2018年自贡小学毕业小升初模拟数学试题(共6套)附详细答案
2018-2019年自贡小学毕业小升初模拟数学试题(共6套)附详细答案
小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B 两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A 是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A 等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷10-12(共3套)附详细试题答案
小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。
2018年自贡小学毕业小升初模拟数学试题(共4套)附详细答案
小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷27-29(共3套)附详细试题答案
小升初数学综合模拟试卷27一、填空题:3.将1个棱长是5厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可以分割成______个小正方体.4.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有8个约数,那么A+B=______.5.正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的长方形与原正方形面积相等,原正方形的面积是______平方厘米.6如图,图中有18个小方格,要把3枚硬币放在方格里,使每行、每列只出现一枚硬币,共有______种放法.个数是______.8.1997名同学排成一排,从排头到排尾1至4报数;再从排尾向排头1至5报数,那么两次报数都报3的共有______人.9.把一个大长方体木块表面涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小正方体恰好是16块,那么至少要把这个大长方形分割成______个小长方体.10.有一个长方形,长有420个小方格,宽有240个小方格.如果把每个小方格的顶点称为格点,连结这个长方形的对角线共经过______个格点(包括对角线两端).二、解答题:1.某沿海地区甲、乙两码头,已知一艘船从甲到乙每天航行300千米,从乙到甲每天航行360千米,如果这艘船在甲、乙两码头间往返航行4次共22天,那么甲、乙两码头间的距离是多少千米?2.有8盏灯,从1到8编号,开始时3、6、7编号的灯是亮的。
如果一个小朋友按从1到8,再从1到8,…的顺序拉开关,一共拉动500次,问此时哪几个编号的灯是亮的?3.一容器内装有10升纯酒精,倒出1升后,用水加满,再倒出1升,再用水加满,然后再倒出1升,用水加满,这时容器内的酒精溶液浓度是多少?4.能否用2个田字形和7个T字形(如图),恰好覆盖住一个6×6的正方形网格?答案一、填空题:1.85=12.5×(1.86+2.54)+30=12.5×4.4+30=55+30=852.7设原来有圆珠笔x支,3.50要想分割的小正方体个数最少,就要使分割的小正方体的棱长尽可能大.如果小正方体的棱长是4厘米,只能分割出1个,剩下部分的体积是53-43=61立方厘米,只能分割成棱长为1厘米的小正方体,共61÷13=61个,按这种方法分割分成62个小正方体.若在已知正方体的一角分割一个棱长是3厘米的小正方体,剩下7个角可以分割出7个棱长为2厘米的小正方体,这时剩下部分的体积是53-33-7×23=42(立方厘米)这部分可以分割棱长是1厘米的小正方体42个,所以总共分割出小正方体个数是:1+7+42=50(个)比较上面两种方案,最少可以分割成50个小正方体.4.68436=32×4,A、B至少含有两个3和一个4.因为A有12个约数,12=2×6=3×4,所以A可能是35×4、32×43或33×42,B有8个约数,8=2×4,所以B=33×4,于是A只能是32×43,故A+B=32×43+33×4=6845. 144设原正方形的边长为x厘米,如图,由于正方形ABCD与长方形AEGH面积相等,而长方形AEFD是正方形ABCD和长方形AEGH的公共部分,所以长方形EBCF的面积等于长方形DFGH的面积,于是4x=6×(x-4)6x-4x=24x=12故原正方形的面积是:12×12=144(平方厘米).6.720第一枚硬币有18种放法;第二枚硬币只能有10种放法,因为这枚硬币放置时与第一枚不同行不同列;同理,第三枚硬币与前二枚硬币不同行也不同列,所以有4种放法.因此共有18×10×4=720(种)这串数的规律是,从第2个数起,每一个数的分子是它前一个数的分子与分母之和,分母是它前一个数的分子的2倍再加分母.若设8.100因为 1997÷4=499…1,所以排尾同学报1,而1997÷5=399…2,所以排头同学报2.从右起第3名同学两次报数都是3,以后每相差[4,5]=20名同学两次报数都是3,那么将1997-3=1994人分成每20人一组,共可分成1994÷20=99 (14)99组,所以两次都报3的人数是99+1=100人.9.24由于只有两个面涂上红色的小长方体只能位于每条棱的中间部分,将长方体按下图进行分割:依次分割的小长方体的个数是36、32、30、24,则图(4)分割的块数最少是24块,且恰好有16个两面涂红色的小长方体.10.61把长方形按比例缩小,由于420∶240=7∶4所以把长方形缩小成长7个小方格,宽4个小方格的小长方形,然后画一条对角线,如图,图中对角线经过2个格点,即对角线对长来讲,每经过7个小方格,就经过一个格点,或对宽来讲,每经过4个小方格,就经过一个格点,所以长方形的对角线经过的格点问题类似植树问题,共经过格点数:420÷7+1=61(个)(或240÷4+1=61(个))二、解答题:1.甲、乙两码头间的距离是900千米.由于往返的路程相等,船从甲到乙每天航行300千米,从乙到甲每行航知往返共22天,可得出从甲到乙行12天,从乙到甲用10天,而300×12+360×10相当于船在甲、乙两码头间往返4次所行的总路程,所以甲、乙两码头的距离.(300×12+360×10)÷4÷2=900(千米)2.编号是1、2、4、6、7的灯是亮的.对于亮着的灯,只要拉动偶数次开关仍是亮的,拉动奇数次开关是灭的;对于开始关闭的灯,只要拉动奇数次开关灯就亮,拉动偶数次开关仍是灭的.因为500÷8=62 (4)说明这8盏灯各拉动62次后,编号为1、2、3、4的灯又拉动一次,由于62是偶数,所以原来亮的灯仍是亮的,灭的灯仍是灭的,即编号是3、6、7的灯各拉动62次后仍是亮的,其余灯是灭的,接着编号是1、2、3、4的灯各拉动一次,编号1、2、4的灯亮了,编号3的灯灭了,所以这8盏灯最后是1、2、4、6、7这五盏灯是亮的.3.容器内的酒精溶液浓度是72.9%第一次倒出纯酒精是1升,加上1升水后,变成酒精溶液,第二次倒出的溶液含纯酒精是:第三次倒出的溶液含纯酒精是:三次倒出后,容器里还有纯酒精是:这时容器内溶液的浓度是:4.不能将6×6的正方形网格进行黑白相间染色,黑白格各有18个.每个T字形盖住1个或3个白格,现有7个T字形,若盖住白格数为1的T字形有奇数个,那么盖住白格数为3的T字形是偶数个,奇数个1的和是奇数,偶数个3的和是偶数,所以7个T字形盖住的白格总数,由于奇+偶=奇,因此是奇数个;同理,若盖住白格数为1的T字形有偶数个,那么盖住白格数为3的T字形是奇数个,同样7个T字形盖住的白格总数是奇数个;而2个田字形盖住的白格总数是4,4是偶数,因此2个田字形和7个T字形覆盖的白格总数是奇数个,但6×6的正方形网格的白格数是18个,18是偶数,由于奇数≠偶数,所以用2个田字形和7个T字形不能覆盖6×6的正方形网格.小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。
2018-2019年自贡市小升初数学模拟试卷整理(29)附答案附答案
小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷5-6(共2套)附详细试题答案
小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
2018年自贡小学毕业小升初模拟数学试题(64)附详细答案
小升初数学试卷一、判断题1、甲数比乙数少,乙数比甲数多.________(判断对错)2、分针转180°时,时针转30°________(判断对错)3、一个圆的周长小,它的面积就一定小.________(判断对错)4、495克盐水,有5克盐,含盐率为95%.________.(判断对错)5、一根木棒截成3段需要6分钟,则截成6段需要12分钟________(判断对错)6、要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.()(判断对错)二、选择题加填空题加简答题7、定义前运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A、B、C、8、一共有几个三角形________.9、一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为________%.10、水流增加对船的行驶时间()A、增加B、减小C、不增不减D、都有可能11、教室里有红黄蓝三盏灯,只有一个拉环,拉一次红灯亮,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现有编号1到100的同学,每个同学拉开关拉自己编号次灯.比如第一个同学拉一次,第二个同学拉两次,照此规律一百个同学拉完灯的状态是________.12、跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A、不亏不赚B、赚5元C、亏2元D、亏5元13、一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为________千米.14、一个长方形的长和宽都为整数厘米,面积160有几种可能?15、环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)16、甲、乙、丙合作一项工程,4天干了整个工程的,这4天内,除丙外,甲又休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍.问工程前后一共用了多少天?17、以BD为边时,高20cm,以CD为边时,高14cm,▱ABCD周长为102厘米,求面积?18、100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?19、A、B、C、D四个数,每次计算三个数的平均值,这样计算四次,得出的平均数分别为29、28、32、36(未确定),求四个数的平均值.20、一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21、货车每小时40km,客车每小时60km,A、B两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?22、欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?23、小明周末去爬山,他上山4千米/时,下上5千米/时,问他上下山的平均速度是多少?24、一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.25、一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比.三、计算题26、计算题.0.36:8=x:2515÷[()]﹣0.591× ﹣1÷13×100+9× +11 ÷11[22.5+(3 +1.8+1.21× )]+ + + +…+答案解析部分一、<b >判断题</b>1、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:把乙数看作5份数,甲数就是5﹣3=2份数(5﹣2)÷2= .答:乙数比甲数多.故答案为:错误.【分析】甲数比乙数少,把乙数看作5份数,那么甲数就是5﹣3=2份数;要求乙数比甲数多几分之几,需把甲数看作单位“1”,也就是求乙数比甲数多的部分占甲数的几分之几,列式计算后再判断得解.2、【答案】错误【考点】角的概念及其分类【解析】【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:错误.【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.3、【答案】正确【考点】圆、圆环的周长,圆、圆环的面积【解析】【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.4、【答案】错误【考点】百分率应用题【解析】【解答】解:5÷495×100%≈1%答:含盐率约是1%.故答案为:错误.【分析】495克盐水,有5克盐,根据分数的意义可知,用含盐量除以盐水总量即得含盐率是多少.5、【答案】错误【考点】整数四则混合运算,整数、小数复合应用题,比例的应用【解析】【解答】解:6÷(3﹣1)=6÷2=3(分钟)3×(6﹣1)=3×5=15(分钟)15>12故答案为:错误.【分析】截成3段需要需要截2次,需要6分钟,由此求出截一次需要多少分钟;截成6段,需要截5次,再乘截一次需要的时间就是截成6段需要的时间,然后与12分钟比较即可.6、【答案】错误【考点】长方形、正方形的面积,圆、圆环的面积【解析】【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片.故答案为:错误.【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.二、<b >选择题加填空题加简答题</b>7、【答案】B【考点】定义新运算【解析】【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x= .故选:B.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.8、【答案】37【考点】组合图形的计数【解析】【解答】解:根据题干分析可得:顶点O在上面的三角形,一共有5+4+3+2+1=15(个)顶点O在左边的三角形一共有6+5+4+3+2+1=21(个)15+21+1=37(个)答:一共有37个三角形.故答案为:37.【分析】先看顶点O在上面的三角形,一共有5+4+3+2+1=15个三角形,再看顶点O在左边的三角形一共有6+5+4+3+2+1=21个,据此加起来,再加上大三角形即可解答问题.9、【答案】56【考点】百分数的实际应用【解析】【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.10、【答案】D【考点】简单的行程问题【解析】【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.11、【答案】第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮【考点】奇偶性问题【解析】【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050,5050÷4=1262(次)…2,就是第二次的状态,红灯和黄灯亮.故答案为:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮.【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次两盏灯全亮,再按一次两盏灯全灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.12、【答案】D【考点】百分数的实际应用【解析】【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.13、【答案】1950【考点】比例尺【解析】【解答】解:6.5÷ =195000000(厘米),195000000厘米=1950千米;答:实际距离是19500千米.故答案为:1950.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.14、【答案】解:因为160=1×160=2×80=4×40=5×32=8×20=16×10,所以这个长方形的长与宽有6种可能.答:面积是160有6种可能.【考点】长方形、正方形的面积【解析】【分析】根据长方形的面积公式S=长×宽,长×宽=160,根据160=1×160=2×80=4×40=5×32=8×20=16×10,据此即可解答问题.15、【答案】解:400÷(6+4)=400÷10=40(秒)40×4×11÷400=160×11÷400=1760÷400=4(圈)…160(米)答:第11次相遇时离起点160米.【考点】相遇问题【解析】【分析】根据题意可知小合一直是沿同一方向前进,每一次相遇用的时间根据时间=路程÷速度和可求出,再乘小合的速度信相遇次数,可知小合共行的路程,再除以环形跑道的长度,看余数可求出离起点的距离,据此解答.16、【答案】解:× ÷4 = ÷4= ,×3= ,×2= ,4+2+3+[1﹣﹣×(2+3)﹣×3﹣×2]÷(+ + )=9+[1﹣﹣﹣﹣]÷=9+5=14(天)答:完成这项工程前后需要14天【考点】工程问题【解析】【分析】由于甲的效率是丙的3倍,乙的效率是丙的2倍,将丙的工作效率当作单位“1”,则甲、乙、丙三人的效率比是3:2:1,又4天干了整个工程的,则丙完成了这4天内所做工程的= ,即完成了全部工程的× = ,所以丙每天能完成全部工作的÷4= ,则甲每天完成全部工程的×3= ,丙每天完成全部工程的×2= .又然后除丙外,甲休息了2天,乙休息了3天,则这2+3=5天内,丙完成了全部工程的×5= ,甲完成了全部工程的×3= ,乙完成全部工作的×2= ,此时还剩下全部的1﹣﹣﹣﹣,三人的效率和是+ + ,所以此后三人合作还需要(1﹣﹣﹣﹣)÷(+ + )天完成,则将此工程前后共用了4+2+3+(1﹣﹣﹣﹣)÷(+ + )天.17、【答案】解:CD边上的高与BD边上的高的比是:14:20= ;平行四边形的底CD为:102÷(1 )÷2=102=102×=30(厘米);平行四边形的面积为:30×14=420(平方厘米);答:平行四边形的面积是420平方厘米【考点】组合图形的面积【解析】【分析】平行四边形的对边平行且相等,平行四边形的面积=底×高,由CD边上的高与BD边上的高的比等于CD与BD的反比,已知周长求出平行四边形的底,再利用面积公式解答.18、【答案】解:(33÷9)×3÷5+(33÷9)×6÷55 = += (小时)答:最快要小时到目的地【考点】简单的行程问题【解析】【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B 点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6× )÷55= 小时;合计就是小时.19、【答案】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25【考点】平均数问题【解析】【分析】根据余下的三个数的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.20、【答案】解:设这根竹竿长x米.则有x﹣1.2×2=﹣=2,则x=4,没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米【考点】整数、小数复合应用题【解析】【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.21、【答案】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷20-22(共3套)附详细试题答案
小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.。
2018年自贡小升初数学模拟试题(共7套)详细答案
小升初数学试卷一、填空1、2016年全国人口普查,中国人口已达1380507006人,这个数读作________,省略亿位后面的为数是________.2、48分=________时7.08升=________升________毫升42600平方米=________公顷50平方米=________平方分米=________平方厘米.3、如果体重减少2千克记作﹣2千克,那么+2千克表示________2千克.4、把:0.75化成最简单的整数比是________,它的比值是________.5、一种商品七五折销售,售价是原价的________%,便宜了原价的________%6、如果x= y,那么y:x=________:________.7、一根长2米的圆木,截成五段后,表面积增加5平方厘米,这根圆木原来的体积是________立方厘米.8、分母是8的所有最简真分数的和是________.9、工地上有a吨水泥,每天用去2.5吨,用了m天,剩下________吨水泥.10、一个长方形长5cm,宽3cm,按3:1扩大后的长方形的面积是________平方厘米.11、一幅地图的比例尺是,那么写成数值比例尺是________.12、△+□=24,△=□+□+□,求△=________.13、三个连续奇数的和是n,其中最小的一个是________,最大的一个是________.14、两点可以确定一条线段,在一条直线上取20个点,最多可以确定________条线段.二、选一选15、比例尺是()A、比B、一个分数C、比例16、2016年2月份,阴天比晴天少,雪天比晴天少,这个月晴天有()A、15天B、10天C、20天17、圆柱的底面直径是6分米,高是8分米,与它等底等高的圆锥的体积是()立方分米.A、113.04B、226.08C、75.3618、a÷b=c(a、b、c均为整数,且b≠0),那么a和b的最小公倍数是()A、aB、bC、c19、把10克糖容在100克水中,水与糖水的比是()A、1:10B、1:11C、9:10D、10:11三、判一判.20、在比例里,如果两个外项互为倒数,那么两个内项也互为倒数.________(判断对错)21、两个真分数相除,商一定大于被除数.________(判断对错)22、实际距离一定,图上距离与比例尺成正比例.________.(判断对错)23、x+=y+=z+,那么x、y、z的关系是x>y>z.________(判断对错)24、圆柱的底面半径扩大2倍,它的体积一定扩大4倍.________(判断对错)25、一个三角形的三条边长分别为2cm、5cm、7cm.________ (判断对错)26、圆锥的体积比与它等底等高的圆柱体积少2倍.(判断对错)27、圆锥的体积等于圆柱体体积的________(判断对错)四、计算28、直接写出得数.:0.25=________ ﹣=________ 29、怎样简便就怎样算:59×101;24×(+ ﹣);275+450÷18×25;12.5×8÷12.5×8.30、解比例:4+7x=102;x+ x=42;:= :x;x﹣0.25= .五、图形题31、①小旗子向左平移8格后的图形.②小旗子绕O点按顺时针方向旋转90°后的图形.③小旗子按2:1扩大后的图形.六、解决问题32、李大妈存入银行2000元,存期2年,年利率为3.20%,到期支取李大妈能拿回多少钱?33、阳阳正在读一本科普书,第一周读了90页,还剩下这本书的没有读.这本科普书一共有多少页?34、一种食用油,原来每升售价4.0元,现在由于成本提高,单价提高了25%.原来买10L的钱,现在能买多少升?35、小兰的身高1.5m,她的影子长是2.4m.如果同一时间,同一地点测得一棵树的影子长4m,这棵树有多高?36、一种电热水炉的水龙头的内直径是1.2厘米,打开水龙头后水的流速是20cm/s.一个容积为1L的保温壶,50秒能装满吗?37、一个圆锥形胡麦堆,底面半径3米,高2米,如果把这些小麦装入一个圆柱形粮仓,只占粮仓的七分之四,已知粮仓的底面积是7平方米,粮仓的高多少米?答案解析部分一、填空1、【答案】十三亿六千零五十万七千零六;14亿【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:13 6050 7006读作:十三亿六千零五十万七千零六;13 6050 7006≈14亿.故答案为:十三亿六千零五十万七千零六,14亿.【分析】根据整数的读法,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其余数位连续几个0都只读一个零,即可读出此数;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.2、【答案】0.8;7;80;4.26;5000;500000【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:48分=0.8时7.08升=7升80毫升42600平方米=4.26公顷50平方米=5000平方分米=500000平方厘米故答案为:0.8,7,80,4.26,5000,500000.【分析】把48分化成时数,用48除以进率60;把7.08升化成复名数,7是升数,0.08乘进率1000就是毫升数;把42600平方米化成公顷数,用42600除以进率10000;把50平方米化成平方分米数,用50乘进率100,化成平方厘米数,用50乘进率10000;即可得解.3、【答案】体重增加【考点】负数的意义及其应用【解析】【解答】解:如果体重减少2千克记作﹣2千克,那么2千克表示体重增加2千克.故答案为;体重增加.【分析】此题主要用正负数来表示具有意义相反的两种量:体重减少记为负,则记为正的就是体重增加,直接得出结论即可.4、【答案】5:2①2.5【考点】求比值和化简比【解析】【解答】解:(1):0.75=(×8):(0.75×8)=15:6=5:2(2):0.75= ÷0.75=2.5故答案为:5:2,2.5.【分析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用比的前项除以后项,所得的商即为比值.5、【答案】75;25【考点】百分数的实际应用【解析】【解答】解:一种商品七五折销售,售价是原价的75%.1﹣75%=25%则比原价便宜了25%.故答案为:75,25.【分析】一种商品七五折销售,根据打折的意义可知,此时售价是原价的75%,将原价当作单位“1”,根据分数减法的意义,现价比原价便宜了1﹣75%.6、【答案】3①5【考点】比例的意义和基本性质【解析】【解答】解:因为x=y,那么y:x=1:=3:5;故答案为:3、5.【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.7、【答案】125【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:2米=200厘米,5÷(4×2)×200=0.625×200=125(立方厘米);答:原来这个圆木的体积是125立方厘米.故答案为:125.【分析】把圆柱截成5段,需要截5﹣1=4次,每截1次表面积就增加2个圆柱的底面的面积,所以一共增加了4×2=8个圆柱的底面的面积,由此利用增加的表面积求出这个圆柱的底面积,再利用圆柱的体积公式即可求出圆木的体积.8、【答案】2【考点】最简分数【解析】【解答】解:分母是8的所有最简真分数有:,,,,+ + + =2;故答案为:2.【分析】根据最简分数的意义找出最简分数:分子和分母是互质数的分数就是最简分数,分子小于分母的最简分数就是最简真分数,把它们加起来求和,据此解答.9、【答案】a﹣2.5m【考点】用字母表示数【解析】【解答】解:用去的:2.5×m=2.5m(吨),剩下的:a﹣2.5m(吨).答:剩下a﹣2.5m吨水泥.故答案为:a﹣2.5m.【分析】根据“每天用去2.5吨,用了m天”,可求出一共用去的吨数,再进一步求得剩下的吨数即可.10、【答案】135【考点】长方形、正方形的面积,图形的放大与缩小【解析】【解答】解:扩大后的长:5×3=15(厘米)扩大后宽是3×3=9(厘米)扩大后的面积:15×9=135(平方厘米)答:扩大后的长方形的面积是135平方厘米.故答案为:135.【分析】一个长方形长5cm,宽3cm,按3:1扩大后,长是5×3=15厘米,宽是3×3=9厘米,根据长方形的面积=长×宽可求出扩大后的面积.据此解答.11、【答案】1:5000000【考点】比例尺【解析】【解答】解:50千米=5000000厘米,数值比例尺是1:5000000.故答案为:1:5000000.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.12、【答案】18【考点】简单的等量代换问题【解析】【解答】解:因为△=□+□+□所以△+□=24□+□+□+□=244□=24□=6△=24﹣6=18,故答案为:18.【分析】因为△=□+□+□,所以△+□=□+□+□+□=4□=24,于是可得□=6,再求△即可.13、【答案】﹣2;+2【考点】奇数与偶数的初步认识,用字母表示数【解析】【解答】解:假设最小的奇数为x,则另两个奇数为x+2,x+4,根据题意得出:x+x+2+x+4=n解得:x=﹣2;最大的是:﹣2+4= +2,故答案为:﹣2,+2.【分析】根据已知首先假设最小的奇数为x,进而得出另两个奇数,利用三个连续奇数的和为n得出等式方程求出即可.14、【答案】190【考点】组合图形的计数【解析】【解答】解:=190(条)答:最多可以确定190条线段.故答案为:190.【分析】根据数线段的一般方法:当线段上有n个点时,线段的总个数就是条,据此代入数据即可解答.二、选一选15、【答案】A【考点】比例尺【解析】【解答】解:比例尺是图上距离与实际距离的比,故比例尺是一个比.故选:A.【分析】根据比例尺的定义直接解答即可.16、【答案】A【考点】分数四则复合应用题,年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:28÷(1﹣+1﹣+1)=28÷=15(天)答:这个月晴天有15天.故选:A.【分析】2016年是平年,2月份28天,把晴天的天数看作单位“1”,阴天比晴天少,即阴天是晴天的1﹣,雪天比晴天少,即雪天是晴天的1﹣,则28天就是晴天的(1﹣+1﹣+1),要求这个月晴天有多少天,就是求单位“1”的量,用除法解答.17、【答案】C【考点】圆柱的侧面积、表面积和体积,圆锥的体积【解析】【解答】解:3.14×(6÷2)2×8,=3.14×9×8,=226.08(立方分米),226.08×=75.36(立方分米),答:圆锥的体积是75.36立方分米.故选:C.【分析】先根据圆柱的体积公式,计算出圆柱的体积,再根据等底等高的圆锥的体积是圆柱体积的,由此即可求出圆锥的体积.18、【答案】A【考点】求几个数的最小公倍数的方法【解析】【解答】解:由a÷b=c,得a=bc,可知a和b是倍数关系,a>b,倍数关系的最小公倍数是较大数a.故选:A.【分析】根据a和b是自然数,且a÷b=c,可知a和b是倍数关系,倍数关系的两个数的最小公倍数是较大数,据此解答.19、【答案】B【考点】比的意义【解析】【解答】解:10:(10+100),=10:110=(10÷10):(110÷10)=1:11故选:B.【分析】10克糖完全溶解在100克水里,糖水为(10+100)克,进而根据题意,求出糖与糖水的比,进行选择即可.三、判一判.20、【答案】正确【考点】倒数的认识,比例的意义和基本性质【解析】【解答】解:根据比例的性质,可知:在比例里,如果两个外项互为倒数,乘积是1,那么两个内项也一定互为倒数,乘积也是1.故答案为:正确.【分析】由“在比例里,两个外项互为倒数”,可知两个外项的乘积是1;再根据比例的性质“两内项的积等于两外项的积”,可知两个内项也互为倒数,乘积也是1;据此判断得解.21、【答案】正确【考点】分数除法【解析】【解答】解:被除数是真分数,说明被除数不是0;除数是真分数,说明除数小于1,且不等于0;被除数不是0,而且除数小于1,那么商一定大于被除数.故答案为:正确.【分析】由于真分数小于1,所以在分数除法中,如果除数是真分数,那么商一定大于被除数.22、【答案】正确【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:图上距离÷比例尺=实际距离(一定),是比值一定,所以图上距离和比例尺成正比例;故答案为:正确.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.23、【答案】错误【考点】分数的大小比较【解析】【解答】解:,所以所以x<y<z;故答案为:错误.【分析】已知x+=y+ =z+,由它们的和相等,一个加数大另一个加数就小,比较加数的大小,即可得出另一个加数的大小,再判断即可.24、【答案】错误【考点】积的变化规律,圆柱的侧面积、表面积和体积【解析】【解答】解:因为圆柱的体积是由底面积和高两个条件决定的,圆柱的底面半径扩大2倍,底面积扩大4倍,如果高不变,它的体积就扩大4倍.本题没有说明高不变,因此这种说法是错误的.故答案为:错误.【分析】圆柱的体积=底面积×高,圆柱的底面半径扩大2倍,底面积扩大4倍,如果高不变,它的体积就扩大4倍.据此判断.25、【答案】错误【考点】三角形的特性【解析】【解答】解:因为:5+2=7,所以三条边长分别是7厘米、2厘米、5厘米不能围成三角形;故答案为:错误.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.26、【答案】错误【考点】圆柱的侧面积、表面积和体积,圆锥的体积【解析】【解答】解:根据圆柱和圆锥的体积公式可得:(等底等高的)圆锥的体积=圆柱体积,所以圆锥的体积比与它等底等高的圆柱体积少,所以原题说法错误;故答案为:错误.【分析】圆柱的体积=Sh,圆锥的体积=Sh,所以可得:等底等高的圆锥的体积是圆柱体积的,由此即可进行判断.27、【答案】错误【考点】圆柱的侧面积、表面积和体积,圆锥的体积【解析】【解答】解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:错误.【分析】因为圆柱和圆锥在“等底等高”的条件下,圆锥的体积是圆柱体积的,所以原题说法是错误的.四、计算28、【答案】0.2;0.0025;3;;0.0625;1;4.8;7200【考点】小数乘法,小数四则混合运算,比的意义【解析】【分析】根据小数、分数和整数加减乘除的计算方法进行计算;72×156﹣56×72根据乘法分配律进行简算.29、【答案】解:①59×101=59×(100+1)=59×100+59=5959;②24×(+ ﹣)=24× +24× ﹣24×=6+20﹣21=5③275+450÷18×25=275+450÷18×25=25×11+25×18÷18×25=25×(11+25)=25×4×9=900④12.5×8÷12.5×8=12.5÷12.5×8×8=64.【考点】运算定律与简便运算【解析】【分析】①把101写作(100+1),然后利用乘法分配律进行简算即可;②直接使用乘法分配律简算;③450可以分解成25×18,275可以分解成25×11,再把36分解成4×9,然后可以利用乘法分配律简算;④利用乘法交换律简算即可.30、【答案】解:①4+7x=1024+7x﹣4=102﹣47x=987x÷7=98÷7x=14② x+ x=42x=36③ := :xx= ×④x﹣0.25=x﹣0.25+0.25= +0.25x=【考点】方程的解和解方程,解比例【解析】【分析】(1)首先根据等式的性质,两边同时减去4,然后两边再同时除以7即可(2)首先化简,然后根据等式的性质,两边同时除以即可;(3)首先根据比例的基本性质化简,然后根据等式的性质,两边同时乘以3即可;(4)根据等式的性质,两边同时加上0.25即可.五、图形题31、【答案】解:①②③作图如下:【考点】作平移后的图形,作旋转一定角度后的图形,图形的放大与缩小【解析】【分析】(1)小旗子的各点向左平移8格后得到新点,顺次连接可得;(2)小旗子绕点O按顺时针方向旋转90°后得到新的点,顺次连接可得;(3)把小旗子的两条互相垂直的边按2:1放大的作图即可.六、解决问题32、【答案】解:2000+2000×3.20%×2=2000+2000×0.032×2=2000+128=2128(元)答:到期支取李大妈能拿回2128元钱【考点】存款利息与纳税相关问题【解析】【分析】此题属于存款利息问题,时间是2年,年利率为3.20%,本金是2000元,把以上数据代入关系式“本息=本金+本金×利率×时间”,列式解答即可.33、【答案】解:90÷(1﹣)=90÷=135(页)答:这本科普书一共有135页【考点】分数除法应用题【解析】【分析】把这本科普书的页数看作单位“1”,先根据已看书页数的量=总量﹣剩余的量,求出已看书的页数占总页数的量,也就是90页占总页数的分率,依据分数除法意义即可解答.34、【答案】解:4×10÷[4×(1+25%)]=40÷5=8(升)答:现在能买8升【考点】百分数的实际应用【解析】【分析】由“原来每升售价4.0元,现在由于成本提高,单价提高了25%”可知现在每升需要的钱数为4×(1+25%),原来买10L食用油需要的钱数为4×10,用原来的钱数除以现在的单价,解决问题.35、【答案】解:设这棵树的高为x米,1.5:2.4=x:4,2.4x=1.5×4,x=6÷2.4,x=2.5.答:这棵树有2.5米【考点】比例的应用【解析】【分析】同一时间,同一地点测得物体与影子的比值相等,也就是小兰的身高与影子的比等于这棵树的高与影子的比,设这棵树的高为x,组成比例,解比例即可.36、【答案】解:1升=1000立方厘米,3.14×(1.2÷2)2×20×50=3.14×0.36×20×50=1.1304×20×50=1130.4(立方厘米)1130.4立方厘米>1000立方厘米,答:50秒能装满水【考点】关于圆柱的应用题【解析】【分析】首先根据圆柱的容积(体积)公式:v=sh,把数据代入公式求出50秒流出水的体积,然后与1升进行比较即可.37、【答案】解:×3.14×32×2=3.14×6,=18.84(立方米);18.84÷ ÷7=18.84× ,=4.71(米);答:粮仓的高是4.71米【考点】关于圆锥的应用题【解析】【分析】此题先根据v= ,求出圆锥形小麦的体积,占圆柱粮仓容积的,再求出圆柱粮仓的容积,最后用粮仓容积除以底面积,即粮仓的高,由此即可列式解答..小升初数学试卷56一、判断题(注:正确的请在答题卡上相应位置涂A,错误的涂B,每题1分,共5分)1、长方形有4条对称轴.________(判断对错)2、圆的面积和半径成正比例.________(判断对错)3、如果甲数比乙数多30%,那么乙数就比甲数少30%.________(判断对错)4、分母是5的所有真分数的和是2.________(判断对错)5、一种商品先提价15%后,再降价15%,那么这件商品的价格没有变.________ (判断对错)二、选择题(每题2分,共12分)6、的分子加上10,要使分数的大小不变,分母应加上()A、10B、8C、16D、207、一件大衣,如果卖92元,可以赚15%,如果卖100元可以赚()A、20%B、15%C、25%D、30%8、一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10 天,这项工程由甲单独做需15天,如果由乙单独做,需()天.A、18B、19C、20D、219、下列图形中对称轴最多的是()A、菱形B、正方形C、长方形D、等腰梯形10、甲筐苹果16千克,乙筐苹果20千克,从乙筐取一部分放入甲筐,使甲筐增加()后,两筐一样重.A、B、C、D、11、上坡路程和下坡路程相等,一辆汽车上坡速度与下坡速度比是3:5,这辆汽车上坡与下坡用的时间比应是()A、5:8B、5:3C、3:5D、3:8三、填空题(每题2分,共20分)12、有9名同学羽毛球比赛,每两名同学都进行一场比赛,共经行了________场比赛.13、一个三位小数用四舍五入法取近似值是8.30,这个数原来最大是________,最小是________.14、修一座房子,用了34万元,比计划节约了15%,节约了________元。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷9-11(共3套)附详细试题答案
小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。
2018年自贡小升初数学模拟试题(共7套)详细答案
小升初数学试卷一、填空题(每题5分)1、计算+ + + + + + + + .2、小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是________.3、1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有________个.4、一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要________天可以完成作业.二、填空题(每题6分)5、2008年1月,我国南方普降大雪,受灾严重.李先生拿出积蓄捐给两个受灾严重的地区,随着事态的发展,李先生决定追加捐赠资金.如果两地捐赠资金分别增加10%和5%,则总捐资额增加8%;如果两地捐赠资金分别增加15%和10%,则总捐资额增加13万元.李先生第一次捐赠了________万元.6、有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这5个数中最小数的最小值为多少?7、从1,2,3,…,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为________.8、如图边长为10cm的正方形,则阴影表示的四边形面积为________平方厘米.9、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________ 人.三、填空题(每题6分)10、皮皮以每小时3千米的速度登山,走到途中A点,他将速度降为每小时2千米.在接下来的1小时中,他走到山顶,又立即下山,并走到A点上方200米的地方.如果他下山的速度是每小时4千米,下山比上山少用了42分钟.那么,他往返共走了________千米.11、在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格中只填一个数,现将每行中放有最大数的格子染成红色,最小数的格子染成绿色.设M是红格中的最小数,m是绿格中的最大数,则M ﹣m可以取到________个不同的值.12、在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有________种.13、如果自然数a的各位数字之和等于10,则a称为“和谐数”.将所有的“和谐数”从小到大排成一列,则2008排在第________个.14、由0,0,1,2,3五个数码可以组成许多不同的五位数,所有这些五位数的平均数为________.四、填空题(每题10分)15、一场数学游戏在小聪和小明间展开:黑板上写着自然数2,3,4,…,2007,2008,一名裁判现在随意擦去其中的一个数,然后由小聪和小明轮流擦去其中的一个数(即小明先擦去一个数,小聪再擦去一个数,如此下去),若到最后剩下的两个数互质,则判小聪胜;否则判小明胜.问:小聪和小明谁有必胜策略?说明理由.16、将一张正方形纸片,横着剪4刀,竖着剪6刀,裁成尽可能大的形状大小一样的35张长方形纸片.再把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸片.如果小正方形边长为2厘米,那么长方形纸片的面积应为多少平方厘米?说明理由.答案解析部分一、<b >填空题(每题5</b><b >分)</b>1、【答案】解:+ + + + + + + += + + + + + + + + + + + += + + + + + + + + + + + +=(+ + )+(+ )+(+ + )+(+ + )+()=1+1+1+1+1,=5.【考点】分数的巧算【解析】【分析】通过分析式中数据发现:= + ,,= + ,= + = + ,所以可将式中的后四个分数拆分后根据加法结合律进行巧算.2、【答案】学【考点】正方体的展开图【解析】【解答】解:如图,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.故答案为:学.【分析】如图,根据正方形展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.3、【答案】228【考点】数的整除特征【解析】【解答】解:根据题干分析可得:1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228(个)答:恰好是3、5、7中两个数的倍数的数共有228个.故答案为:228.【分析】1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以,恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228个.4、【答案】3【考点】二元一次方程组的求解,工程问题【解析】【解答】解::设A型机床每天能完成x,B型机床每天完成y,C型机床每天完成z,则根据题目条件有以下等式:则,若3种机床各取一台工作5天后完成:()×5==剩下A、C型机床继续工作,还需要的天数是:(1 -)÷===3(天);答:还需要3天完成任务.故答案为:3.【分析】把这项任务看作单位“1”,根据工作量÷工作时间=工作效率,分别求出A、B、C三种机床每台每天的工作效率,再求出3种机床各取一台工作5天后,剩下的工作量,然后用剩下的工作量除以A、C两种机床的工作效率和即可.据此解答.二、<b >填空题(每题6</b><b >分)</b>5、【答案】100【考点】百分数的实际应用【解析】【解答】解:10%﹣5%=5%15%﹣10%=5%13÷(8%+5%)=13÷13%=100(万元)答:第一次捐了100万元.故答案为:100.【分析】两地捐赠资金分别增加10%和5%,则总捐资额增加8%,如果再在这个基础上两地增加第一次捐资的5%,那么两地捐赠资金分别增加到15%和10%,总量增加到8%+5%=13%,所以第一次李先生捐资13÷13%=100万.6、【答案】1123【考点】最大与最小【解析】【解答】解:设设中间数是a,五个数分别是a﹣2,a﹣1,a,a+1,a+2;明显可以得到a﹣2+a﹣1+a+a+1+a+2=5a,由于5a是平方数,所以平方数的尾数一定是5或者0,再由3a是立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.所以这个数a一定是32×53=1125,所以最小数是1125﹣2=1123.答:这5个数中最小数的最小值为1123.【分析】设中间数是a,则它们的和为5a,中间三数的和为3a.因为5a是平方数,所以平方数的尾数一定是5或者0;再由中间三数为立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.中间的数至少是1125,那么这五个数中最小数的最小值为1123.7、【答案】108【考点】最大与最小【解析】【解答】解:基于以上分析,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108.故答案为:108.【分析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66…,中只要取到两个相邻的,这两个数的差为13,如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,即从第1个数起隔1个取1个基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108.8、【答案】48【考点】长方形、正方形的面积【解析】【解答】解:如图所示,设左上角小长方形的长为a,右下角小长方形的长为b,四个空白三角形的面积是:[(10﹣b)(10﹣a)+(6﹣a)b+(a+4)(b+1)+(9﹣b)a]÷2=[100﹣10a﹣10b+ab+6b﹣ab+ab+a+4b+4+9a﹣ab]÷2=104÷2=52(平方厘米)阴影部分的面积是10×10﹣52=100﹣52=48(平方厘米)答:阴影部分的面积是48平方厘米.故答案为:48.【分析】图中阴影部分的面积是正方形的面积减去4个空白三角形的面积,据此解答.9、【答案】17【考点】容斥原理【解析】【解答】解:只参加合唱的和只参加跳舞的人数和为:50﹣10=40(人),所以只参加合唱的有10人,那么只参加跳舞的人数为30人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17(人),答:同时参加了演奏、合唱但没有参加跳舞的有17人.故答案为:17.【分析】用韦恩图可以清晰的呈现各个集合之间的数量关系:设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏,10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为50﹣10=40,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17人.三、<b >填空题(每题6</b><b >分)</b>10、【答案】11.2【考点】简单的行程问题【解析】【解答】解:设速度降为每小时2千米后的1小时中,上山时间为x小时,下山为1﹣x小时,所以2x﹣4(1﹣x)=0.2,6x﹣4=0.26x﹣4+4=0.2+46x=4.26x÷6=4.2÷6x=0.70.7小时=42分钟,因为“下山比上山少用了42分钟”,所以以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了:0.7×2÷×2=1.4 ÷x2=5.6×2=11.2(千米)答:他往返共走了11.2千米.故答案为:11.2.【分析】首先关注“在接下来的1小时中”,这一小时中,下山比上山少200米,设上山时间为x小时,则下山的时间为1﹣x小时;然后根据下山比上山少200米,可得2x﹣4(1﹣x)=0.2,解得x=0.7小时,即42分钟,这42分钟,行程1.4公里;最后根据“下山比上山少用了42分钟”,可得以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了千米,据此解答即可.11、【答案】8【考点】染色问题,排列组合【解析】【解答】解:三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).因此,考虑正负可以取到:﹣4、﹣3、﹣2、﹣1、1、2、3、4.所以,共有8种不同的值.答:M﹣m可以取到8个不同的值.故答案为:8.【分析】共有三行,三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).据此解答即可.12、【答案】1728【考点】排列组合【解析】【解答】解:这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有:4!=24(种),对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种),综上所述,一共有:24×3×24=1728(种).答:使得相邻两数互质的排列方式共有1728种.故答案为:1728.【分析】这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种.13、【答案】119【考点】加法和减法的关系【解析】【解答】解:一位数的和谐数个数为0,三位数和谐数共有:10+9+8+…+2=54个.1000至2000,和谐数共有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.故答案为:119.一位数的和谐数个数为0,二位数的和谐数有:19、28、…91,共9个.三位数的和谐数有:(以1开头,以0、1、2…9作十位的,分别有且仅有一个和谐数,共10个)以1开头的有109、118、127、136、…、190,共10个.同理,以2开头的9个:208,217,…271.…以9开头的2个.则三位数和谐数共有:10+9+8+…+2=54个.四位和谐数:同理,以1为千位:分别讨论,对以0、1…9为百位的有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.14、【答案】21111【考点】平均数问题【解析】【解答】解:以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,(136665+253332+369999)÷(4×3×3)=759996÷36=21111.答:所有这些五位数的平均数为21111;故答案为:21111.【分析】以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,它们的和为759996,进而求出平均数.四、<b >填空题(每题10</b><b >分)</b>15、【答案】解:(1)小聪采用如下策略:先擦去2008,然后将剩下的2006个自然数分为1003组,(2,3)(4,5),…(2006,2007),小明擦去哪个组的一个数,小聪接着就擦去同一组的另个数,这样最后剩下的两个数是相邻的两个数,而相邻的两个数是互质的,所以小聪必胜;(2)小明必胜的策略:①当小聪始终擦去偶数时,小明留下一对不互质的奇数,例如,3和9,而擦去其余的奇数;②当小聪从某一步开始擦去奇数时,小明可以跟着擦去奇数,这样最后给小明留下的三个数有两种情况,一种是剩下一个偶数和两个奇数3和9,此时小明擦掉那个偶数,另一种是至少两个偶数,此时小明留下两个偶数就可以了。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷19-21(共3套)附详细试题答案
小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.。
2018年自贡小升初数学模拟试题(共10套)详细答案
小升初数学试卷一、填空(每空1分,20分)1、三千六百万八千三百写作________,这个数四舍五入万位约是________万.2、分母是6的最大真分数是________,它的分数单位是________.3、把2:1.75化成最简整数比是________,这个比的比值是________.4、打完一份稿件,甲需要4小时,乙需要6小时,甲、乙二人所用时间的整数比是________,工作效率的最简整数比是________.5、在0.6、、66%和0.67这四个数中,最大的数是________,最小的数是________.6、把一个高是4分米的圆柱体沿着底面直径垂直锯开,平均分成两块,它们的表面积比原来增加了12平方分米,圆柱的底面直径是________.7、4.8181…用循环小数简便写法记作________,保留两位小数约是________.8、一个三角形三个内角度数的比是4:3:2,这个三角形是________三角形,最小的内角是________度.9、1 的分数单位是________,再添上________个这样的分数单位就变成最小的质数.10、12、36和54的最大公约数是________,最小公倍数是________.二、判断.(每题1分,5分)11、植树节,我校植树102棵,全部成活,成活率为102%.________(判断对错)12、甲数比乙数多25%,那么乙数比甲数少.________(判断对错)13、所有的质数都是奇数.________(判断对错)14、如果= 那么x与y中成反比例.________(判断对错)15、2克盐放入100克水中,含盐率为2%.________(判断对错)三、选择正确答案的序号,填在括号内(每题1分,5分)16、把36分解质因数是()A、36=4×9B、36=2×2×3×3C、36=1×2×2×3×317、有无数条对称轴的图形是()A、等边三角形B、正方形C、圆D、不确定18、两个不同质数相乘的积一定是()A、偶数B、质数C、合数19、大卫今年a岁,小顺今年(a﹣3)岁,再过5年他们相差的岁数是()A、aB、3C、a﹣320、一个半圆的半径是r,它的周长是()A、πrB、πr+rC、πr+2r四、计算21、直接写出得数.3.3+1.67=________ 2.4×5=________ 6.3÷0.03=________+ =________ × =________ 0.31÷3.1=________15﹣﹣+0.375=________ 1÷ =________=________22、求x的值.3x+4=5.8x:=60:5.23、计算(能简算的数简算)① × + ×②(+ )×16③ ÷(2﹣÷ )④[2+(54﹣24)× ]× .24、列式计算(1)某数除以7的商比7大7,求某数.(方程解)(2)3减去2除以6的商,再加上结果是多少?25、求阴影部分的面积.(单位:厘米)五、应用题.26、造纸厂去年计划造纸1600吨,实际造纸1800吨,实际超产百分之几?27、小明读一本课外书,前6天每天读25页,以后每天多读15页,又经过4天正好读完,这本课外书有多少页?28、一个长方形操场,周长是180m,长与宽的比是5:4,这个操场的面积是多少平方米?29、化工车间有男工人56名,女工人42名,这个车间的工人总数正好是全厂工人总数的,全厂共有多少名工人?30、一个正方体的原材料,它的棱长是10厘米.现要截成一个体积最大的圆柱体零件,那么,截去部分的体积是多少立方厘米?六、推理.31、甲、乙、丙、丁四位同学进行国际象棋比赛,并决出一、二、三、四名.已知:①甲比乙的名次靠前.②丙、丁都爱踢足球.③第一、三名在这次比赛时才认识.④第二名不会骑自行车,也不爱踢足球.⑤乙、丁每天一起骑自行车上学.请你判断出各自的名次.答案解析部分一、<b >填空(每空1</b><b >分,20</b><b>分)</b>1、【答案】3600 8300;3601【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:三千六百万八千三百写作:3600 8300;3600 8300≈3601万.故答案为:3600 8300,3601.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字.2、【答案】;【考点】分数的意义、读写及分类【解析】【解答】解:分母是6的最大真分数是,它的分数单位是.故答案为:,.【分析】分子小于分母的分数是真分数,一个分数的分母是几,它的分数单位就是几分之一.3、【答案】8:7①【考点】求比值和化简比【解析】【解答】解:(1)2:1.75=(2×4):(1.75×4)=8:7;(2)2:1.75=2÷1.75= ;故答案为:8:7;.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.4、【答案】2:3;3:2【考点】简单的工程问题【解析】【解答】解:(1)4:6=2:3答:甲、乙二人所用时间的整数比是2:3.(2):=3:2答:工作效率的最简整数比是3:2故答案为:2:3,3:2.【分析】(1)依据求两个数的比的方法即可解答,(2)把这份稿件字数看作单位“1”,先表示出两人是工作效率,再根据求两个数的比的方法,以及比的基本性质即可解答.5、【答案】0.67;0.6【考点】小数大小的比较,小数、分数和百分数之间的关系及其转化【解析】【解答】解:=0.6,66%=0.66;0.6<0.66<0.67,所以最大数为0.67,最小数为0.6.故答案为:0.67;0.6.【分析】先把分数、百分数化成小数,再进行比较,进一步还原为原数,即可解决问题.6、【答案】1.5分米【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:12÷2÷4=1.5(分米),答:圆柱的底面直径是1.5分米.故答案为:1.5分米.【分析】“圆柱体沿着底面直径垂直锯开,平均分成两块”则表面积比原来增加了两个以圆柱的底面直径和高为边长的长方形的面积,已知高是4分米,利用长方形的面积公式可以求出圆柱的底面直径.7、【答案】4. ;4.82【考点】小数的读写、意义及分类,近似数及其求法【解析】【解答】解:4.8181…用循环小数简便写法记作4. ,保留两位小数约是4.82;故答案为:4. ,4.82.【分析】4.8181…是循环小数,循环节是81,简记法:在循环节的首位和末位的上面各记一个小圆点;将此数保留两位小数,就是精确到百分位,看千分位上的数是否满5,再运用“四舍五入”的方法求出近似数即可.8、【答案】锐角;40【考点】按比例分配应用题,三角形的内角和【解析】【解答】解:2+3+4=9,最大的角是:180°×=80°所以这个三角形三个内角度数都小于90度,此三角形是锐角三角形;最小的角是:180°× =40°,故答案为:锐角,40°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大和最小的角即可得出结论.9、【答案】;2【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是.2﹣= ,再添上2个这样的分数单位就变成最小的质数.故答案为:;2.【分析】(1)一个分数的分数单位看分母,分母是几,分数单位就是几分之一,分子是几,它就含有几个这样的单位.(2)最小的质数是2,用2减去原分数的结果,再看有几个分数单位即可解答.10、【答案】6;108【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:12=2×2×336=2×2×3×354=2×3×3×3最大公约数是2×3=6,最小公倍数是2×2×3×3×3=108.故答案为:6,108.【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.二、<b >判断.(每题1</b><b >分,5</b><b>分)</b>11、【答案】错误【考点】百分率应用题【解析】【解答】解:102÷102×100%=100%答:成活率是100%.故答案为:错误.【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可.12、【答案】错误【考点】百分数的加减乘除运算【解析】【解答】解:25%÷(1+25%)=25%÷125%=答:乙数比甲数少.故答案为:错误.【分析】根据“甲数比乙数多25%,”知道是把乙数看作单位“1”,即甲数是乙数的(1+25%),然后用25%除以甲数即得乙数比甲数少几分之几,即可求解.13、【答案】错误【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:错误.【分析】只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其它因数.14、【答案】错误【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:如果= ,则x:y== ,是比值一定,所以,如果= ,那么x与y成正比例.故答案为:错误.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.15、【答案】错误【考点】百分率应用题【解析】【解答】解:×100%≈0.0196×100%=1.96%答:盐水的含盐率约是1.96%.故答案为:错误.【分析】含盐率,即盐水中盐的重量占盐水重量的百分之几,计算公式为:×100%,由此解答即可.三、<b >选择正确答案的序号,填在括号内(每题1</b><b>分,5</b><b>分)</b>16、【答案】B【考点】合数分解质因数【解析】【解答】解:A,36=4×9,4和9都是合数,所以不正确;B,36=2×2×3×3;符合要求,所以正确;C,36=1×2×2×3×3,其中1既不是质数,也不是合数,所以不正确;故选B.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.17、【答案】C【考点】确定轴对称图形的对称轴条数及位置【解析】【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴,故选:C.【分析】根据图形的性质结合轴对称的定义即可作出判断.18、【答案】C【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.故选:C.【分析】根据质数与合数的意义,质数只有1和它本身两个因数,合数除了1和它本身还有别的因数.两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.19、【答案】B【考点】年龄问题【解析】【解答】解:(a+5)﹣(a﹣3+5),=a﹣a+5﹣5+3,=3(岁).故选:B.【分析】据题意可知,大卫比小顺大:a﹣(a﹣3)=3岁,再过再过5年他们同时增长了5岁,所以再过5年他们相差的岁数是仍是3岁.20、【答案】C【考点】圆、圆环的周长【解析】【解答】解:已知半径是r,所在圆的周长=2πr,半圆面的周长:2πr÷2+2r=πr+2r,故选:C.【分析】根据圆的周长公式C=2πr,先求出圆周长的一半,再加直径,就是半圆的周长.四、<b >计算</b>21、【答案】4.97;12;210;;;0.1;0.5;8;14【考点】分数的加法和减法,小数乘法,小数除法【解析】【分析】根据小数和分数加减乘除法的计算方法进行计算.15﹣﹣根据减法的性质进行简算.22、【答案】解:①3x+4=5.83x+4﹣4=5.8﹣43x=1.8x=0.6②x:=60:55x= ×605x=405x÷5=40÷5x=8【考点】方程的解和解方程,解比例【解析】【分析】①依据等式的性质,方程两边同时减去4,再同时除以3即可求解.②根据比例的性质两个内项之积等于两个外项之积进行化简方程,再依据等式的性质,方程两边同时除以5即可.23、【答案】解:① × + ×= += ;②(+ )×16= ×16+ ×16=2.5+2=4.5;③ ÷(2﹣÷ )= ÷(2﹣1)= ÷1= ;④[2+(54﹣24)× ]×=[2+30× ]×=[2+20]×=22×=10.【考点】整数、分数、小数、百分数四则混合运算【解析】【分析】①先算乘法,再算加法;②运用乘法的分配律进行简算;③先算小括号里的除法,再算减法,最后算括号外的除法;④先算小括号里的减法,再算中括号里的乘法,然后算中括号里的加法,最后算括号外的乘法.24、【答案】(1)解:设某数是x,x÷7﹣7=7x÷7﹣7+7=7+7x÷7=14x÷7×7=14×7x=98答:这个数是98.(2)(3﹣2÷6)+=3﹣+=+=【考点】方程的解和解方程【解析】【分析】(1)设某数是x,根据题意可得x÷7﹣7=7,然后解方程即可求解;(2)2除以6的商为2÷6,3减去2除以6的商的差为3﹣2÷6,则它们的差再加上计算25、【答案】解:①3.14×(12÷2)2÷2,=3.14×36÷2,=56.52(平方厘米),答:阴影部分的面积是56.52平方厘米.②3×2﹣3.14×(2÷2)2,=6﹣3.14,=2.86(平方厘米),答:阴影部分的面积是2.86平方厘米.【考点】组合图形的面积【解析】【分析】(1)阴影部分的面积等于直径12厘米的半圆面积与底12厘米,高6厘米的三角形的面积之差,据此即可解答;(2)阴影部分的面积等于长宽分别是3厘米、2厘米的长方形的面积与半径2厘米的圆的面积之差,据此即可解答.五、<b >应用题.</b>26、【答案】解:(1800﹣1600)÷1600=200÷1600,=12.5%.答:实际超产12.5%【考点】百分数的实际应用【解析】【分析】计划造纸1600吨,实际造纸1800吨,则实际比计划多造纸1800﹣1600吨,根据分数除法的意义,用超产的部分除以计划产量即得超产百分之几.27、【答案】解:25×6+(25+15)×4=150+40×4=150+160=310(页)答:这本书共有310页【考点】整数四则混合运算【解析】【分析】前6天每天读25页,根据乘法的意义,前6天读了25×6页,又以后每天多读15页,则以后每天读25+15页,又读了4天读完,则后四天读了(25+15)×4页,根据加法的意义,将前6天与后4天读的页数相加,即得这本书共有多少页.28、【答案】解:180÷2=90(米)90×=50(米)90×=40(米)50×40=2000(平方米)答:这个操场的面积是2000平方米【考点】按比例分配应用题,长方形、正方形的面积【解析】【分析】已知长方形操场的周长是180m,那么长和宽的和为180÷2=90(米),根据长与宽的比是5:4,求出长和宽,根据长方形面积公式,求出面积即可.29、【答案】解:(56+42)=98× ,=343(人);答:全厂共有343人【考点】分数除法应用题【解析】【分析】化工车间有男工人56名,女工人42名,则共有工人56+42人,由于这个车间的工人总数正好是全厂工人总数的,根据分数除法的意义可知,全厂共有(56+42)÷人.30、【答案】解:103﹣3.14×()2×10=1000﹣3.14×25×10=1000﹣785=215(立方厘米)答:截去部分的体积是215立方厘米【考点】圆柱的侧面积、表面积和体积【解析】【分析】这个圆柱与的底面直径和高都等于这个正方体的棱长时,体积最大,用这个正方体的体积减去圆柱的体积就是截取部分的体积.根据圆柱的体积计算公式“V=πr2h”及正方体的体积计算公式“V=a3”即可分别求出圆柱、正方体的体积.六、<b >推理.</b>31、【答案】解:因为丙、丁都爱踢足球,乙、丁每天一起骑自行车上学,第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;答:甲第二,乙第三,丙第一,丁第四【考点】逻辑推理【解析】【分析】根据①甲比乙的名次靠前,那么甲只能是第一,二,三名中的一个;根据②丙、丁都爱踢足球,⑤乙、丁每天一起骑自行车上学,④第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据③第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;据此解答即可小升初数学试卷56一、判断题(注:正确的请在答题卡上相应位置涂A,错误的涂B,每题1分,共5分)1、长方形有4条对称轴.________(判断对错)2、圆的面积和半径成正比例.________(判断对错)3、如果甲数比乙数多30%,那么乙数就比甲数少30%.________(判断对错)4、分母是5的所有真分数的和是2.________(判断对错)5、一种商品先提价15%后,再降价15%,那么这件商品的价格没有变.________ (判断对错)二、选择题(每题2分,共12分)6、的分子加上10,要使分数的大小不变,分母应加上()A、10B、8C、16D、207、一件大衣,如果卖92元,可以赚15%,如果卖100元可以赚()A、20%B、15%C、25%D、30%8、一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10 天,这项工程由甲单独做需15天,如果由乙单独做,需()天.A、18B、19C、20D、219、下列图形中对称轴最多的是()A、菱形B、正方形C、长方形D、等腰梯形10、甲筐苹果16千克,乙筐苹果20千克,从乙筐取一部分放入甲筐,使甲筐增加()后,两筐一样重.A、B、C、D、11、上坡路程和下坡路程相等,一辆汽车上坡速度与下坡速度比是3:5,这辆汽车上坡与下坡用的时间比应是()A、5:8B、5:3C、3:5D、3:8三、填空题(每题2分,共20分)12、有9名同学羽毛球比赛,每两名同学都进行一场比赛,共经行了________场比赛.13、一个三位小数用四舍五入法取近似值是8.30,这个数原来最大是________,最小是________.14、修一座房子,用了34万元,比计划节约了15%,节约了________元。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷17-19(共3套)附详细试题答案
小升初数学综合模拟试卷17一、填空题:2.有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11359,那么其中最小的四位数是______.人数增加了______%.4.20个鸭梨和16个苹果分放两堆,共重11千克,如果从两堆中分别取4个鸭梨和4个苹果相交换,两堆重量就相同了.每个苹果比鸭梨重______千克.5.图中长方形内画了一些直线,已知边上有三块面积分别是15,34,47,那么图中阴影部分的面积是_______.6.某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是星期______.7.有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是_______.8.一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是_______.9.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空先后各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,那么米老鼠拿出互换的泡泡糖共______个.10.某种表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表时间正确的时刻是_______月______日______时.二、解答题:1.计算:3.A、B、C、D、E是从小到大排列的五个不同的整数,把其中每两个数求和,分别得出下面8个和数(10个和数中有相同的和数):17,22,25,28,31,33,36,39,求这五个整数的平均数.4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车.小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分遇到迎面开来的一辆电车;小张每隔5分遇到迎面开来的一辆电车;小王每隔6分遇到迎面开来的一辆电车.已知电车行驶全程是56分,那么小张与小王在途中相遇时他们已行走了多少分?答案一、填空题:2.2039根据题设可知,在四个不同的数字中,必有数字0,否则两个四位数之和不为11359.可以看出,0在最大四位数的个位上,且9在最大四位数的千位上.于是可推出最小四位数的个位是9,百位是0,千位是2,最后推出十位是3.所以最小四位数是2039.3.60%4.0.125千克根据题设可知,16个梨、4个苹果和4个梨、12个苹果重量相同.由此可推出12个梨与8个苹果重量相同.即24个梨与16个苹果重量相同.所以1个鸭梨重(11÷(20+24)=)0.25千克,1个苹果重(0.25×12÷8=)0.375千克.1个苹果比1个鸭梨重(0.375-0.25=)0.125千克.5.96因为三角形BCE的面积是长方形ABCD面积的一半,且三角形AFD与三角形BCF的面积和也是长方形ABCD面积的一半.所以阴影部分面积为(15+47+34=)96.6.三若一年有365天,则全年有52个星期零1天,若全年有53个星期二,且元旦不是星期二,则元旦必为星期一,该年为闰年,有366天,下一年有365天.(366+365)÷7=104 (3)所以下一年最后一天是星期三.7.1,7,13,19因为四个数中任意两个数之和是2的倍数,所以这四个数同奇、同偶.因为四个数中任意三个数之和是3的倍数,所以这四个数被3除余数相同.由此可知,这四个数被6除余数相同,为使四个数尽量小,可取1,7,13,19.正方形内分割线上的每个小线段都同时属于两个长方形,正方形边上的每个小线段只属于一个长方形.设正方形边长为a,则[(4+5)×2+4]×a=3322a=339.410(1)按规则机器猫应给孙悟空多少个甜饼?(2)按规则米老鼠应给机器猫多少个泡泡糖?(3)按规则米老鼠应给孙悟空多少个泡泡糖?(4)米老鼠共拿出多少个泡泡糖?170+240=410(个)10.8月2日9时7月29日零点至8月5日上午7点共(24×7+7=)175小时.设标准时间的速度为1,则这种表的速度为这种表与标准时间共同需要经过因为105=24×4+9,所以此时是8月2日上午9时.二、解答题:1.12.1000袋3.14.2因为A+B最小,A+C次小;D+E最大,C+E次大.所以有A+B=17D+E=39由此可知:B=C-5,D=C+3.可以看出,B、D同奇同偶,所以B+D是偶数.在已知条件中,剩下的偶数只有28,于是B+D=28.由于B+D=C-5+C+3=28,所以C=15.于是A=7,B=10,D=18,E=21.五个数的平均数为(7+10+15+18+21)÷5=14.24.60分设甲、乙两地距离为1,则电车之间的车距为小张的速度为小王的速度为小张与小王相遇所需时间为小升初数学综合模拟试卷18一、填空题:2.将1997加上一个整数,使和能被23与31整除,加的整数要尽可能小,那么所加的整数是______.看过的还多48页,这本书共有______页.4.如图,每一横行、每一竖行和对角线上三个数之和均相等,则x=______.5.下面的字母算式中,每一个字母代表一个数字,不同的字母代表不同的数字.如果CHINA代表的五位数能被24整除,那么这个五位数是______.6.有四个数,每次选取其中两个数,算出它们的和,再减去另外两个数的平均数,用这种方法计算了六次,分别得到以下六个数:43、51、57、63、69、78.那么原来四个数的平均数是_______.7.有一枚棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步,跳到2号位置;第二次跳两步,跳到4号位置;第三次跳三步,又跳到1号位置;……,这样一直进行下去,______号位置永远跳不到.这样的分数中最小的一个是______.9.如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发______秒之后追上甲.10.把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面是红色的小长方体恰好是12块,那么至少要把这个大长方体分割成_______个小长方体.二、解答题:1.计算:2.一件工作,甲独做要8小时完成,乙独做要12小时完成.如果先由甲工作1小时,然后由乙接替甲工作1小时,再由甲接替乙工作1小时,……,两人如此交替工作那么完成任务时共用了多少小时?3.如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯4.一个自然数除以6得到的商加上这个数除以7的余数,其和是11,求所有满足条件的自然数.答案一、填空题:2.142因为1997与所求整数之和是23与31的公倍数,所以有23×31=713713×3=21392139-1997=142142为所加整数.3.24016+48+16=80(页)所以这本书共有4.22为方便起见,原图中的空格用字母表示,如图所示.可以看出,每一横行、每一竖行及对角线上的三个数之和为(x+7+10=)x+17 显然a3=17+x-x-1=16a1=17+x-10-16=x-9a2=17+x-(x-9)-1=25a5=17+x-10-25=x-18所以x+(x-9)+(x-18)=x+172x=44x=225.17208显然C=1,K=9,且百位向千位进1.因为在十位上,N=9(个位向十位进1),或N=0,由于K=9,所以N=0.在百位上,由于百位向千位进1,所以O=5,6,7,8.试验:若O=5,则I=0,与N=0重复.1+2+0+8=11,所以H=7(1,4已被取过).所以五位数是17208.因为在四个数中每次选取两个数求和,计算六次,等于每个数计算了三次,即四数之和的3倍.每次计算两个数的平均数,计算六次,等于四数之7.3号、6号经试验可以发现,棋子每次跳到的位置依次是2、4、1、5、4、4、5、1、4、2、1、1、2、4、1、…每12次为一个循环,所以3、6号位置永远跳不到.此分数的分子应是5、15、21的公倍数,分母是28、56、20的公约数.为使这样的分数取最小,则分子是5、15、21的最小公倍数为105,分母是9.250V甲=60米/分=1米/秒,V乙=90米/分=1.5米/秒.根据题意可知,乙为追上甲,需要多走100米还要多转一个转弯,但在转弯处还要耽误10秒钟,此时甲又多走出10米,所以甲、乙的距离差为(100+10=)110米,乙追上甲时共行了1.5×110÷(1.5-1)=330(米)由此可知,乙需拐三次弯,需要30秒,所以乙追上甲时共需时间110÷(1.5-1)+30=250(秒)10.20因为只有两个面是红色的小长方体位于棱上(除去棱的端点),为使分割的块数尽量少,可使12条棱中有8条棱只有端点的两个小长方体,另外4条棱的中间分别有(12÷4=)3个小长方体,所以共分割成小长方体的个数为(3+2)×2×2=20(个)二、解答题:1.33.23设上底长为2a,下底长为3a,三角形AOD的高为h,则三角形BCO的高为因为三角形AOD面积为10,可知ah=10所以梯形面积为故阴影面积为45-(10+12)=234.(34,40,46,52,58,64,70)一个数除以7的余数有7种可能:6,5,4,3,2,1,0.若余数为6,则这个数除以6的商为(11-6=)5,这个数在30~36之间,此区间中只有34被7除余6.若余数为5,则这个数除以6的商为(11-5=)6,这个数在36~42之间,此区间中只有40被7除余5.依此类推,可以得到相应的其余几个数。
2018-2019年自贡市小升初数学模拟试卷整理(38)附答案附答案
小升初数学综合模拟试卷38一、填空题:1.[240-(0.125×76+12.5%×24)×8]÷14=______.2.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。
那么这些不同的汉字代表的数字之和是______.3.如图,长方形ABCD的面积是1,E是BC边的中点,F是CD边的中点。
那么阴影部分AFCE的面积等于______.4.一个数除以9余8,除以6余5,这个数加上1就能被5整除,则符合条件的最小自然数是______.5.印刷某一本书的页码时,所用数码的个数是975个(如第23页用2个数码,第100页用3个数码),那么这本书应有的页数是______.6.将1至1997的自然数,分成A、B、C三组:A组:1,6,7,12,13,18,19,…B组:2,5,8,11,14,17,20,…C组:3,4,9,10,15,16,21,…则(1)B组中一共有______个自然数;(2)A组中第600个数是______;(3)1000是______组里的第______个数.则(1)2*(6*7)=______;(2)如果x*(6*7)=109,那么x=______.9.用等长的火柴棍为边长,在桌上摆大小相同的三角形(如图).摆6个三角形至少用12根,那么摆29个三角形,至少要用______根.10.一个长方体的体积是1560,它的长、宽、高均为自然数,它的棱长之和最少是______.二、解答题:1.小明妈妈比他大26岁,去年小明妈妈的年龄是小明年龄的3倍,小明今年多少岁?2.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成,现在三人合作,但甲因中途另有任务提前撤出,结果6小时完成,甲只做了多少小时?3.甲、乙、丙三种糖果每千克分别是14元、10元、8元.现把甲种糖果4千克,乙种糖果3千克,丙种糖果5千克混合在一起,问买2千克这种混合糖果需多少元?4.甲、乙两人沿铁路线相向而行,速度相同.一列火车从甲身边开过用了6秒,4分后火车又从乙身边开过用了5秒,那么从火车遇到乙开始,再过多少分甲、乙两人相遇?答案,仅供参考。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷4-6(共3套)附详细试题答案
小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学试卷一、填空题(共6小题,每小题2分,满分12分)1、生产的90个零件中,有10个是废品,合格率是90%.________(判断对错).2、真分数除以假分数的商一定比1小.________(判断对错)3、大圆周长与直径的比值大于小圆周长与直径的比值.________(判断对错)4、一个长方形的长增加50%,宽减少,长方形的面积不变.________(判断对错)5、一根木料锯成4段要4分钟,锯成7段要7分钟.________(判断对错)6、甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13.________(判断对错)二、选择题(共10小题,每小题3分,满分30分)7、甲数是a,比乙数的3倍少b,表示乙数的式子是________ .8、的分子扩大3倍,要使分数大小不变,分母应加上________ .9、已知M=4322×1233,N=4321×1234,下面结论正确的是________10、小明上学期期末考试语文86分,数学比语文、数学两科的平均分高6分,则数学期末考试的分数是________ .11、盒子里有8个黄球,5个红球,至少摸________ 次一定会摸到红球.12、甲步行每分钟行80米,乙骑自行车每分钟200米,二人同时同地相背而行3分钟后,乙立即调头来追甲,再经过________ 分钟乙可追上甲.13、某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体,用砖的块数可以为________ .14、小华从A到B,先下坡再上坡共有小时,如果两地相距24千米,下坡每小时行4千米,上坡每小时行3千米,那么原路返回要________ 小时.15、已知× <+ ,且a、b、c都是不等于0的自然数,则有________ .16、同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:、小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲,下列说法正确的是()A、小花在化妆B、小朵在做头发C、小丽在化妆三、解答题(共6小题,满分12分)17、一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图的比例尺是________.18、在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是________.19、一辆汽车的速度是每小时59千米,现有一块每5小时慢10分钟的表,若用该表计时,则测得这辆汽车的速度是________千米/小时.20、如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?21、在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子________厘米(π取3)22、有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有________种不同的方式.四、解方程23、解方程:①3.2x﹣4×3=52②8(x﹣2)=2(x+7)五、计算题24、计算题.①② +(4 )③3.14×43+7.2×31.4﹣150×0.314④1+3 +5 .六、解决问题25、请根据下面的统计图回答下列问题.(1)________月份收入和支出相差最小.(2)9月份收入和支出相差________万元.(3)全年实际收入________万元.(4)平均每月支出________万元.(5)你还获得了哪些信息?26、一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?27、一块长方形铁皮利用图中阴影部分刚好能做成一个圆柱形油桶,(如图)(接头处忽略不计),这个桶的容积是________ 立方分米.(单位:分米)28、两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3米,女孩每秒走2米.则该自动扶梯长________米.29、甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行清理,最初甲清理的速度比乙快,后来乙用了10分钟去调换工具,回来继续清理,但工作效率比原来提高了一倍,结果从甲、乙开始清理时算起,经过1小时,就完成了清理积雪工作,并且两人清理的跑道一样长,问乙换工具后又工作了多少分钟?30、底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离?(2)三个三角形重迭(两次)部分的面积之和是多少?(3)只有两个三角形重迭(一次)部分的面积之和是多少?(4)迭到一起的总面积是多少?答案解析部分一、<b >填空题(共6</b><b >小题,每小题2</b><b>分,满分12</b><b>分)</b>1、【答案】错误【考点】百分率应用题【解析】【解答】解:合格产品的个数:90﹣10=80(个),合格率:×100%≈0.889=88.9%;答:合格率是88.9%.故答案为:错误.【分析】首先理解合格率,合格率是指合格产品的个数占产品总个数的百分之几,进而用:×100%=合格率,由此列式解答后再判断.2、【答案】正确【考点】分数大小的比较,分数除法【解析】【解答】解:举例:÷= <1;÷= <1;÷= <1;而且找不出反例,所以真分数除以假分数的商一定比1小.故答案为:正确.【分析】首先要理解真分数和假分数的概念,真分数是分子比分母小的分数,即真分数都小于1;假分数是分子等于或大于分母的数,假分数大于等于1,举例进行验证.3、【答案】错误【考点】圆的认识与圆周率【解析】【解答】解:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.一般用“π”表示.即周长÷直径=π(一定),所以大圆周长与直径的比值和小圆周长与直径的比值相等.故答案为:错误.【分析】根据圆周率的意义,任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.由此解答即可.4、【答案】正确【考点】长方形、正方形的面积【解析】【解答】解:原来的面积:ab;后来的面积:[a×(1+50%)]×[b×(1﹣)],=1.5a× b,=ab;故长方形的面积不变.故答案为:正确.【分析】设长方形原来的长和宽分别是a和b;根据“长方形的面积=长×宽”计算出原来的长方形的面积;然后根据一个数乘分数的意义,分别计算出后来长方形的长和宽,并根据长方形的面积计算公式计算出后来的面积,进行比较,得出结论.5、【答案】错误【考点】植树问题【解析】【解答】解:4÷(4﹣1)×(7﹣1)=4÷3×6=8(分钟)答:锯成7段要8分钟.故答案为:错误.【分析】根据题意,分成4段,截的次数是4﹣1=3次,那么可以求出截一次的时间;分7段,截的次数是7﹣1=6次,乘上截每次的时间即可.6、【答案】正确【考点】最大与最小【解析】【解答】解:把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+= ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.答:甲、乙两数和的最小值是13.故答案为:正确.【分析】把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+ = ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.二、<b >选择题(共10</b><b >小题,每小题3</b><b>分,满分30</b><b>分)</b>7、【答案】(a+b)÷3【考点】用字母表示数【解析】【解答】解:乙数=(a+b)÷3,【分析】甲数加上b是乙数的3倍,再除以3就是乙数.8、【答案】24【考点】分数的基本性质【解析】【解答】解:的分子扩大3倍,要使分数大小不变,分母也应扩大3倍;12×3=36,36﹣12=24;分母应加上24.【分析】根据分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变;由此即可得出答案.9、【答案】M<N【考点】比较大小【解析】【解答】解:N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N.【分析】N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N,据此判断即可.10、【答案】98【考点】平均数的含义及求平均数的方法【解析】【解答】解:86+6×2=86+12=98(分)答:数学期末考试的分数是98分.【分析】根据“语文86分,数学比语文、数学两科的平均分高6分,”知道数学数学期末考试的分数是比语文多6×2分,由此即可得出答案.11、【答案】9【考点】抽屉原理【解析】【解答】解:8+1=9(次),答:至少需要摸9次一定会摸到红球.【分析】考虑最坏情况:摸出8次,都是摸出的黄球,则再摸出一个一定是红球,据此即可解答.12、【答案】7【考点】追及问题【解析】【解答】解:(80+200)×3÷(200﹣80),=280×3÷120,=840÷120,=7(分);答:再经过7分钟乙可追上甲.【分析】先求出二人同时同地相背而行3分钟走的路程,再根据路程差÷速度差=追及时间,即可解答.13、【答案】1200【考点】简单的立方体切拼问题【解析】【解答】解:24、12、5的最小公倍数是120,120÷24=5(块),120÷12=10 (块),120÷5=24(块),所以一共需要:5×10×24=1200(块),【分析】先求出24、12、5的最小公倍数为120,即堆成的正方体的棱长是120厘米,由此求出正方体每条棱长上需要的小长方体的个数,即可解决问题.14、【答案】【考点】简单的行程问题【解析】【解答】解:设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据题意可得方程:4x+72﹣3x=2×434x﹣3x=86﹣72x=1424﹣14=10(千米)那么可得返回时上坡路为10千米,下坡路为14千米:(10÷3)+(14÷4)===(小时)答:返回时用的时间是小时.【分析】①要求原路返回所用的时间,需要求出,上坡路的距离和下坡路的距离分别是多少;所以这里可以根据题干先求出去时的上坡路程和下坡路程;②根据题干,设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据速度、时间和路程的关系,利用上坡路用的时间+下坡路用的时间=总时间,即可列出方程求得去时的上坡路程和下坡路程,从而得出返回时的上坡路程和下坡路程,即可解决问题.15、【答案】a+b>c【考点】分数大小的比较【解析】【解答】解:× = ,+ = = ,即<,所以:c×c<c(a+b).则a+b>c.故选:A.【分析】由于× = ,+ = = ,即<,c×c<c(a+b).由于在乘法算式中,其中一个因数相同,另一个因数越大,则即就越大,所以a+b>c.16、【答案】【考点】逻辑推理【解析】【解答】解:根据条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆.故选:A.【分析】由条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆,据此解答即可.三、<b >解答题(共6</b><b >小题,满分12</b><b>分)</b>17、【答案】1:300000【考点】比例尺【解析】【解答】解:因为,30km=3000000cm,所以,10cm:3000000cm=1:300000;故答案为:1:300000.【分析】根据比例尺的意义知道,图上距离与实际距离的比就是比例尺,由此先把实际距离30千米换算成以厘米做单位,再写出对应比,化简即可.18、【答案】π:4【考点】用字母表示数,比的意义【解析】【解答】解:aπ:4a=π:4;答:这个圆与正方形的周长比是π:4.故答案为:π:4.【分析】根据题意可知在边长a厘米的正方形中剪下一个最大的圆,该圆的直径为a厘米,再根据圆的周长公式:C=πd,和正方形的周长公式,计算即可求解.19、【答案】61【考点】简单的行程问题【解析】【解答】解:正常表走5小时,慢表只走了:5×60﹣10=300﹣10=290(分)= (小时)这辆汽车的速度是:59×5÷=295÷≈61(千米/小时)答:测得这辆汽车的时速约61千米/小时.故答案为:61.【分析】由题意可知:正常表走5小时,慢表走的时间是5×60﹣10=290分,然后再根据速度=路程÷时间进行解答.20、【答案】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米)答:最后得到的立方体图形的表面积是116平方厘米.【考点】长方体和正方体的表面积【解析】【分析】把棱长是2厘米的正方体的底面向上平移,把棱长是1厘米的正方体底面向上平移,则容易看出:求最后得到的立方体图形的表面积,即棱长为4厘米的正方体的表面积与棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积之和;根据“正方体的表面积=棱长2×6”求出棱长为4厘米的正方体的表面积,根据“正方体的侧面积=棱长2×4”分别求出棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积,然后相加即可.21、【答案】1608【考点】数与形结合的规律【解析】【解答】解:8×3+16×(100﹣1)=24+1584=1608(厘米);故答案为:1608.【分析】如图,把绳子的长度分解:1个圆柱体时,绳子的长度就是底面圆的周长;2个圆柱体时,绳子的长度就是一个底面圆的周长加上2个圆的直径;3个圆柱体,绳子的长度就是一个底面圆的周长加上4个圆的直径;100个圆柱体,绳子的长度就是一个底面圆的周长加上99个圆的直径.22、【答案】89【考点】排列组合【解析】【解答】解:当跨上1级楼梯时,只有1种方法,当跨上2级楼梯时,有2种方法,当跨上3级楼梯时,有3种方法,当跨上4级楼梯时,有5种方法,…以此类推;最后,得出数列1、2、3、5、8、13、21、34、55、89;发现从第三个数开始,每个数都是前面两个数的总和;这样,到第10级,就有89种不同的方法.答:从地面登上第10级,有89种不同的方法.故答案为:89.【分析】这是一道菲波那契数列的应用题目,解答时,可以采用化繁为简的方法,用列举的方法先找出登上级数少的1级、2级、3级、4级各有几种方法,再在此基础上运用找规律的方法得出结果.[因为每次跨到n级,只能从(n﹣1)或(n﹣2)级跨出.根据加法原理得到跨到第1、2、3、4、5、6、7、8、9、10级的方法依次为:1、2、3、5、8、13、21、34、55、89.四、<b >解方程</b>23、【答案】解:①3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20②8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16﹣2x=2x+14﹣2x6x﹣16+16=14+166x=306x÷6=30÷6x=5【考点】方程的解和解方程【解析】【分析】(1)先化简方程的左边,变成3.2x﹣12=52,然后方程的两边同时加上12,再同时除以3.2即可;(2)先根据乘法分配律化简方程的左右两边,再根据等式的性质解这个方程即可.五、<b >计算题</b>24、【答案】解:①==② +(4 )= + ×= +2=2③3.14×43+7.2×31.4﹣150×0.314=3.14×43+72×3.14﹣15×3.14=3.14×(43+72﹣15)=3.14×100=314④1+3 +5=(1+3+5+7+9+11+13+15+17+19)+()=(1+19)×10÷2+()=90+()=100+=100【考点】分数的巧算【解析】【分析】(1)从左往右依次运算;(2)先算括号内的,再算括号外的除法,最后算加法;(3)运用乘法分配律简算;(4)把分数拆成整数与分数相加的形式,然后再把分数拆成两个分数相减的形式,通过加减相互抵消,求得结果.六、<b >解决问题</b>25、【答案】(1)4(2)30(3)740(4)30(5)得出:7月份收入和支出相差最大【考点】平均数的含义及求平均数的方法,复式折线统计图,从统计图表中获取信息【解析】【解答】解:(1)由图示得出:4月份收入和支出相差最小;(2)70﹣40=30(万元).答:9月份收入和支出相差30万元.(3)40+60+30+30+50+60+80+70+70+80+90+80=740(万元).答:全年实际收入740万元.(4)(20+30+10+20+20+30+20+30+40+50+40+50)÷12=360÷12=30(万元).答:平均每月支出30万元.故答案为:(1)4;(2)30;(3)740;(4)30.【分析】(1)同一个月份收入和支出的点最接近的相差最小;(2)用9月份收入减支出即可;(3)把12个月的收入相加即可;(4)用12个月的总支出除以12即可;(5)从图中获得正确信息即可.26、【答案】解:甲乙两人工作量的比是::=6:5,甲分的钱是:2200×,=2200× ,=1200(元),乙分的钱是:2200× ,=2200× ,=1000(元).答:甲分1200元,乙分1000元。