 由f (a )f (b )<0,f (a )f (a +b 2)>0可知f (a +b2)f (b )<0,根据零点存在性定理可知f (x )在[a +b2,b ]上有零点.4.C 由于f (1)=1-ln1=1>0,f (2)=1-2ln2=lne -ln4<0,由零点存在性定理可知所求区间为(1,2).5.B ∵f (1)<0,f (1.5)>0,f (1.25)<0,∴f (1.5)·f (1.25)<0,因此方程的根所在的区间为(1.25,1.5).6.C 根据二次函数的图象可知选项C 正确.7.B 由于所给的圆锥形漏斗上口大于下口,当时间取12t 时,漏斗中液面下落的高度不会达到漏斗高度的12,对比四个选项的图象可知选B.8.B 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.9.D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.10.B 如图所示,画出函数y =2x 与y =log 12x 的图象,可知当x 0>a 时,2x0>log 12x 0,故f (x 0)>0.11.D 当x ≥0时,函数g (x )的零点即方程f (x )=x -3的根,由x 2-3x =x -3,解得x =1或3.当x <0时,由f (x )是奇函数得-f (x )=f (-x )=x 2-3(-x ),即f (x )=-x 2-3x .由f (x )=x -3得x =-2-7(正根舍去).故选D.12.D 函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是(74,2).———————————————————————————— 二、填空题(每小题5分,共20分)13.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下部分对应值表:x 1 23456f (x )136.13515.552 -3.92 10.88 -52.488 -232.06414.用二分法求函数f (x )的一个零点,其参考数据如下:f (1.600 0)≈0.200 f (1.587 5)≈0.133 f (1.575 0)≈0.067 f (1.562 5)≈0.003f (1.556 25)≈-0.029f (1.550 0)≈-0.060. 15.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.16.设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.若f (x )恰有2个零点,则实数a的取值范围是________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)(1)判断函数f (x )=x 3-x -1在区间[-1,2]上是否存在零点; (2)求函数y =x +2x -3的零点.18.(12分)若函数f (x )为定义在R 上的奇函数,且当x >0时,f (x )=ln x +2x -6,试判断函数f (x )的零点个数.答案13.3解析:由已知数据可知f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数在区间(2,3),(3,4),(4,5)内各至少有1个零点,则函数至少有3个零点.14.1.562 5(答案不唯一)解析:由参考数据知,f (1.562 5)≈0.003>0,f (1.556 25)≈-0.029<0,即f (1.556 25)·f (1.562 5)<0,又1.562 5-1.556 25=0.006 25<0.01,∴f (x )的一个零点的近似值可取为1.562 5.15.24解析:由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,即⎩⎨⎧e b=192,e 11k =12,所以该食品在33℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =(12)3×192=24(小时).16.[12,1)∪[2,+∞)解析:当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2;当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a ,21-a >0,解得12≤a <1.综上,实数a 的取值范围为[12,1)∪[2,+∞).17.解:(1)∵f (-1)=-1<0,f (2)=5>0,f (-1)f (2)<0.∴f (x )在[-1,2]上存在零点.(2)x +2x -3=x 2-3x +2x =(x -1)(x -2)x ,解方程x +2x -3=0,即(x -1)(x -2)x =0,可得x =1或x =2.∴函数y =x +2x -3的零点为1,2.18.解:方法一:当x <0时,-x >0,f (-x )=ln(-x )-2x -6,又f (x )为奇函数,所以f (x )=-f (-x )=-ln(-x )+2x +6. 故函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧ln x +2x -6,x >00,x =0-ln (-x )+2x +6,x <0令f (x )=0易得函数f (x )有3个零点.方法二:当x >0时,在同一坐标系中作出函数y =ln x 和y =6-2x 的图象如图所示,易知两函数图象只有1个交点,即当x >0时,函数f (x )有1个零点.由f(x)为定义在R上的奇函数,可知f(0)=0,且图象关于原点对称,则当x<0时,函数f(x)有1个零点.综上可知,f(x)在R上有3个零点.————————————————————————————19.(12分)已知二次函数f(x)=x2+bx+c,且方程f(x)+4=0有唯一解x=1.(1)求函数f(x)的解析式;(2)若函数f(x)在区间[a,a+4]上存在零点,求实数a的取值范围.(12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(mg)与时间t(h)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25 mg时,对治疗疾病有效,求服药一次治疗疾病有效的时间.答案19.解:(1)方程f (x )+4=0有唯一解x =1,即一元二次方程x 2+bx +c +4=0有唯一解x =1,则⎩⎪⎨⎪⎧ b 2-4(c +4)=0,b +c +5=0,⇒⎩⎪⎨⎪⎧b =-2,c =-3,所以f (x )=x 2-2x -3.(2)结合(1)易知函数f (x )的零点为-1,3. 当-1∈[a ,a +4]时,-5≤a ≤-1; 当3∈[a ,a +4]时,-1≤a ≤3. 故实数a 的取值范围为[-5,3]. 20.解:(1)当0≤t <1时 ,y =4t ;当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a 此时M (1,4)在曲线上,故4=⎝ ⎛⎭⎪⎫121-a ,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(1)因为f (t )≥0.25,则⎩⎨⎧4t ≥0.25,⎝ ⎛⎭⎪⎫12t -3≥0.25.解得⎩⎨⎧t ≥116,t ≤5,所以116≤t ≤5,因此服药一次治疗疾病有效的时间为 5-116=41516(h).————————————————————————————21.(12分)设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=-(x -2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,求实数k的取值范围.22.(12分)人们对声音有不同的感觉,这与它的强度I(单位:W/m2)有关系.但在实际测量时,常用声音的强度水平L1(单位:dB)表示,它满足公式:L1=10×lg II0 (L1≥0,其中I0=1×10-12W/m2,这是人们平均能听到的最小强度,是听觉的开端).根据以上材料,回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m2,耳语声的强度是1×10-10W/m2,恬静的无线电广播声的强度是1×10-8W/m2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50 dB以下,试求声音的强度I的范围是多少?答案21.解:(1)由于f (x )为定义在R 上的偶函数,则f (-x )=f (x ),若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-(x -2)2+2,x ≥0,-(x +2)2+2,x <0. (2)图象如图所示:(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )的图象可知,当-2<k <2时,函数y =f (x )的图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.22.解:(1)由题意可知,树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,所以LI 1=10×lg1=0,即树叶沙沙声的强度水平为0 dB.耳语声的强度是I 2=1×10-10W/m 2,则I 2I 0=102,所以LI 2=10×lg102=20,即耳语声的强度水平为20 dB.恬静的无线电广播声的强度是I 3=1×10-8W/m 2,则I 3I 0=104,所以LI 3=10×lg104=40,即恬静的无线电广播声的强度水平为40 dB.(2)由题意知,0≤L 1<50,即0≤10×lg I I 0<50,所以1≤II 0<105,即10-12≤I <10-7.所以小区内公共场所的声音的强度I 的范围为大于或等于10-12W/m 2,同时应小于10-7W/m 2.模块综合评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ) A .∅ B .{x |0<x <3} C .{x |1<x <3}D .{x |2<x <3}2.设U 是全集,集合A ,B 满足A B ,则下列式子中不成立的是( )A .A ∪(∁UB )=U B .A ∪B =BC .(∁U A )∪B =UD .A ∩B =A3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f [f (2)]等于( ) A .0 B .1 C .2D .34.下列函数中,随x 增大而增大速度最快的是( ) A .y =2 006ln x B .y =x 2 006 C .y =e x2 006 D .y =2 006·2x5.设a =0.7 12 ,b =0.8 12,c =log 30.7,则()A .c <b <aB .c <a <bC .a <b <cD .b <a <c6.函数y =a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,1)D .(2,2)7.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( )A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)8.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x =n ,则log a y 等于( )A .m +nB .m -n C.12(m +n )D.12(m -n )9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( ) A .1.55 B .1.65 C .1.75D .1.8510.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________. 15.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0.上述结论中正确结论的序号是________. 16.已知函数f (x )=log 0.5(x +1x ),下列说法①f (x )的定义域为(0,+∞);②f (x )的值域为[-1,+∞);③f (x )是奇函数;④f (x )在(0,1)上单调递增.其中正确的是________.答案1.D N ={x |x >2},∴用数轴表示集合可得M ∩N ={x |2<x <3},选D. 2.A 依题意作出Venn 图,易知A 不成立.3.C ∵f (2)=log 3(22-1)=1,∴f [f (2)]=f (1)=2e 1-1=2.4.C 根据幂函数、指数函数、对数函数的变化趋势即得答案. 5.B ∵幂函数y =x12在[0,+∞)上是增函数,又∵0.7<0.8,∴0<0.7 12 <0.8 12. 又log 30.7<0,∴log 30.7<0.712 <0.812,即c <a <b ,选B.6.D 由指数与对数函数的图象性质即得答案.7.A 本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2,故选A.8.D 由m -n =log a (1+x )-log a 11-x =log a (1-x 2)=log a y 2=2log a y ,所以log a y =12(m -n ).故选D.9.C 经计算知函数零点的近似值可取为1.75.10.C f (x )=a x 与g (x )=log a x 有相同的单调性,排除A ,D ;又当a >1时,f (3)g (3)>0,排除B ,当0<a <1时,f (3)g (3)<0,选C.11.A 由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x -12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x 在(-∞,+∞)上是增函数.12.D 由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x 也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.13.-3解析:∵∁U A ={1,2},∴A ={0,3}.∴0,3是方程x 2+mx =0的两根,∴m =-3.14.0或13解析:由题意得m =0或Δ=4-12m =0,即m =0或m =13.15.②③解析:本题考查对数函数的性质.函数f (x )=ln x 满足ln(x 1·x 2)=ln(x 1)+ln(x 2);由函数f (x )=ln x 是增函数,知ln x 1-ln x 2x 1-x 2,即f (x 1)-f (x 2)x 1-x 2>0成立.故②③正确. 16.①④解析:f (x )=log 0.5(x 2+1x );∴x >0,即定义域为(0,+∞);又∵f (x )=log 0.5(x +1x ),定义域不关于原点对称,则f (x )为非奇非偶函数;又∵x +1x ≥2,∴log 0.5(x +1x )≤log 0.52=-1.∴值域为(-∞,-1],②错;又∵x +1x 在(0,1)上为递减函数,∴log 0.5(x +1x )在(0,1)上为递增函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设A ={-3,4},B ={x |x 2-2ax +b =0},B ≠∅且B ⊆A ,求a ,b .(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间.答案17.解:由B ≠∅,B ⊆A 知B ={-3}或{4}或B ={-3,4}.当B ={-3}时,a =-3,b =9;当B ={4}时,a =4,b =16;当B ={-3,4}时,a =12,b =-12.18.解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2.又∵f (x )为奇函数,∴f (-x )=-f (x ).∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧ x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).————————————————————————————19.(12分)已知二次函数f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),且满足f (-2+x )=f (-2-x )(x ∈R ).(1)求该二次函数的解析式及函数的零点;(2)已知函数在(t -1,+∞)上为增函数,求实数t 的取值范围.20.(12分)已知函数f (x )=2x 2+2x +a (-2≤x ≤2).(1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值.答案19.解:(1)因为二次函数为f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),故c =1.①又因为函数f (x )满足f (-2+x )=f (-2-x )(x ∈R ),故x =-22a =-2.②由①②得:a =12,c =1.故二次函数的解析式为:f (x )=12x 2+2x +1.由f (x )=0,可得函数的零点为:-2+2,-2- 2.(2)因为函数在(t -1,+∞)上为增函数,且函数图象的对称轴为x =-2,由二次函数的图象可知:t -1≥-2,故t ≥-1.20.解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2),∴在[-2,-1]上,f (x )为减函数;在[-1,2]上,f (x )为增函数.即f (x )的减区间是[-2,-1],f (x )的增区间是[-1,2].(2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1.∵28+a =64,∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.————————————————————————————21.(12分)已知函数f (x )=log a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a -2x +1在区间[1,2]上恒为正,求实数a 的取值范围.22.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点;(2)求证:f (x )是(0,+∞)上的减函数;(3)当f (2)=12时,解不等式f (ax +4)>1.答案21.解:当a >1时,y =⎝ ⎛⎭⎪⎫1a -2x +1是减函数,故⎝ ⎛⎭⎪⎫1a -2·2+1>1,则a <12,矛盾.当0<a <1时,0<⎝ ⎛⎭⎪⎫1a -2x +1<1,设y =⎝ ⎛⎭⎪⎫1a -2x +1,分类讨论1a -2的取值,得12<a <23.22.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点.(2)证明:设0<x 1<x 2,∵f (mn )=f (m )+f (n ),∴f (mn )-f (m )=f (n ).∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1. 而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数.(3)因为f (4)=f (2)+f (2)=1,所以不等式f (ax +4)>1可以转化为f (ax +4)>f (4).因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4.当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0,。
高中数学必修1全册章节测试题集含答案
人教A版高中数学必修1全册章节测试题目录必修一第1章第1节集合试题必修一第1章第2节函数及其表示试题必修一第1章第3节函数的基本性质试题必修一第2章基本初等函数综合试题必修一第2章第1节指数函数试题必修一第2章第2节对数函数试题必修一第2章第3节幂函数试题必修一第3章第1节方程的根与函数的零点试题必修一第3章第2节函数的应用试题必修一综合试题1必修一综合试题2集合试题一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为( D )(A)(B)(C)(D)2.设集合,,则(A )(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为(A )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为( A )(A)6 (B) 7 (C) 8 (D)95.若集合、、,满足,,则与之间的关系( C )(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是( C)(A)(B)(C)(D)7.设,,若,则实数的取值范围是( A )(A)(B)(C)(D)8.已知全集合,,,那么是( D )(A)(B)(C)(D)9.已知集合,则等于( D )(A)(B)(C)(D)10.已知集合,,那么( C )(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是( C )(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是( B )(A)且(B)且(C)且(D)且二、填空题(每小题4分,计4×4=16分)13.已知集合,,则集合_.14.用描述法表示平面内不在第一与第三象限的点的集合为_.15.设全集,,,则的值为2或8.16.若集合只有一个元素,则实数的值为三、解答题(共计74分)17.(本小题满分12分)若,求实数的值。
解:或或当时,,,,适合条件;当时,,,,适合条件从而,或18.(本小题满分12分)设全集合,,,求,,,解:,19.(本小题满分12分)设全集,集合与集合,且,求,解:,且,,,,20(本小题满分12分)已知集合,,且,求实数的取值范围。
人教版数学高中A版必修一单元测验卷全册(附答案)
第一章单元检测题时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)2.设集合A ={a ,b },B ={a +1,6},且A ∩B ={1},则A ∪B =( ) A .{1,6} B .{0,6} C .{0,1}D .{0,1,6}3.已知f (x )=ax +bx (a ,b 为常数),且f (1)=1,则f (-1)=( ) A .1 B .-1 C .0D .不能确定4.f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x ,x <0,则f (3)=( )A .3B .-3C .0D .65.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy ,f (1)=2,则f (3)等于( ) A .10 B .6 C .12D .166.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)7.设f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ) A .1B .0C .-1D .π8.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( ) A .1 B .2 C .3D .49.已知集合A ={x |-2≤x ≤7},集合B ={x |m +1<x <2m -1},若A ∪B =A ,则实数m 的取值范围是( ) A .-3≤m ≤4 B .-3<m <4 C .2<m ≤4 D .m ≤410.y =1x -2+1在[3,4]的最大值为( ) A .2 B.32 C.52D .411.奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,函数f (x )的解析式是( ) A .f (x )=-x (1-x ) B .f (x )=x (1+x ) C .f (x )=-x (1+x )D .f (x )=x (x -1)12.若函数f (x )是奇函数,且在(-∞,0)上是增函数,又f (-2)=0,则x ·f (x )<0的解集是( ) A .(-2,0)∪(0,2)B .(-∞,-2)∪ (0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知f (2x +1)=x 2,则f (5)=________。
人教A版高中数学必修一课后同步课时作业:必修一综合测试卷
人教A 版高中数学必修一课后同步课时作业:必修一综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(09·宁夏 海南理)已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩∁N B =( ) A .{1,5,7} B .{3,5,7} C .{1,3,9} D .{1,2,3} [答案] A[解析] A ∩∁N B ={1,3,5,7,9}∩{1,2,4,5,7,8,10,11,13,14,…}={1,5,7}. 2.方程log 3x +x =3的解所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) [答案] C[解析] 令f (x )=log 3x +x -3, ∵f (2)·f (3)<0,∴f (x )的零点在(2,3)内,∴选C. 3.(08·全国Ⅰ)(1)函数y =x (x -1)+x 的定义域为( ) A .{x |x ≥0} B .{x |x ≥1} C .{x |x ≥1}∪{0} D .{x |0≤x ≤1} [答案] C[解析] 要使y =x (x -1)+x 有意义,则⎩⎪⎨⎪⎧x (x -1)≥0x ≥0,∴⎩⎪⎨⎪⎧x ≥1或x ≤0x ≥0,∴x ≥1或x =0, ∴定义域为{x |x ≥1}∪{0}.4.(09·辽宁文)已知函数f (x )满足:x ≥4,f (x )=⎝⎛⎭⎫12x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=( ) A.124 B.112 C.18D.38[答案] A5.(08·江西)若0<x <y <1,则( )A .3y<3x B .log x 3<log y 3C .log 4x <log 4y D.⎝⎛⎭⎫14x <⎝⎛⎭⎫14y[答案] C[解析] ∵0<x <y <1,∴①由y =3u 为增函数知3x <3y ,排除A ; ②∵log 3u 在(0,1)内单调递增,∴log 3x <log 3y <0,∴log x 3>log y 3,∴B 错.③由y =log 4u 为增函数知log 4x <log 4y ,∴C 正确.④由y =⎝⎛⎭⎫14u为减函数知⎝⎛⎭⎫14x >⎝⎛⎭⎫14y ,排除D. 6.已知方程|x |-ax -1=0仅有一个负根,则a 的取值范围是( )A .a <1B .a ≤1C .a >1D .a ≥1[答案] D[解析] 数形结合判断.7.已知a >0且a ≠1,则两函数f (x )=a x 和g (x )=log a ⎝⎛⎭⎫-1x 的图象只可能是( )[答案] C[解析] g (x )=log a ⎝⎛⎭⎫-1x =-log a (-x ), 其图象只能在y 轴左侧,排除A 、B ;由C 、D 知,g (x )为增函数,∴a >1, ∴y =a x 为增函数,排除D.∴选C.8.下列各函数中,哪一个与y =x 为同一函数( )A .y =x 2xB .y =(x )2C .y =log 33xD .y =2log2x [答案] C[解析] A ∶y =x (x ≠0),定义域不同; B ∶y =x (x ≥0),定义域不同;D ∶y =x (x >0)定义域不同,故选C.9.(上海大学附中2009~2010高一期末)下图为两幂函数y =x α和y =x β的图像,其中α,β∈{-12,12,2,3},则不可能的是( )[答案] B[解析] 图A 是y =x 2与y =x 12;图C 是y =x 3与y =x -12;图D 是y =x 2与y =x -12,故选B.10.(2010·天津理,8)设函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,log 12(-x ), x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) [答案] C[解析] 解法1:由图象变换知函数f (x )图象如图,且f (-x )=-f (x ),即f (x )为奇函数,∴f (a )>f (-a )化为f (a )>0,∴当x ∈(-1,0)∪(1,+∞),f (a )>f (-a ),故选C.解法2:当a >0时,由f (a )>f (-a )得,log 2a >log 12a ,∴a >1;当a <0时,由f (a )>f (-a )得,log 12(-a )>log 2(-a ),∴-1<a <0,故选C.11.某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1,1.053=1.16,1.054=1.22,1.055=1.28)( )A .2010年B .2011年C .2012年D .2013年 [答案] C[解析] 设第x 年新建住房面积为f (x )=100(1+5%)x ,经济适用房面积为g (x )=25+10x ,由2g (x )>f (x )得:2(25+10x )>100(1+5%)x ,将已知条件代入验证知x =4,所以在2012年时满足题意.12.(2010·山东理,4)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3 [答案] D[解析] ∵f (x )是奇函数,∴f (0)=0,即0=20+b ,∴b =-1, 故f (1)=2+2-1=3,∴f (-1)=-f (1)=-3.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.化简:(lg2)2+lg2lg5+lg5=________. [答案] 1[解析] (lg2)2+lg2lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1.14.(09·重庆理)若f (x )=12x -1+a 是奇函数,则a =________.[答案] 12[解析] ∵f (x )为奇函数,∴f (-1)=-f (1),即12-1-1+a =-12-1-a ,∴a =12.15.已知集合A ={x |x 2-9x +14=0},B ={x |ax +2=0}若BA ,则实数a 的取值集合为________.[答案] {0,-1,-27}[解析] A ={2,7},当a =0时,B =∅满足B A ;当a ≠0时,B ={-2a}由B A 知,-2a =2或7,∴a =-1或-27综上可知a 的取值集合为{0,-1,-27}.16.已知x 23>x 35,则x 的范围为________. [答案] (-∞,0)∪(1,+∞)[解析] 解法1:y =x 23和y =x 35定义域都是R ,y =x 23过一、二象限,y =x 35过一、三象限, ∴当x ∈(-∞,0)时x 23>x 35恒成立x =0时,显然不成立.当x ∈(0,+∞)时,x 23>0,x 35>0,∴=x 115>1,∴x >1,即x >1时x 23>x 35∴x 的取值范围为(-∞,0)∪(1,+∞). 解法2:x <0时,x 23>0>x 35成立;x >0时,将x 看作指数函数的底数∵23>35且x 23>x 35,∴x >1. ∴x 的取值范围是(-∞,0)∪(1,+∞). [点评] 变量与常量相互转化思想的应用.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)用单调性定义证明函数f (x )=x -2x +1在(-1,+∞)上是增函数.[解析] 证明:设x 1>x 2>-1,则f (x 1)-f (x 2)=x 1-2x 1+1-x 2-2x 2+1=3(x 1-x 2)(x 1+1)(x 2+1)>0∴f (x 1)>f (x 2)∴f (x )在(-1,+∞)上是增函数.18.(本题满分12分)已知全集R ,集合A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁R A )∩B ={2},求p +q 的值.[解析] ∵(∁R A )∩B ={2},∴2∈B ,由B ={x |x 2-5x +q =0}有4-10+q =0,∴q =6, 此时B ={x |x 2-5x +6}={2,3}假设∁R A 中有3,则(∁R A )∩B ={2,3}与(∁R A )∩B ={2}矛盾, ∵3∈R 又3∉(∁R A ),∴3∈A ,由A ={x |x 2+px +12=0}有9+3p +12=0, ∴p =-7.∴p +q =-1.19.(本题满分12分)设f (x )=4x4x +2,若0<a <1,试求:(1)f (a )+f (1-a )的值;(2)f (11 001)+f (21 001)+f (31 001)+…+f (1 0001 001)的值.[解析] (1)f (a )+f (1-a )=4a4a +2+41-a 41-a +2=4a 4a +2+44+2×4a =4a +24a +2=1 ∴f (11001)+f (1 0001001)=f (21001)+f (9991001)=…=f (5001001)+f (5011001)=1.∴原式=500.20.(本题满分12分)若关于x 的方程x 2+2ax +2-a =0有两个不相等的实根,求分别满足下列条件的a 的取值范围.(1)方程两根都小于1;(2)方程一根大于2,另一根小于2. [解析]设f (x )=x 2+2ax +2-a (1)∵两根都小于1,∴⎩⎪⎨⎪⎧Δ=4a 2-4(2-a )>0-2a <2f (1)=3+a >0,解得a >1.(2)∵方程一根大于2,一根小于2, ∴f (2)<0 ∴a <-2.21.(本题满分12分)已知函数f (x )=log a (a -a x )(a >1). (1)求函数的定义域和值域;(2)讨论f (x )在其定义域内的单调性; (3)求证函数的图象关于直线y =x 对称.[解析] (1)解:由a -a x >0得,a x <a ,∵a >1, ∴x <1,∴函数的定义域为(-∞,1) ∵a x >0且a -a x >0. ∴0<a -a x <a .∴log a (a -a x )∈(-∞,1),即函数的值域为(-∞,1). (2)解:u =a -a x 在(-∞,1)上递减, ∴y =log a (a -a x )在(-∞,1)上递减. (3)证明:令f (x )=y ,则y =log a (a -a x ), ∴a y =a -a x ,∴a x =a -a y ,∴x =log a (a -a y ), 即反函数为y =log a (a -a x ),∴f (x )=log a (a -a x )的图象关于直线y =x 对称. [点评] (1)本题给出了条件a >1,若把这个条件改为a >0且a ≠1,就应分a >1与0<a <1进行讨论.请自己在0<a <1的条件下再解答(1)(2)问.(2)第(3)问可在函数f (x )的图象上任取一点,P (x 0,y 0),证明它关于直线y =x 的对称点(y 0,x 0)也在函数的图象上.∵y 0=log a (a -a x 0)∴ay 0=a -ax 0即a -ay 0=ax 0 ∴f (y 0)=log a (a -a y 0)=log a a x 0=x 0∴点(y 0,x 0)也在函数y =f (x )的图象上. ∴函数y =f (x )的图象关于直线y =x 对称.22.(本题满分14分)已知函数f (x )=ax x 2-1的定义域为[-12,12],(a ≠0)(1)判断f (x )的奇偶性. (2)讨论f (x )的单调性. (3)求f (x )的最大值.[解析] (1)∵f (-x )=-axx 2-1=-f (x ),∴f (x )为奇函数.(2)设-12≤x 1<x 2≤12,f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1)若a >0,则由于x 21-1<0,x 22-1<0,x 2-x 1>0, x 1x 2+1>0.∴f (x 1)-f (x 2)>0∴f (x 1)>f (x 2)即f (x )在[-12,12]上是减函数若a <0,同理可得,f (x )在[-12,12]上是增函数.(3)当a >0时,由(2)知f (x )的最大值为f (-12)=23a .12)=-2 3a.当a<0时,由(2)知f(x)的最大值为f(。
人教A版高中数学必修一全册作业与测评含答案综合质量评估
综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·大庆高一检测)设集合U=,集合M=,N=,则M ∩(ðN)等于( )UA. B.C. D.【解析】选B.因为ðN=,M=,所以M∩(UðN)=.U【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则ð(A∪B)U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以ð(A∪B)={2,4}.U2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x ≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( )A.c<b<aB.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小. 【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log 23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.(2015·鹰潭高一检测)函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3).【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.(2015·临川高一检测)已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=log m(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x). 【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.(2015·鄂州高一检测)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,, ,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·温州高一检测)函数y=a x-1+1a>0,且a≠1一定过定点. 【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.(2015·常德高一检测)如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数). 【解析】原式=÷×=××=×a×=a2.18.(12分)(2015·郑州高一检测)已知集合A=,B=.(1)分别求R (A B)∩ð,(R Bð)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩ð=或,因为R Bð=,所以(R Bð)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)(2015·海口高一检测)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)(2015·梅州高一检测)已知函数f(x)是定义在R上的偶函数,且当x ≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).【补偿训练】(2014·临沂高一检测)已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)(2015·成都高一检测)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].关闭Word文档返回原板块。
高中人教A版数学必修1单元测试:第一章单元测评卷及解析
-E2E A<f(-3)源自8.已知反比例函数k
y= A
xA
的图象如图所示,则二次函数
y=2kx2-
E
4x+k2 的图象大致为( )
1 9.函数 f(x)是定义在 0,+∞)上的增函数,则满足 f(2x-1)<fAE3EA
的 x 的取值范围是( )
1 2
A.
A
E3,3E
A
1 2
C.AE2,3E
A
1 2 B.A3,E3E
.
解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,
如从基本初等函数中或分段函数中来找.
17.解:∵B⊆A,
①当 B=∅时,m+1≤2m-1,
解得 m≥2;
-3≤2m-1, ②当 B≠∅时,有 m+1≤4,
2m-1<m+1,
解得-1≤m<2.
综上得,m 的取值范围为{m|m≥-1}.
3
3
3
18.解:(1)∵2>1,∴f2=-2×2+8=5,
下图所示,其中是从 M 到 N 的映射的是( )
4.已知全集 U=R,集合 A={x|2x2-3x-2=0},集合 B={x|x>1}, 则 A∩(∁UB)=( )
A.{2}
1
C.
A
-2E
A
x 5.函数 f(x)=|A x|A的图象是(
E
B.{x|x≤1} D.{x|x≤1 或 x=2} )
6.下列函数是偶函数的是( A.y=x
1
1
4.C 解析:A=-2,2EA,∁UB={x|x≤1},则 A∩(∁UB)=A-2E A,
故选 C.
x 1,x>0,
5.C
《红对勾》2016人教版高中数学必修一模块综合评估Word版含答案
模块综合评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ) A .∅ B .{x |0<x <3} C .{x |1<x <3}D .{x |2<x <3}2.设U 是全集,集合A ,B 满足A B ,则下列式子中不成立的是( )A .A ∪(∁UB )=U B .A ∪B =BC .(∁U A )∪B =UD .A ∩B =A3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f [f (2)]等于( ) A .0 B .1 C .2D .34.下列函数中,随x 增大而增大速度最快的是( ) A .y =2 006ln x B .y =x 2 006 C .y =e x2 006 D .y =2 006·2x5.设a =0.7 12 ,b =0.8 12,c =log 30.7,则()A .c <b <aB .c <a <bC .a <b <cD .b <a <c6.函数y =a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1)D .(2,2)7.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( )A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)8.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x =n ,则log a y 等于( )A .m +nB .m -n C.12(m +n )D.12(m -n )9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( )A .1.55B .1.65C .1.75D .1.8510.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________.15.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0.上述结论中正确结论的序号是________. 16.已知函数f (x )=log 0.5(x +1x ),下列说法①f (x )的定义域为(0,+∞);②f (x )的值域为[-1,+∞);③f (x )是奇函数;④f (x )在(0,1)上单调递增.其中正确的是________.答案1.D N ={x |x >2},∴用数轴表示集合可得M ∩N ={x |2<x <3},选D.2.A 依题意作出Venn 图,易知A 不成立.3.C ∵f (2)=log 3(22-1)=1, ∴f [f (2)]=f (1)=2e 1-1=2.4.C 根据幂函数、指数函数、对数函数的变化趋势即得答案.5.B ∵幂函数y =x12在[0,+∞)上是增函数, 又∵0.7<0.8,∴0<0.712 <0.812 .又log 30.7<0,∴log 30.7<0.712 <0.812,即c <a <b ,选B.6.D 由指数与对数函数的图象性质即得答案.7.A 本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2,故选A.8.D 由m -n =log a (1+x )-log a 11-x =log a (1-x 2)=log a y 2=2log a y ,所以log a y =12(m -n ).故选D.9.C 经计算知函数零点的近似值可取为1.75.10.C f (x )=a x 与g (x )=log a x 有相同的单调性,排除A ,D ;又当a >1时,f (3)g (3)>0,排除B ,当0<a <1时,f (3)g (3)<0,选C.11.A 由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x-12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x在(-∞,+∞)上是增函数.12.D 由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.13.-3解析:∵∁U A ={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根,∴m =-3. 14.0或13解析:由题意得m =0或Δ=4-12m =0,即m =0或m =13. 15.②③解析:本题考查对数函数的性质.函数f (x )=ln x 满足ln(x 1·x 2)=ln(x 1)+ln(x 2);由函数f (x )=ln x 是增函数,知ln x 1-ln x 2x 1-x 2,即f (x 1)-f (x 2)x 1-x 2>0成立.故②③正确.16.①④解析:f (x )=log 0.5(x 2+1x ); ∴x >0,即定义域为(0,+∞);又∵f (x )=log 0.5(x +1x ),定义域不关于原点对称,则f (x )为非奇非偶函数;又∵x +1x ≥2,∴log 0.5(x +1x )≤log 0.52=-1. ∴值域为(-∞,-1],②错; 又∵x +1x 在(0,1)上为递减函数,∴log 0.5(x +1x )在(0,1)上为递增函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设A ={-3,4},B ={x |x 2-2ax +b =0},B ≠∅且B ⊆A ,求a ,b .(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间.答案17.解:由B ≠∅,B ⊆A 知B ={-3}或{4}或B ={-3,4}. 当B ={-3}时,a =-3,b =9; 当B ={4}时,a =4,b =16; 当B ={-3,4}时,a =12,b =-12. 18.解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2. 又∵f (x )为奇函数,∴f (-x )=-f (x ).∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).———————————————————————————— 19.(12分)已知二次函数f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),且满足f (-2+x )=f (-2-x )(x ∈R ).(1)求该二次函数的解析式及函数的零点;(2)已知函数在(t -1,+∞)上为增函数,求实数t 的取值范围.20.(12分)已知函数f (x )=2x 2+2x +a(-2≤x ≤2).(1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值.答案19.解:(1)因为二次函数为f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),故c =1.①又因为函数f (x )满足f (-2+x )=f (-2-x )(x ∈R ),故x =-22a =-2.②由①②得:a =12,c =1.故二次函数的解析式为:f (x )=12x 2+2x +1.由f (x )=0,可得函数的零点为:-2+2,-2- 2.(2)因为函数在(t -1,+∞)上为增函数,且函数图象的对称轴为x =-2,由二次函数的图象可知:t -1≥-2,故t ≥-1.20.解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2),∴在[-2,-1]上,f (x )为减函数; 在[-1,2]上,f (x )为增函数. 即f (x )的减区间是[-2,-1], f (x )的增区间是[-1,2].(2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1.∵28+a =64,∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.————————————————————————————21.(12分)已知函数f (x )=log a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a -2x +1在区间[1,2]上恒为正,求实数a 的取值范围.22.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点; (2)求证:f (x )是(0,+∞)上的减函数; (3)当f (2)=12时,解不等式f (ax +4)>1.答案21.解:当a >1时,y =⎝⎛⎭⎪⎫1a -2x +1是减函数,故⎝⎛⎭⎪⎫1a -2·2+1>1,则a <12,矛盾.当0<a <1时,0<⎝ ⎛⎭⎪⎫1a -2x +1<1,设y =⎝ ⎛⎭⎪⎫1a -2x +1,分类讨论1a -2的取值,得12<a <23.22.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点.(2)证明:设0<x 1<x 2,∵f (mn )=f (m )+f (n ), ∴f (mn )-f (m )=f (n ).∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1.而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数.(3)因为f (4)=f (2)+f (2)=1,所以不等式f (ax +4)>1可以转化为f (ax +4)>f (4).因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4.当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0, 解集为{x |-4a <x <0};当a <0时,-4<ax <0,即0<x <-4a , 解集为{x |0<x <-4a }.。
2023红对勾高中数学必修一检测—— 集合 答案
高三数学参考答案一、考点篇第一章 集合与常用逻辑用语考点练1集合1.D 因为S 是由我和我的祖国 中的所有字组成的集合,所以S 中一共有5个元素,所以S 的非空真子集的个数是25-2=30.故选D .2.C 由题意知∁R A ={x |x 2-2x -3ɤ0}={x |-1ɤx ɤ3},故选C .3.D ȵB ={x |-2<x <4},ʑ∁UB ={x |x ɤ-2或x ȡ4},又A ={x |x 2<9}={x |-3<x <3},ʑA ɘ(∁UB )={x |-3<x ɤ-2}.故选D .4.C 根据题意x +y =2,y =x 2,解得x =1,y =1 或x =-2,y =4.故选C .5.C 因为A ={x |x 2-3x ȡ0}={x |x ɤ0或x ȡ3},B ={x |1<x ɤ3},所以A ɣB ={x |x >1或x ɤ0},所以题图中阴影部分表示的集合为∁U (A ɣB )=(0,1],故选C .6.C 因为集合M =x k x >-1,且-3ɪM ,所以k-3>-1,解得k <3,所以k 的取值范围是(-ɕ,3).7.B C D 若A ⊆B ,则∀x ɪA ,x ɪB ,故不存在x ɪA ,x ∉B ,即A 错误;若B ={1,2},A ={1,2,3}时,满足 ∃x ɪA ,x ∉B ,此时A ɘB ={1,2}ʂ⌀,即B 正确;若B ={1,2},A ={1,2,3}时,满足 ∃x ɪA ,x ∉B ,此时B ⊆A ,即C 正确;若A ={1,2},B ={3,4}时满足条件 ∃x ɪA ,x ∉B 且有A ɘB =⌀,则D 正确.故选BCD .8.C D 在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =|x |-1}={y |y ȡ-1},P ={t |t =|x |-1}={t |t ȡ-1},二者表示同一集合,故正确;在D 中,M ={m |m ȡ4,m ɪR },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4ȡ4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确.故选C D .9.(-2,2]解析:由题意得B ={x |y =lg (x -2)}=(2,+ɕ),ʑ∁R B =(-ɕ,2],ʑA ɘ(∁RB )=(-2,2].10.-1,0 4解析:解方程x 2+x =0得x =-1或x =0,所以集合A ={x |x 2+x =0,x ɪR }={-1,0}.故集合A 中的元素为-1,0.因为集合B 满足B ⊆A ,所以集合B 的个数为22=4.11.{a |a ȡ2}解析:因为B ={x |1<x <2},所以∁RB ={x |x ɤ1或x ȡ2},又A ={x |x <a },A ɣ(∁RB )=R ,所以a ȡ2.12.2解析:ȵA ={-1,a },B = e ae,2,且A ɘB ʂ⌀,ʑ当e a e=a 时,ae=l n a ,解得a =e ,满足条件.当a =2时,易知满足条件.则满足条件的实数a 的个数为2.13.解:(1)a =1时,A ={x |0ɤx ɤ2},B ={x |1ɤx ɤ3},A ɣB ={x |0ɤx ɤ3},∁UB ={x |x >3或x <1}.(2)当A =⌀时,1+a <1-a ,解得a <0;当A ʂ⌀时,1-a ɤ1+a ,1-a ȡ1,1+a ɤ3,解得a =0.综上得a ɤ0,即a 的取值范围为(-ɕ,0].14.解:由已知得A ={x |-1ɤx ɤ3},B ={x |m -2ɤx ɤm +2}.(1)因为A ɘB =[0,3],所以m -2=0,m +2ȡ3,解得m =2,即实数m 的值为2.(2)∁R B ={x |x <m -2或x >m +2},因为A ⊆(∁R B ),所以m -2>3或m +2<-1,解得m >5或m <-3,即实数m 的取值范围是(-ɕ,-3)ɣ(5,+ɕ).[素养提升]1.C 由题意得B ⫋(A ɘC ),故A 错误;A 与C 互不包含,故B 错误;由B ={钝角}⫋{小于180ʎ的角},所以B ɣC =C ,故C 正确;由以上分析可知D 错误.故选C .2.D 由V e n n 图,元素属于N 但不属于M ,即阴影部分对应的集合为(∁U M )ɘN ,故选D .3.D 由题意,得集合A ㊁B 均为点集,所以,所求A ɘB 即求两直线的交点即可,由y =-4x +6,y =5x -3, 解得x =1,y =2,所以交点为(1,2).故选D .4.C 因为x 2-5x +6>0,即(x -2)(x -3)>0,解得x >3或x <2,即A ={x |x 2-5x +6>0}={x |x >3或x <2}.由l o g 2(x -1)>0即l o g 2(x -1)>l o g 21,所以x -1>1,解得x >2,所以B ={x |l o g 2(x -1)>0}={x |x >2}.所以A ɘB ={x |x >3}.故选C .5.D 由x >16,得l o g 4x >l o g 416=2,所以A ={y |y =l o g 4x ,x >16}={y |y >2},所以∁RA ={y |y ɤ2}.因为B ={x |y =x 14}={x |x ȡ0},所以(∁RA )ɘB =[0,2].故选D .6.C 由A ɘC ={1,2},可得(A ɘC )ɣB ={1,2,3}.故选C .7.B 由l o g 2(x +1)<2可知0<x +1<4,得A ={x |-1<x <3}.由2x 2-5x -3ɤ0可知(2x +1)(x -3)ɤ0,得B =x -12ɤx ɤ3.所以A ɣB ={x |-1<x ɤ3}.故选B .8.A 因为A ={x |x 2>2x }={x |x >2或x <0},B ={x |a <x <a +1},A ɘB =⌀,所以a ȡ0且a +1ɤ2,解得0ɤa ɤ1.故选A .9.A C D A ={x |2x +1ȡ0,x ɪZ }=x x ȡ-12,x ɪZ,B ={-1,0,1,2},A ɘB ={0,1,2},故A 正确;A ɣB =321高三数学{x |x ȡ-1,x ɪZ },故B 错误;∁U A ={x |x <-12,x ɪZ },所以(∁U A )ɘB ={-1},故C 正确;由A ɘB ={0,1,2},得A ɘB 的真子集个数是23-1=7,故D 正确.故选A C D .10.A C 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2ɪN *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2ɪA ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n 1=n 2时,x 1-x 2∉A ,所以减法不满足条件,B 错误;x 1x 2=m 1m 2+3n 1n 2+3(m 1n 2+m 2n 1),x 1x 2ɪA ,所以乘法满足条件,C 正确;x 1x 2=m 1+3n 1m 2+3n 2,当m 1m 2=n 1n 2=λ(λ>0)时,x 1x 2∉A ,所以除法不满足条件,D 错误.故选A C .11.A B C 由已知得A ={x |-3<x <6},令g (x )=x 2+a x +a 2-27.A ,若A =B ,即-3,6是方程g (x )=0的两个根,则a =-3,a 2-27=-18,得a =-3,正确;B ,若A ⊆B ,则g (-3)=a 2-3a -18ɤ0,g (6)=a 2+6a +9ɤ0,解得a =-3,正确;C ,当B =⌀时,Δ=a 2-4(a 2-27)ɤ0,解得a ɤ-6或a ȡ6,正确;D ,当a =3时,有B ={x ɪR |x 2+3x -18<0}={x |-6<x <3},所以A ɘB ={x |-3<x <3},错误.故选A B C .12.B C D A ,G =N 时,不满足③,若I =0,则由1+b =0得b =-1∉G ,若I ɪN *⊆N ,则在G 中设a >I ,由a +b =I 得b =I -a <0∉G ,所以(N , )不能构成群;B ,G 为正有理数集,①任意两个正有理数的积仍然为正有理数,②显然1ɪG ,对任意a ɪG ,a 1=a =1 a ,③对任意正有理数a ,1a 也是正有理数,且a 1a =1=1a a ,即I =1,④有理数的乘数满足结合律,可构成群;C ,G ={-1,1,-i,i }(i 为虚数单位),①可验证G 中任意两数(可相等)的乘积仍然属于G ;②I =1,满足任意a ɪG ,有a 1=1 a =a ;③I =1,满足任意a ɪG ,存在b ɪG ,有a b =b a =1,实质上有-1ˑ(-1)=1ˑ1=i ˑ(-i )=1;④复数的乘法运算满足结合律,可构成群;D ,G ={0,1,2,3,4,5,6},①任意两个整数的和还是整数,它除以7的余数一定属于G ,②I =0,满足对任意a ɪG ,a I =I a =a ,③I =0,0+0=0,1+6=2+5=3+4=7除以7余数为0,④加法满足交换律,又a +b 除以7的余数等于a 除以7的余数加b 除以7的余数的和再除以7所得余数,因此∀a ,b ,c ɪG ,(a b ) c =a (b c ),可构成群.故选B C D .13.{(1,1),(1,2),(1,3),(2,3)}解析:适合条件2x -2<y ɤ3的所有正整数解是:令y =3,可得x =1,2;令y =2,可得x =1;令y =1,可得x =1.综上可得,点(x ,y )构成的集合为{(1,1),(1,2),(1,3),(2,3)}.14.3解析:若f (g (x ))=0,则g (x )=0或g (x )=1或g (x )=-1(舍去),ʑA ={-1,0,1,2},若g (f (x ))=0,则f (x )=0或f (x )=2(舍去),ʑB ={-1,0,1},ʑA ɘB ={-1,0,1}.故A ɘB 中有3个元素.15.1,53ɣ(9,25]解析:因为3ɪM ,将x =3代入,不等式成立,所以3a -59-a <0,解得a <53或a >9①;因为5∉M ,将x =5代入,不等式不成立,所以5a -525-aȡ0或a -25=0,解得1ɤa ɤ25②.所以①②取交集得实数a 的取值范围是1,53ɣ(9,25].16.26解析:依题意,足球爱好者比羽毛球爱好者人数少,所以同时爱好这两项的人最多有30人;当足球爱好者与羽毛球爱好者的并集为全集时,同时爱好这两项运动的人最少,设同时爱好两项运动的人有x 人,则只爱足球者有(30-x )人,只爱羽毛球者有(32-x )人,则(30-x )+(32-x )+x =58,解得x =4,即n ɪ[4,30],所以q -p 的最大值为26.[新题展示]1.C 用集合A 表示除草优秀的学生,B 表示植树优秀的学生,全班学生用全集U 表示,则∁U A 表示除草合格的学生,则∁U B 表示植树合格的学生,作出V e n n 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得20-x +x +30-x +y =45,x =y +5,因为y m a x =10,所以x m a x =10+5=15.故选C .2.A 当x =-1,y =0时,z =(-1)2ˑ(0-1)=-1;当x =-1,y =2时,z =(-1)2ˑ(2-1)=1;当x =1,y =0时,z =12ˑ(0-1)=-1;当x =1,y =2时,z =12ˑ(2-1)=1;所以A ㊃B ={-1,1},所以A ㊃B 中所有元素之和为0,故选A .3.660解析:S (3)=s s =a i 1+a i 2+a i33,1ɤi 1<i 2<i 3ɤ10 =s s =i 1+i 2+i 33,1ɤi 1<i 2<i 3ɤ1,则S (3)中的每个元素就是从1,2, ,10中挑选3个出来求平均值,1,2, ,10每个数被选出的次数是相同的,若i (1ɤi ɤ10)被选中,则共有C 29种选法,即1,2, ,10每个数被选出的次数为C 29,则S (3)的所有元素之和为C 29㊃(1+2+ +10)3=9ˑ82ˑ10ˑ(1+10)23=660.4.②④解析:对于①:取k =12,点(1,1)ɪ{(x ,y )|x 2ȡy },但12,12∉{(x ,y )|x 2ȡy },故①是不具有性质P 的点集.对于②:∀(x ,y )ɪ{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(k x ,k y )也在椭圆2x 2+y 2=1的内部,即(k x ,k y )ɪ{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:取k =12,x +122+(y +1)2=54,点12,-12 在此圆上,但点14,-14 不在此圆上,故③是不具有性质P 的点集.对于④:∀(x ,y )ɪ{(x ,y )|x 3+y 3-x 2y =0},对于k ɪ421高三数学(0,1),因为(k x )3+(k y )3-(k x )2㊃(k y )=k 3㊃(x 3+y 3-x 2y )=0,所以(k x ,k y )ɪ{(x ,y )|x 3+y 3-x 2y =0},故④是具有性质P 的点集.综上,具有性质P 的点集是②④.考点练2常用逻辑用语1.A 因为烟台市是山东省的一个地级市,所以如果游客甲在烟台市,那么游客甲必在山东省,反之不成立,故 游客甲在烟台市 是 游客甲在山东省 的充分不必要条件.故选A .2.B 存在量词命题的否定是全称量词命题,将存在量词改变后还要对结论否定,故选B .3.A 充分性:由共线定理即可判断充分性成立;必要性:若b =0,a ʂ0,则向量a ,b 共线,但不存在实数λ,使得a =λb ,即必要性不成立.故选A .4.B 由p :1x 2-x -2>0得p :x >2或x <-1,ʑ p 对应的x 的取值范围是{x |-1ɤx ɤ2},故选B .5.A 由题意可知,若f (x )=-x 2-3m x -4的图象在x 轴的下方,则Δ=(-3m )2-4ˑ4<0,解得-43<m <43,因为(-1,0)真包含于-43,43,所以-1<m <0 是 关于x 的不等式-x 2-3m x -4ȡ0的解集为⌀ 的充分不必要条件,故选A .6.C 当该命题是真命题时,只需当-1ɤx ɤ1时,a ȡ(x 2)m a x .因为-1ɤx ɤ1时,y =x 2的最大值是1,所以a ȡ1.因为a ȡ1⇒a ȡ10,a ȡ10⇒a ȡ1,所以C 符合要求.A 为充要条件,B 为必要条件,D 是既不充分也不必要条件.故选C .7.B C D 对于A 选项,取x =1,y =-1,则x >y ,但x 2=y 2,即 x 2>y 2不是 x >y 的必要条件;对于B 选项,若x >10,则x >5,即 x >5 是 x >10的必要条件;对于C 选项,若a =b ,则a c =b c ,即 a c =b c 是 a =b 的必要条件;对于D 选项,若x =y ,则2x +1=2y +1,即 2x +1=2y +1 是 x =y 的必要条件.故选B C D .8.A C D ∀x ɪR ,2x -1>0,根据指数函数值域知A 正确;∀x ɪN *,(x -1)2>0,取x =1,计算知(x -1)2=0,B 错误;∃x ɪR ,l g x <1,取x =1,计算l g x =0<1,故C 正确;∃x ɪR ,t a n x =2,y =t a n x 的值域为R ,故D 正确.故选A C D .9.充要解析:由A =B ,且在әA B C 中,A ,B 不同时等于π2,得t a n A=t a n B ,反之,若t a n A =t a n B ,则A =B +k π,k ɪZ .因为0<A <π,0<B <π,所以A =B ,故 A =B 是 t a n A =t a n B 的充要条件.10.[1+3,+ɕ)解析:因为命题的否定是假命题,故原命题为真,即不等式1+t a n x ɤm 对∀x ɪ0,π3恒成立,又y =1+t a n x在x ɪ0,π3上为增函数,ʑ(1+t a n x )m a x =1+ta n π3=1+3,即m ȡ1+3,实数m 的取值范围是[1+3,+ɕ).11.m ȡ1或m ɤ-7解析:p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B ⫋A ,ʑm ȡ1或m +3ɤ-4,即m ȡ1或m ɤ-7.12.54,2解析:当命题p 成立时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,ʑΔ=1-4(a -1)<0,解得a >54.当命题q 成立时,2a ɤ(2x)m a x ,x ɪ[-2,2],ʑa ɤ2.故54<a ɤ2,ʑa 的取值范围是54,213.解:易知M ɘN ʂ⌀的充要条件是方程组y 2=2x ,(x -a )2+y 2=9至少有一组实数解,且x ȡ0,即x 2+2(1-a )x +a 2-9=0至少有一个非负实根.设其两实根为x 1,x 2,则Δȡ0,x 1x 2ɤ0或Δȡ0,x 1x 2>0,x 1+x 2>0,解得-3ɤa ɤ3或3<a ɤ5,从而所求充要条件是-3ɤa ɤ5.14.解:ȵs i n x +c o s x =2s i n x +π4ȡ-2,ʑ当r 是真命题时,m <-2.当对任意的x ɪR ,s 为真命题,即x 2+m x +1>0恒成立时,Δ=m 2-4<0,解得-2<m <2.当r 为真,s 为假时,需满足m <-2且m ɤ-2或m ȡ2,ʑm ɤ-2;当r 为假,s 为真时,需满足m ȡ-2且-2<m <2,ʑ-2ɤm <2.综上,m 的取值范围是{m |m ɤ-2或-2ɤm <2}.[素养提升]1.B 命题p :若四边形为菱形,则它的四条边相等,则 p :存在一个四边形为菱形,它的四条边不相等.故选B .2.C 命题 定义域为R 的函数f (x )不是奇函数 是 定义域为R 的函数f (x )是奇函数 的否定,而定义域为R 的函数f (x )是奇函数满足∀x ɪR ,f (-x )=-f (x ),所以它的否定形式为∃x ɪR ,f (-x )ʂ-f (x ).故选C .3.A 对于A ,函数f (x )=e x -1-x -1(x ɪR ),f'(x )=e x -1-1,令f '(x )>0得x >1,令f '(x )<0得x <1,所以f (x )在(1,+ɕ)上为增函数,在(-ɕ,1)上为减函数,所以f (x )在x =1时有最小值,即f (1)=e 0-1-1=-1<0,f (4)=e 3-4-1=e 3-5>0,f (-2)=e -3+2-1=e -3+1>0,所以f (x )有两个零点,正确;对于B , ∃x ɪR ,e x>x 的否定是 ∀x ɪR ,e xɤx ,错误;对于C ,1a -1b=b -a a b ,因为a <b <0,所以b -a >0,a b >0,所以1a -1b>0,1a >1b ,错误;对于D ,由已知得m 2-m -1=1,m 2-2m -3<0,解得m =2,错误.故选A .4.C ①若m =2,n =-5,满足m >n ,但m 2<n 2,故①错误;②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确;③对角线互相平分且相等的四边形是矩形,错误;④在同圆成等圆中,如果两条弧相等,那么它们所对的圆心角相等,正确;⑤若a 2=a ,则a ȡ0,错误.②④正确,故选C .5.A 由向量的基本定理知:同一基底下,一个向量的表示方式唯一,故p 1正确;a ʊc ,则a =λc ,(a ㊃b )㊃c =(λc ㊃b )㊃c =521。
《红对勾》2016人教A版高中数学必修一练习第一章单元质量评估1Word版含答案
第一章单元质量评估(一)时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2.如图可作为函数y =f (x )的图象的是( )3.已知集合M ={y |y =x 2-1,x ∈R },N ={x |y =2-x 2},则M ∩N =( )A .-1,+∞)B .-1,2]C .2,+∞)D .∅4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3D .1或35.设函数f (x )=⎩⎨⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15B .3C.23D.1396.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x7.已知A ={0,1},B ={-1,0,1},f 是从A 到B 映射的对应关系,则满足f (0)>f (1)的映射有( )A .3个B .4个C .5个D .6个8.若函数y =f (x )的定义域是-2,4],则函数g (x )=f (x )+f (-x )的定义域是( )A .-4,4]B .-2,2]C .-4,-2]D .2,4]9.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )10.已知函数f (x )=12x 2-kx -8在区间2,8]上具有单调性,则实数k 的取值范围是( )A .(-∞,2]B .8,+∞)C .(-∞,2]∪8,+∞)D .∅11.已知某种产品的购买量y (单位:吨)与单价x (单位:元)之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元,若一客户购买400吨,则单价应该是( )A .820元B .840元C .860元D .880元12.对于任意两个正整数m ,n 定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合M ={(a ,b )|a ※b =12,a ∈N *,b ∈N *}中的元素个数是( )A .10B .15C .16D .18二、填空题(每小题5分,共20分) 13.函数y =x +1x 的定义域为________.14.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f (x +2),x <0,则f (-3)=________.15.已知二次函数f (x )=ax 2+2ax +1在区间-3,2]上的最大值为4,则a 的值为________.答案1.C 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.(∁U A )∪B ={0,4}∪{2,4}={0,2,4}.2.D 只有选项D 中对定义域内任意x 都有唯一的y 值与之对应.3.B 根据题意知集合M 是函数y =x 2-1,x ∈R 的值域-1,+∞),集合N 是函数y =2-x 2的定义域-2,2],所以M ∩N =-1,2].4.B 依据并集的概念及A ∪B =A 可知,m =3或m =m ,由m =m 解得m =0或m =1.当m =0或m =3时,符合题意;当m =1时,不满足集合中元素的互异性,因此应舍去.综上可知m =0或m =3.5.D 由题意得f (3)=23,从而f (f (3))=f (23)=(23)2+1=139. 6.C 将选项中的函数逐个代入f (2x )=2f (x )去验证.f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x ),故A ,B ,D 满足条件.7.A 当f (0)=1时,f (1)的值为0或-1都能满足f (0)>f (1);当f (0)=0时,只有f (1)=-1满足f (0)>f (1);当f (0)=-1时,没有f (1)的值满足f (0)>f (1),故有3个.8.B 由⎩⎪⎨⎪⎧-2≤x ≤4,-2≤-x ≤4,得-2≤x ≤2.9.B 取h =H 2,由图象可知,此时注水量V 大于容器容积的12,故选B.10.C f (x )=12x 2-kx -8的单调增区间是k ,+∞),单调减区间是(-∞,k ],由f (x )在区间2,8]上具有单调性可知2,8]⊆k ,+∞)或2,8]⊆(-∞,k ],所以k ≤2或k ≥8.11.C 设y =kx +b (k ≠0),由题意得⎩⎪⎨⎪⎧1 000=800k +b ,2 000=700k +b ,解得k =-10,b =9 000. ∴y =-10x +9 000,当y =400时,得x =860.12.B 当m ,n 都为正偶数或正奇数时,m +n =12,故对应的元素为(1,11),(2,10),(3,9),(4,8),…,(10,2),(11,1),共11个;当m ,n 中一个为正偶数,另一个为正奇数时,mn =12,故对应的元素为(1,12),(3,4),(4,3),(12,1),共4个.故集合M 中的元素共15个.13.{x |x ≥-1,且x ≠0}解析:求函数的定义域就是求使解析式有意义的自变量的取值集合,本小题涉及分式,要注意分母不能等于0,偶次根式被开方数是非负数.由⎩⎪⎨⎪⎧x +1≥0,x ≠0得函数的定义域为{x |x ≥-1,且x ≠0}.14.2解析:f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2. 15.-3或38解析:f (x )的对称轴为x =-1,当a >0时, f (x )max =f (2)=4,解得a =38;当a <0时,f (x )max =f (-1)=4,解得a =-3.———————————————————————————— 16.若函数f (x )同时满足①对于定义域上的任意x ,恒有f (x )+f (-x )=0;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有f (x 1)-f (x 2)x 1-x 2<0,则称函数f (x )为“理想函数”.给出下列三个函数中:(1)f (x )=1x .(2)f (x )=x 2.(3)f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0.能被称为“理想函数”的有________(填相应的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)已知全集U=R,集合A={y|y=3-x2,x∈R,且x≠0},集合B是函数y=x-2+25-x的定义域,集合C={x|5-a<x<a}.(1)求集合A∪(∁U B)(结果用区间表示);(2)若C⊆(A∩B),求实数a的取值范围.(12分)已知函数f(x)=|x-1|.(1)用分段函数的形式表示该函数;(2)在平面直角坐标系中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性和单调区间(不要求证明).答案16.(3)解析:①要求函数f (x )为奇函数,②要求函数f (x )为减函数,(1)是奇函数但不是定义域上的减函数,(2)是偶函数而且也不是定义域上的减函数,只有(3)既是奇函数又是定义域上的减函数.17.解:(1)由已知得 A ={x |x <3},B ={x |2≤x <5}, ∴∁U B ={x |x <2,或x ≥5},∴A ∪(∁U B )={x |x <3,或x ≥5}=(-∞,3)∪5,+∞). (2)由(1)知A ∩B ={x |2≤x <3},当C =∅时,满足C ⊆(A ∩B ),此时5-a ≥a ,解得a ≤52; 当C ≠∅时,要满足C ⊆(A ∩B ), 则⎩⎪⎨⎪⎧5-a <a ,5-a ≥2,a ≤3,解得52<a ≤3.综上可得a ≤3.18.解:(1)f (x )=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.(2)图象如图所示:(3)函数f (x )的定义域为R ,值域为0,+∞),它既不是奇函数也不是偶函数,单调减区间为(-∞,1),单调增区间为1,+∞).———————————————————————————— 19.(12分)已知函数f (x )=2x +1x +1,(1)判断函数在区间1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间1,4]上的最大值与最小值.20. (12分)已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0.(1)求实数m 的值;(2)若函数f (x )在区间-1,a -2]上单调递增,求实数a 的取值范围.答案19.解:(1)函数f (x )在1,+∞)上是增函数. 任取x 1,x 2∈1,+∞),且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在1,+∞)上是增函数.(2)由(1)知函数f (x )在1,4]上是增函数,最大值f (4)=95,最小值f (1)=32.20.解:(1)当x <0时,-x >0,∴f (-x )=-(-x )2+2(-x )=-x 2-2x ,又f (x )是奇函数,∴f (-x )=-f (x ),于是当x <0时,f (x )=x 2+2x =x 2+mx ,∴m =2.(2)结合f (x )的图象(图略)可知,要使f (x )在-1,a -2]上单调递增,需⎩⎪⎨⎪⎧a -2>-1,a -2≤1,解得1<a ≤3. 故实数a 的取值范围为(1,3].————————————————————————————21.(12分)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y).(1)求f(0)的值;(2)求证:f(x)为奇函数;(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.22. (12分)已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间2a,a+1]上不单调,求实数a的取值范围;(3)在区间-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.答案21.解:(1)令x=y=0,则f(0)=f(0)+f(0)⇒f(0)=0.(2)证明:令y=-x,则f(0)=f(x)+f(-x)⇒f(-x)=-f(x),所以f(x)为R上的奇函数.(3)令x=y=1,则f(1+1)=f(2)=f(1)+f(1)=2,∴f(2a)>f(a-1)+2⇔f(2a)>f(a-1)+f(2)⇒f(2a)>f(a+1).又因为f(x)是R上的增函数,所以2a>a+1⇒a>1,所以a的取值范围是(1,+∞).22.解:(1)由题意设f(x)=a(x-1)2+1,代入(2,3)得a=2,所以f(x)=2(x-1)2+1=2x2-4x+3.(2)对称轴为x =1,所以2a <1<a +1,所以0<a <12.(3)f (x )-2x -2m -1=2x 2-6x -2m +2,由题意得2x 2-6x -2m +2>0对于任意x ∈-1,1]恒成立, 所以x 2-3x +1>m 对于任意x ∈-1,1]恒成立, 令g (x )=x 2-3x +1,x ∈-1,1],则g (x )min =-1,所以m <-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元综合测试一(第一章)时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)题号123456789101112 答案1.集合{1,2,3}的所有真子集的个数为()A.3B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩FC.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于() A.N B.MC.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞)C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y =20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x)③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y=f(-x)为奇函数;③令F(x)=xf(x),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ).所以F (-x )=F (x ).所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A. 答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________.解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________.解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2.答案:a≤-216.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0)、f(1)、f(-2)从小到大的顺序是__________.解析:∵f(x)=(m-1)x2+6mx+2是偶函数,∴m=0.∴f(x)=-x2+2.∴f(0)=2,f(1)=1,f(-2)=-2,∴f(-2)<f(1)<f(0).答案:f(-2)<f(1)<f(0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1},(1)当x∈N*时,求A的子集的个数;(2)当x∈R且A∩B=Ø时,求m的取值范围.解:(1)∵x∈N*且A={x|-2≤x≤5},∴A={1,2,3,4,5}.故A的子集个数为25=32个.(2)∵A∩B=Ø,∴m-1>2m+1或2m+1<-2或m-1>5,∴m<-2或m>6.18.(12分)已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠Ø且B⊆A,求a,b的值.解:(1)当B=A={-1,1}时,易得a=0,b=-1;(2)当B含有一个元素时,由Δ=0得a2=b,当B ={1}时,由1-2a +b =0,得a =1,b =1 当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b (a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b 且f (2)=1,∴2=2a +b .又∵方程f (x )=x 有唯一实数解. ∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a . (1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2.(2)0≤a2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10,综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:用与损耗之和最小?解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2.由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600,y 2=4x +1800+(x100+4)×300=7x +3000.令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].。