2018-2019学年上海市浦东新区上南中学南校七年级下学期期末考试数学试卷

合集下载

上海市浦东新区2018 2019七年级下期末数学试题有答案

上海市浦东新区2018 2019七年级下期末数学试题有答案

第二学期期末质量抽测浦东新区初一数学()分100分钟满分:完卷时间:902016.6分)(每题只有一个选项正确)题,每题2分,满分12一、选择题(本大题共6)1.下列关于无理数的说法,错误的是……………………………………………………(B)无理数是无限不循环小数;((A)无理数是实数;(C)无理数是无限小数;(D )无理数是带根号的数.的长为为圆心、AB1个单位长度的正方形分割为两个等腰直角三角形,以A2.如图,线段AB 将边长为)半径画弧交数轴于点C,那么点C在数轴上表示的实数是………………(.)1D1;((B);(C)-(A)1+;2223题图)(第题图)(第2)的度数是………………………………(3∥3.如图,直线ll,∠1=110°,∠2=130°,那么∠21(第5题图).D)70°(C)60°;(50°(A)40°;(B);°;②三角形的一个外角大于任何一个内角;③三角形的中1804.下列说法:①任意三角形的内角和都是线、角平分线和高线都是线段;④三角形的三条高线必在三角形内.其中正确的)是……………………………………………………………………………………()③④.(D)①③;(C)②③;(A)①②;(B ).如图,已知两个三角形全等,那么∠51的度数是…………………………………………(.);(D58°);(B60°;(C)50°)(A72°M'=3的对称点M(a,3),如果该点关于直线x6.在直角坐标平面内,已知在y轴与直线x=3之间有一点),那么a的值为…………………………………………(的坐标为(5,3) )(D1.;(C)2;34(A);(B)题,每题3分,满分36分)二、填空题(本大题共129 .7.计算:=人,用科学70024 152 8.据上海市统计局最新发布的统计公报显示,2015年末上海市常住人口总数约为.记数法将24 152 700保留三个有效数字是.29.如图,∠的同旁内角是、DE的夹角是AB,∠.如图,已知10BC∥DEABC=120°,那么直线°.11.已知三角形的三边长分别为3cm、xcm和7cm,那么x的取值范围是.1(第10题图)题图)12(第题图)9(第如D.AO并延长交边BC于点=AC,点O是△ABC内一点,且OB=OC.联结12.如图,在等腰△ABC中,AB .,那么BC的值为果BD=6的度数ACDF=30°,那么∠在同一条直线上,B、C、FAD∥EF,∠D=40°,∠13.如图,已知点A、.是.AB14.如图,将△ABC沿射线BA方向平移得到△DEF,=4,AE=3,那么DA的长度是(第14题图)(第13题图).15.如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为--.(M 1,a 1)在第三象限,那么a的取值范围是16.在平面直角坐标系中,如果点A轴平行,且点BCABCD置于平面直角坐标系内,如果与x17.如图,将边长为1个单位长度的正方形.),那么点C的坐标为2的坐标是(2,分割成两个等腰三角形,那么将△ABC.在等腰△18ABC中,如果过顶角的顶点A的一条直线AD°.∠BAC=19题,每小题3分;第20题,每小题2分;第21三、简答题(本大题共4题题,第6分,(第17题图)(第15题图)第22题5分,满分21分)19.计算(写出计算过程):??13.2)()(1 ;?135?662?2?52 解:解:.利用幂的性质计算(写出计算过程,结果表示为含幂的形式)20:?31142??93?10?1022)(1 ;).(233??????解:解:221.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),.)所以AB∥CD(.)+ 所以∠BGF∠3=180°(,=180°(邻补角的意义)因为∠2+∠EFD°(等式性质).所以∠EFD 21题图)(第(已知),因为FG平分∠EFD.∠EFD(角平分线的意义)所以∠3=°(等式性质).所以∠3=.°(等式性质)所以∠BGF=3 B的度数.∠,∠C=21,∠2=∠1,求∠AD22.如图,在△ABC中,⊥BC,垂足为点D2(第22题图)分,满题10267分,第25题8分,第24四、解答题(本大题共4题,第23题6分,第题 31分)分全等的理由.ACE与△⊥AC,CEAB,垂足分别为点D、E.说明△ABD⊥=23.如图,已知ABAC,BD、EC.ED==是是等边△24.如图,点EABC外一点,点DBC边上一点,ADBE,∠CAD∠CBE,联结23题图)(第全等的理由;ADC与△BEC)试说明△(1 DCE的形状,并说明理由.)试判断△(224(第题图)325.如图,在直角坐标平面内,已知点A(8,0),点B的横坐标是2,△AOB的面积为12.(1)求点B的坐标;(2)如果P是直角坐标平面内的点,那么点P在什么位置时,S=2S?AOBAOP△△题图)(第25,使MANA作∠为腰向两侧分别作全等的等腰△ABC和△ABD,过顶角的顶点26.如图1,以AB??)(AC叠合,绕点A按逆时针方向旋转,与,将∠MAN的边AM与?????MAN?BAC?60?0?.、F,设旋转角度为BD射线CB、分别交于点E???0??相等吗?请说明理由.BE与DF时,线段(1)如图1,当1)(第26题图???2??中画出图形并说明理由.BD具有怎样的数量关系?请在图2FD时,线段CE、(2)当与线段)26(第题图2???20???的代数式EF逆时针旋转过程中绕点,在∠)联结(3EFMANA(时,请用含⊥,当线段)AD CEA直接表示出∠的度数.4(第26题图3)5初一数学参考答案(每题只有一个选项正确)12分)一、选择题:(本大题共6题,每小题2分,满分D..5.C.62.A.3.C.4.B.1.D.36分)二、填空题:(本大题共12题,每题3分,满分7.109.∠4..607.3.102.42?.8..14.113.1211.4<x<10..12.110°.1a?.16.18..90或1(3,).10817.15.略.分,6分;第20题,每小题2分;第21题三、简答题(本大题共4题,第19、20题,每题3 分)第22题5分,满分216??2226 19.(1)解:原式1………………………………………………………(=分)6+22………………………………………………………………(=2分)5?13?25………………………………………………………((2)解:原式1分)=2?5?13……………………………………………………………(1分)= 1013…………………………………………………………………(1=分)13?3 分)(120.(1)解:原式…………………………………………………………………=233 ………………………………………………………………………(1=分)23?2??10……………………………………………………………………(1分)=)解:原式(23???????210…………………………………………………………………………(1分)=21.同位角相等,两直线平行………………………………………………………………(1分)两直线平行,同旁内角互补……………………………………………………………(1分)100…………………………………………………………………………………………(1分)1 …………………………………………………………………………………………(1分)2 50…………………………………………………………………………………………(1分)130…………………………………………………………………………………………(1分)22.解:因为AD⊥BC(已知),所以∠ADC=90°(垂直的意义).…………………(1分)因为∠C+∠1+∠ADC=180°(三角形内角和性质),∠C=2∠1(已知),……(1分)所以3∠1+90°=180°(等量代换),所以∠1=30°.……………………………………………………………………(1分)3因为∠2=∠1,所以∠2=45°……………………………………………………(1分)2因为∠C+∠1+∠2+∠B=180°(三角形内角和性质),所以∠B=45°.………(1分)四、解答题(本大题共4题,第23题6分,第24题7分,第25题8分,第26题10分,满分31分)23.因为BD⊥AC,CE⊥AB(已知),所以∠ADB=∠AEC=90°(垂直的意义).…(2分)在△ABD和△ACE中,6,?ADB??AEC(已证)??…………………………………………………………(3分)(公共角),A???A??AB?AC(已知),?所以△ABD≌△ACE(A.A.S).……………………………………………(1分)24.解:(1)因为等边△ABC(已知),所以AC=BC,∠ACB=60°(等边三角形的性质).…………………………(2分)在△ADC和△BEC中,,AC?BC(已证)??…………………………………………………………(1分)?CAD?,?CBE (已知)??AD?BE(已知),?所以△ACE≌△DBF (S.A.S).……………………………………………(1分)(2)因为△ACE≌△DBF(已证),所以∠ACD=∠BCE=60°.(全等三角形对应角相等),…………………………(1分)DC=EC(全等三角形对应边相等),…………………………………………(1分)即△DCE是等腰三角形.所以△DCE是等边三角形.(有一个内角等于60°的等腰三角形是等边三角形)…(1分)25.解:(1)设点B的纵坐标为y,因为A(8,0),所以OA=8;………………………………………………………(1分)11OA·|y|=×8|y|=12,所以y=±3,………………………………(2分)因为S= AOB△22 所以点B的坐标为(2,3)或(2,-3).………………………………………………(1分)(2)设点P的纵坐标为h,11OA·|h|=×8|h|=24,所以h==,所以S=2S因为S±6,………(2分)AOPAOPAOB△△△22 分)(=6y或直线y=-6.………………………………………………………2所以点P在直线BE=DF.………………………………………………………………………(分)1126.解:()全等ABD△因为等腰ABC和△AD=AC=,所以AB ,(全等三角形、等腰三角形的性质)=C∠=∠ABC∠ABD=∠D ∠∠BAC=BAD(全等三角形的对应角相等)1分)………………………………………(???BAC??MAN,因为(已知)????MAN?BAD(等量代换)所以,BAN(等式性质),∠=MAN 所以∠-∠BAN∠BAD-分)… .……………………1…………………………………………………(FAD∠即∠EAB= 中AFD在△AEB和△D?(已证)ABE????ADAB(已证)???(已证)??EAB?FAD?分)(1………………………………………………………SAFDAEB所以△≌△(A..),A 所以BE.(全等三角形的对应边相等)=DF (BD . CE)-FD=…………………………………………………………………………1分)2(1分)(图形正确.……………………………………………………………………………………??BAD??MAN?(等量代换)因为,=∠-EAD∠(等式性质)∠-BADEAD,MAN所以∠DAF即∠.∠=BAE =因为∠ABC(已证)ADB∠,7所以180°-∠ABC=180°-∠ADB,即∠ABE=∠ADF.在△AEB和△AFD中(已证)?ABE??ADF??(已证)AB?AD???BAE??DAF(已证)?………………………………………………………(1分),A.S.A)所以△AEB≌△AFD(所以BE=DF(全等三角形的对应边相等),所以CE-FD=CB+BE-DF=CB(等量代换).因为等腰△ABC与等腰△ABD全等,所以BC=BD(全等三角形的对应边相等),……………………………………………………………(1分)FD=BD(等量代换).-所以CE (3)90°-α………………………………………………………………………………(2分).8。

上海市浦东新区部分校2018-2019学年第二学期七年级数学期末试卷(PDF版)

上海市浦东新区部分校2018-2019学年第二学期七年级数学期末试卷(PDF版)

浦东部分校2018学年第二学期七年级数学期末测试(考试时间:90分钟,满分:100分)一、 选择题(每题2分,共12分)1.如果a 、b 都是正数,那么点(a ,b -)在 ………………( ) (A )第一象限; (B )第二象限; (C )第三象限 ; (D )第四象限. 2.下列计算正确的是………………………………………………( ) (A )4)4(2=--; (B )4)4(2=-; (C )525±=; (D )4131619=. 3.下列说法中,不正确的是…………………………………………( ) (A )16的平方根是2±; (B )8的立方根是2; (C )64的立方根是4±; (D )9的平方根是3±. 4.如图,下列说法中错误的是(A )∠GBD 和∠HCE 是同位角; (B )∠ABD 和∠ACH 是同位角; (C )∠FBC 和∠ACE 是内错角; (D )∠GBC 和∠BCE 是同旁内角. 5.如图,在△ABC 中,∠ACB = 90º ,CD ⊥AD ,垂足为点D ,有下列说法: ① 点A 与点B 的距离是线段AB 的长; ② 点A 到直线CD 的距离是线段AD 的长; ③ 线段CD 是△ABC 边AB 上的高; ④ 线段CD 是△BCD 边BD 上的高. 上述说法中,正确的个数为(A )1个; (B )2个; (C )3个; (D )4个.6.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,BE 与CD 相交于点O ,如果已知∠ABC =∠ACB ,那么还不能判定△ABE ≌△ACD ,补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是 (A )AD = AE ; (B )BE = CD ; (C )OB = OC ; (D )∠BDC =∠CEB .二、填空题(每小题3分,共36分)7.计算:=-+373532 .D E F G C BA H(第4题图) D C B A (第5题图) E B D AC (第6题图) O8.若814=x ,则x 的值是 . 9.计算:3121)8(16--⨯= .10.经过点P (2,3)且垂直于x 轴的直线可以表示为 . 11.等腰三角形是轴对称图形,它的对称轴是 . 12.互为邻补角的两个角的大小相差60°,这两个角的大小分别为 .13.如图,AD ∥BC ,△ABD 的面积是5,△AOD 的面积是2,那么△COD 的面积是 . 14.点M (2,3-)关于原点对称的点的坐标是 .15.在平面直角坐标系中,已知点A (m ,n )在第二象限,那么点B (-n ,m )在第_________象限. 16.在实数49、722、π、010010001.0-、414.1中,是无理数的是 . 17.已知=∠AOB 30°,点P 在AOB ∠的内部,点1P 与点P 关于OB 对称,点2P 与点P 关于OA 对称,若OP =5,则=21P P .18.在平面直角坐标系中,点A 的坐标是(3-,2),若直线AB 平行于x 轴,且A 、B 两点距离等于3,则点B 的坐标为 .三、解答题(19、20题各5分,21、22题各6分,共22分)19.计算:2.20.利用分数指数幂的运算性质进行计算:6332816÷⨯.21.如图,已知在△ABC 中,(210)A x ∠=+︒,(3)B x ∠=︒,∠ACD 是△ABC 的一个外角,且(610)ACD x ∠=-︒,求∠A 的度数.CBAD第21题图22.如图,已知C 是线段AB 的中点,CD // BE ,且CD = BE ,试说明∠D =∠E 的理由.四、解答题(23、24小题各7分,25、26小题各8分,共30分)23.在△ABC 中,60=∠B °,AD 是BC 边上的高,画出AB 上的高CE ,若AD 与CE 相交于点O ,求AOC ∠的度数. .24.如图,已知AC =BC =CD ,BD 平分∠ABC ,点E 在BC 的延长线上.(1) 试说明CD ∥AB 的理由;(2) C D 是∠ACE 的角平分线吗?为什么?D第23题图CBA第22题图 E CD B A 第24题图DAEBC25.在直角坐标平面内,已知点A (1-,3)、点B (3-,1-),将点B 向右平移5个单位得到点C .(1) 描出点A 、B 、C 的位置,并求△ABC 的面积 .(2) 若在x 轴下方有一点D ,使5=∆DBC S ,写出一个满足条件的点D 的坐标.并指出满足条件的点D 有什么特征.26.如图,在△ABC 和△DEF 中,点B 、E 、C 、F 在同一直线上,请你从以下4个等式中选出3个作为已知条件,余下的1个作为结论,并说明结论正确的理由.① AB = DE ; ② AC = DF ; ③∠ABC =∠DEF ; ④ BE = CF .第25题图第26题图FEDCBA浦东部分校2018学年第二学期七年级数学期中复习卷参考答案及评分标准一、选择题(每小题2分共12分)1.D 2.B 3.C 4.A ; 5.D ; 6.B . 二、选择题( 每小题3分共36分)7.0 8.3± 9.2- 10.直线2=x 11“顶角平分线所在的直线”或“底边上的高所在的直线”或“底边上的中线所在的直线”或“底边的垂直平分线”等都正确 12.60°、120° 13.3 14. (2-,3) 15.三 16.π 17. 5 18. (0,2)或(6-,2) 三、解答题(19、20题各5分,21、22题各6分,共22分)19.解:原式625663-+-=…………………………………………………… (3分) 16-=.………………………………………………………………(2分) 20.解:原式652334222÷⨯=………………………………………………………… (2分) 6523342-+=…………………………………………………………………(1分)22= ……………………………………………………………………(1分) = 4.………………………………………………………………………(1分)21.解:因为 ∠ACD 是△ABC 的一个外角(已知),所以 ∠ACD =∠A +∠B (三角形的一个外角等于与它不相邻的两个内角的和).……………………………………………(2分)所以 6102103x x x -=++.………………………………………………(2分) 解得 x = 20.…………………………………………………………………(1分) 所以 ∠A = 50°.……………………………………………………………(1分)22. 解法1:因为AD=AE (已知),所以 AED ADE ∠=∠ (等边对等角). ………………(1分) 因为 =∠+∠ADB ADE 180°,=∠+∠AEC AED 180°(邻补角的意义),………………(1分) 所以AEC ADB ∠=∠(等角的补角相等)………………(1分)在△ABD 和△ACE 中 =∠B C ∠(已知), AEC ADB ∠=∠, AD=AE (已知),所以△ABD ≌△ACE (A.A.S )………………(2分) 所以BD=CE .(全等三角形对应边相等)……………(1分)解法2:作AF ⊥BC 于F …………………(1分) 因为AD=AE (已知)所以DF=EF (等腰三角形的三线合一)………………(1分) 因为=∠B C ∠(已知),所以AB=AC (等角对等边).………………(1分) 因为AF ⊥BC 于F ,所以BF=CF (等腰三角形三线合一)………………(1分) 所以EF CF DF BF -=-(等式性质) 即:BD=CE ………………(2分)四、解答题(23、24小题各7分,25、26小题各8分,共30分) 23. 解:画图正确(有垂直符号)…………(1分)所以CE 就是AB 上的高…………(1分)因为AD 是BC 上的高,CE 是AB 上的高(已知),所以90=∠ADB °,90=∠AEC °(垂直定义),…………(1分)因为180=∠+∠+∠B BAD ADB °(三角形内角和为180°) 60=∠B °(已知),……………………(1分) 所以30=∠BAD °(等式性质)………………(1分)因为BAD AEC AOC ∠+∠=∠(三角形的一个外角等于与它不相邻的两个内角的和)……………………(1分)所以120=∠AOC °(等式性质)…………(1分) 24. (1)解:因为BD 平分∠ABC ,(已知)所以∠ABD =∠DBC .(角平分线定义)………………………………………(1分)因为BC =CD ,(已知)所以∠DBC =∠D .(等边对等角)所以∠ABD =∠D .(等量代换)…………………………………………………(1分) 所以CD ∥AB .(内错角相等,两直线平行)……………………………………(1分)(2)CD 是∠ACE 的角平分线.因为CD ∥AB ,所以∠DCE =∠ABE .(两直线平行,同位角相等)…………………………………(1分) ∠ACD =∠A .(两直线平行,内错角相等)……………………………………(1分)OE第23题图DCBA因为AC =BC ,(已知)所以∠A =∠ABE .(等边对等角)……………………………………………………(1分) 所以∠ACD =∠DCE .(等量代换)…………………………………………………(1分) 即CD 是∠ACE 的角平分线.25.解:(1)点C 的坐标为(2,1-),……………………(1分)正确描出点A 、B 、C 的位置……………………(1分)作AD ⊥BC 于D ,点D 的坐标为(1-,1-)……………………(1分) 因为点A 、B 的坐标分别为(1-,3)、(3-,1-)(已知) 所以BC=23--=5,AD=)1(3--=4…………(2分) 所以ABC S ∆= 10452121=⨯⨯=⋅AD BC …………………………(1分)(2)D (0,-3)(只要纵坐标为-3即可)…………………………(1分)这些点在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上. ……………………(1分) 26.解:已知条件是 ① , ② , ④ .结论是 ③ .…………………………………………………………(2分)(或:已知条件是 ① , ③ , ④ .结论是 ② .) 说理过程:因为BE = CF (已知), 所以BE + EC = CF + EC (等式的性质).即BC = EF . ………………………………………………………………(2分)在△ABC 和△DEF 中,,,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩ 所以△ABC ≌△DEF (S .S .S )。

2018-2019学年上海市浦东新区七年级(上)期末数学试卷

2018-2019学年上海市浦东新区七年级(上)期末数学试卷

2019-2020学年上海市浦东新区七年级(上)期末数学试卷一、选择题:本大题共6小题,每题2分,共12分.1.(2分)下列代数式中,单项式是()A.a﹣b B.﹣3a C.a+b3D.ba2.(2分)能说明图中阴影部分面积的式子是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2﹣(a﹣b)2=4ab 3.(2分)下列分式中,最简分式是()A.615x B.x−23x−6C.x+12x+1D.a2−b2a+b4.(2分)下列代数式计算内的结果等于1a3的是()A.a⋅1a2÷a2B.a÷(1a2÷a2)C.a÷1a2⋅a2D.a÷(1a2⋅a2)5.(2分)图中是由五个形状、大小相同的正方形组成的图形,如果去掉其中一个正方形,使得剩下的图形是一个中心对称图形,那么不同的方法有几种()A.1 B.2 C.3 D.46.(2分)下列图形中是轴对称图形但不是旋转对称图形的是()A.B.C.D.二、填空题:本大题共12题,每题3分,共36分.7.(3分)计算:(12y 3)2= .8.(3分)分解因式:2x 3﹣32x= .9.(3分)分解因式:(x +y )2﹣10(x +y )+25= . 10.(3分)计算:16x 5y 8÷4xy 2= .11.(3分)计算:(20x 4+15x 3y ﹣25x 2)÷5x 2= .12.(3分)已知:a +b=32,ab=1,化简(a ﹣2)(b ﹣2)的结果是 .13.(3分)如果关于x 的二次三项式4x 2+kx +9是完全平方式,那么k 的值是 .14.(3分)当x ≠ 时,分式1x−3有意义.15.(3分)钢轨温度每变化1℃,每米钢轨就伸缩0.0000118米,用科学记数法表示0.0000118为 .16.(3分)如图,将三角形ABC 沿射线AC 向右平移后得到三角形CDE ,如果∠BAC=40°,∠BCA=60°,那么∠BCD 的度数是 .17.(3分)将长方形纸片ABCD 沿对角线BD 翻折后展平(如图①):将三角形ABC 翻折,使AB 边落在BC 上与EB 重合,折痕为BG ;再将三角形BCD 翻折,使BD 边落在BC 上与BF 重合,折痕为BH (如图②),此时∠GBH 的度数是 .18.(3分)古希腊毕达哥拉斯学派把自然数与小石子摆成的形状比拟,借此把自然数分类,图中的五角形数分别表示数1,5,12,22,…,那么第n 个五角形数是 .三、解答题:每题6分,共24分.19.(6分)计算:(1)x10÷x3+(﹣x)3•x4+x0;(2)(2x+y)2﹣y(y+4x)+(﹣2x)2.20.(6分)分解因式:(1)3a5﹣12a4+9a3;(2)x2+3y﹣xy﹣3x.21.(6分)解方程:3﹣6x+3=2xx+3.22.(6分)(1)请在图1中画出四边形ABCD向右平移4格,向下平移3格后的图形;(2)请在图2中画出三角形ABC关于点O的中心对称的图形.四、解答题:23题6分,24题7分,25题7分,26题8分,共28分.23.(6分)先化简,再求值:1x−2•2x﹣x−3x2−4÷x2−3xx+2,其中x=3.24.(7分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原来提高1倍,结果共用了14天完成任务,问原来每天加工服装多少套?25.(7分)如图,小明自制了一个正整数数字排列图,他用一个长方形框出任意相邻的两行两列的四个数列出等式:15×7﹣6×16=9.由此他猜想:在长方形框中,左下角与右上角两数之积减去左上角与右下角两数之积,差为9.(1)请你在上图中任意框出另一个相邻的两行两列的四个数,将它们写在下面的长方形框内,并列式计算出结果,验证与小明的计算结果是否相同.(2)小明猜想:“用一个长方形框出任意相邻的两行两列的四个数,左下角与右上角两数之积减去左上角与右下角两数之积.差为9.”请用代数式的相关知识说明小明的猜想是否正确.(3)如果框出相邻的两行三列的六个数为:,那么在长方形框中,左下角与右上角两数之积减去左上角与右下角两数之积的差是多少?26.(8分)如图,正方形ABCD,点M是线段CB延长线一点,连结AM,AB=a,BM=b.(1)将线段AM沿着射线AD运动,使得点A与点D重合,用代数式表示线段AM扫过的平面部分的面积.(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,连结MN,用代数式表示三角形CMN的面积.(3)将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角.2015-2016学年上海市浦东新区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题2分,共12分. 1.(2分)下列代数式中,单项式是( ) A .a ﹣bB .﹣3aC .a+b 3D .ba【解答】解:A 、a ﹣b 是多项式,故A 错误; B 、﹣3a 是单项式,故B 正确;C 、a+b 3是多项式,故C 错误;D 、ba分母中含有字母是分式,故D 错误.故选:B .2.(2分)能说明图中阴影部分面积的式子是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a +b )2﹣(a ﹣b )2=4ab【解答】解:如图原来图中阴影部分面积=(a +b )(a ﹣b ), 右图中把S 1移动到S 2处,右图中阴影部分面积=a 2﹣b 2 ∵原来阴影部分面积=右图中阴影部分面积 ∴(a +b )(a ﹣b )=a 2﹣b 2.3.(2分)下列分式中,最简分式是( ) A .615x B .x−23x−6C .x+12x+1 D .a 2−b 2a+b【解答】解:A 、615x =25x不是最简分式,错误;B 、x−23x−6=13不是最简分式,错误;C 、x+12x+1是最简分式,正确;D 、a 2−b 2a+b =a −b 不是最简分式,错误;故选C4.(2分)下列代数式计算内的结果等于1a3的是()A.a⋅1a2÷a2B.a÷(1a2÷a2)C.a÷1a2⋅a2D.a÷(1a2⋅a2)【解答】解:A、原式=1a•1a2=1a3,正确;B、原式=a÷(1a•1a)=a÷1a=a•a4=a5,错误;C、原式=a•a2•a2=a5,错误;D、原式=a÷1=a,错误,故选A.5.(2分)图中是由五个形状、大小相同的正方形组成的图形,如果去掉其中一个正方形,使得剩下的图形是一个中心对称图形,那么不同的方法有几种()A.1 B.2 C.3 D.4【解答】解:去掉一个正方形,得到中心对称图形,如图所示:,共2种方法.故选B.6.(2分)下列图形中是轴对称图形但不是旋转对称图形的是()A.B.C.D.【解答】解:A、不是旋转对称图形,也不是轴对称图形,故此选项错误;B、不是旋转对称图形,不是轴对称图形,故此选项错误;C 、是旋转对称图形,也是轴对称图形,故此选项错误;D 、不是旋转对称图形,是轴对称图形,故此选项正确. 故选:D .二、填空题:本大题共12题,每题3分,共36分.7.(3分)计算:(12y 3)2= 14y 6 .【解答】解:原式=14y 6.故答案为:14y 6.8.(3分)分解因式:2x 3﹣32x= 2x (x +4)(x ﹣4) . 【解答】解:原式=2x (x 2﹣16)=2x (x +4)(x ﹣4). 故答案为:2x (x +4)(x ﹣4).9.(3分)分解因式:(x +y )2﹣10(x +y )+25= (x +y ﹣5)2 .【解答】解:(x +y )2﹣10(x +y )+25=(x +y )2﹣10(x +y )+(﹣5)2=(x +y ﹣5)2.故答案为:(x +y ﹣5)2.10.(3分)计算:16x 5y 8÷4xy 2= 4x 4y 6 . 【解答】解:16x 5y 8÷4xy 2=4x 4y 6. 故答案为:4x 4y 6.11.(3分)计算:(20x 4+15x 3y ﹣25x 2)÷5x 2= 4x 2+3xy ﹣5 . 【解答】解:(20x 4+15x 3y ﹣25x 2)÷5x 2 =20x 4÷5x 2+15x 3y ÷5x 2﹣25x 2÷5x 2 =4x 2+3xy ﹣5.故答案为:4x 2+3xy ﹣5.12.(3分)已知:a +b=32,ab=1,化简(a ﹣2)(b ﹣2)的结果是 2 .【解答】解:(a ﹣2)(b ﹣2) =ab ﹣2(a +b )+4,当a +b=32,ab=1时,原式=1﹣2×32+4=2.故答案为:2.13.(3分)如果关于x 的二次三项式4x 2+kx +9是完全平方式,那么k 的值是 ±12 .【解答】解:∵关于x 的二次三项式4x 2+kx +9是完全平方式, ∴k=±12, 故答案为:±1214.(3分)当x ≠ 3 时,分式1x−3有意义.【解答】解:根据题意得:x ﹣3≠0.解得:x ≠3.15.(3分)钢轨温度每变化1℃,每米钢轨就伸缩0.0000118米,用科学记数法表示0.0000118为 1.18×10﹣5 . 【解答】解:0.0000118=1.18×10﹣5, 故答案为1.18×10﹣5.16.(3分)如图,将三角形ABC 沿射线AC 向右平移后得到三角形CDE ,如果∠BAC=40°,∠BCA=60°,那么∠BCD 的度数是 80° .【解答】解:∵将△ABC 沿直线AB 向右平移到达△CDE 的位置, ∴△ACB ≌△CED ,∵∠BAC=40°,∠BCA=60°, ∴∠DCE=40°,则∠BCD=180°﹣40°﹣60°=80°.故答案为:80°.17.(3分)将长方形纸片ABCD沿对角线BD翻折后展平(如图①):将三角形ABC翻折,使AB边落在BC上与EB重合,折痕为BG;再将三角形BCD翻折,使BD边落在BC上与BF重合,折痕为BH(如图②),此时∠GBH的度数是45°.【解答】解:∵由翻折的性质可知:∠ABG=∠BCG=12∠ABC,∠CBH=∠DBH=12∠CBD.∴∠GBH=∠GBC+∠HBC=12∠ABC+12∠CBD=12(∠ABC+∠CBD)=12×90°=45°.故答案为:45°.18.(3分)古希腊毕达哥拉斯学派把自然数与小石子摆成的形状比拟,借此把自然数分类,图中的五角形数分别表示数1,5,12,22,…,那么第n个五角形数是n(3n−1)2.【解答】解:第一个有1个实心点,第二个有1+1×3+1=5个实心点,第三个有1+1×3+1+2×3+1=12个实心点,第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,…第n 个有1+1×3+1+2×3+1+3×3+1+…+3(n ﹣1)+1=3n(n−1)2+n =n(3n−1)2个实心点,故答案为:n(3n−1)2.三、解答题:每题6分,共24分. 19.(6分)计算:(1)x 10÷x 3+(﹣x )3•x 4+x 0;(2)(2x +y )2﹣y (y +4x )+(﹣2x )2. 【解答】解:(1)x 10÷x 3+(﹣x )3•x 4+x 0 =x 10﹣3﹣x 3+4+1 =x 7﹣x 7+1 =1;(2)(2x +y )2﹣y (y +4x )+(﹣2x )2 =4x 2+4xy +y 2﹣y 2﹣4xy +4x 2 =8x 2.20.(6分)分解因式: (1)3a 5﹣12a 4+9a 3; (2)x 2+3y ﹣xy ﹣3x .【解答】解:(1)原式=3a 3(a 2﹣4a +3) =3a 3(a ﹣1)(a ﹣3);(2)原式=(x 2﹣xy )+(3y ﹣3x ) =x (x ﹣y )+3(y ﹣x ) =(x ﹣y )(x ﹣3).21.(6分)解方程:3﹣6x+3=2x x+3.【解答】解:去分母得:3(x +3)﹣6=2x , 去括号得:3x +9﹣6=2x ,移项合并得:x=﹣3,经检验x=﹣3是增根,分式方程无解.22.(6分)(1)请在图1中画出四边形ABCD向右平移4格,向下平移3格后的图形;(2)请在图2中画出三角形ABC关于点O的中心对称的图形.【解答】解:(1)(2)所作图形如图所示:.四、解答题:23题6分,24题7分,25题7分,26题8分,共28分.23.(6分)先化简,再求值:1x−2•2x﹣x−3x−4÷x2−3xx+2,其中x=3.【解答】解:原式=2x(x−2)﹣x−3(x+2)(x−2)•x+2x(x−3)=2x(x−2)﹣1x(x−2)=2−x+3 x(x−2)=1x(x−2),当x=3时,原式=13(3−2)=13.24.(7分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原来提高1倍,结果共用了14天完成任务,问原来每天加工服装多少套?【解答】解:设原来每天加工服装x 套,则采用了新技术后每天加工2x 套.则160x +400−1602x=14,解得x=20,经检验,x=20是原方程的根,并符合题意. 答:原来每天加工服装20套.25.(7分)如图,小明自制了一个正整数数字排列图,他用一个长方形框出任意相邻的两行两列的四个数列出等式:15×7﹣6×16=9.由此他猜想:在长方形框中,左下角与右上角两数之积减去左上角与右下角两数之积,差为9.(1)请你在上图中任意框出另一个相邻的两行两列的四个数,将它们写在下面的长方形框内,并列式计算出结果,验证与小明的计算结果是否相同.(2)小明猜想:“用一个长方形框出任意相邻的两行两列的四个数,左下角与右上角两数之积减去左上角与右下角两数之积.差为9.”请用代数式的相关知识说明小明的猜想是否正确.(3)如果框出相邻的两行三列的六个数为:,那么在长方形框中,左下角与右上角两数之积减去左上角与右下角两数之积的差是多少? 【解答】解:(1)假设圈出的四个数字分别为20,21,29,30; 则21×29﹣20×30=609﹣600=9, 答:与小明的计算结果相同.(2)设左上角表示的数为a ,则右上角数字为a +1,左下角数字为a +9,右下角的数为a+10,∵(a+9)(a+1)﹣a(a+10)=a2+10a+9﹣a2﹣10a=9,∴小明的猜想是正确的.(3)3651×3644﹣3642×3653=13304244﹣13304226=18.26.(8分)如图,正方形ABCD,点M是线段CB延长线一点,连结AM,AB=a,BM=b.(1)将线段AM沿着射线AD运动,使得点A与点D重合,用代数式表示线段AM扫过的平面部分的面积.(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,连结MN,用代数式表示三角形CMN的面积.(3)将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角.【解答】解:(1)AD•DC=a2,答:线段AM扫过的平面部分的面积为a2,;(2)12MC⋅NC=12(a+b)(a−b)=12a2−12b2,答:三角形CMN的面积为12a2−12b2;(3)如图1,旋转中心:AB边的中点为O,顺时针180°,;如图2,旋转中心:点B;顺时针旋转90°,;如图3,旋转中心:正方形对角线交点O;顺时针旋转90°,.。

★试卷3套精选★上海市浦东新区2018届七年级下学期数学期末达标测试试题

★试卷3套精选★上海市浦东新区2018届七年级下学期数学期末达标测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列说法不正确的是()A.与∠1互余的角只有∠2 B.∠A与∠B互余C.∠1=∠B D.若∠A=2∠1,则∠B=30°【答案】A【解析】根据直角三角形两锐角互余和等角或同角的余角相等对各选项分析判断后利用排除法求解.【详解】解:A、∵∠ACB=90°,∴∠1+∠2=90°,∵CD⊥AB,∴∠1+∠A=90°,∴与∠1互余的角有∠2与∠A两个角,故本选项错误;B、∵∠ACB=90°,∴∠A+∠B=90°,∴∠A与∠B互余,故本选项正确;C、∠1+∠2=90°,∠2+∠B=90°,∴∠1=∠B,故本选项正确;D、∵∠A=2∠1=2∠B,∴∠A+∠B=3∠B=90°,解得∠B=30°,故本选项正确.故选A.【点睛】此题考查三角形内角和定理,余角和补角,解题关键在于掌握各性质定理.2.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键. 3.下列说法:①内错角相等;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④平行于同一条直线的两条直线互相平行. 其中错误的有( ).A .1个;B .2个;C .3个;D .4个.【答案】C【解析】由题意根据相交线和平行线的性质,分别进行分析判断即可.【详解】解:①两直线平行,内错角相等,①错误;②在同一平面内,两条直线不平行必相交,②错误;③在同一平面内,过一点有且只有一条直线与已知直线垂直,③错误;④平行于同一条直线的两条直线互相平行,④正确.故选:C.【点睛】本题考查相交线和平行线的性质,熟练掌握相交线和平行线的性质以及垂直线定理即在同一平面内,过一点有且只有一条直线与已知直线垂直是解题的关键.4.不等式3x-2>-1的解集是( )A .x>B .x<C .x>-1D .x<-1 【答案】A【解析】由移项、合并同类项、系数化为1即可解答.【详解】移项得,3x >-1+2,合并同类项得,3x >1,把x 的系数化为1得,x >.故选A .【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.5.若x =﹣1是关于x 的方程2x ﹣m ﹣5=0的解,则m 的值是( )A .7B .﹣7C .﹣1D .1【答案】B 【解析】把x=-1代入方程计算求出m 的值,即可确定出m-1的值.【详解】解:把x=−1代入方程得:250m ---=,解得:7.m =-故选:B【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解.6.若(x+y )2=7,(x ﹣y )2=3,则xy 的值为( )A .2B .1C .﹣1D .0【答案】B【解析】先根据完全平方公式展开,再相减,即可得出答案.【详解】解:(x+y )2=7,(x ﹣y )2=3,x 2+2xy+y 2=7,x 2﹣2xy+y 2=3,4xy =4,xy =1,故选:B .【点睛】本题属于已知求值类题目,对于此类题目要先观察已知和待求式之间的关系,然后通过变形将已知和待求式联系起来.7.下列分式中,是最简分式的是( ) A .24xy xB .211x x -+C .211x x +-D .426x - 【答案】C 【解析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A 、原式=4y x,故本选项错误; B 、原式=x-1,故本选项错误;C 、是最简分式,故本选项正确;D 、原式=23x - ,故本选项错误. 故选:C .【点睛】本题考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.8.下列各网格中的图形是用其图形中的一部分平移得到的是()A.B.C.D.【答案】C【解析】试题分析:根据平移及旋转的性质对四个选项进行逐一分析即可.解:A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误.故选C.点评:本题考查的是利用平移设计图案,熟知图形经过平移后所得图形与原图形全等是解答此题的关键.9.关于x的方程323x aa+-=1的解是非负数,则a的取值范围是()A.a≥﹣3 B.a≤﹣3C.a≥﹣3且a≠32-D.a≤﹣3且a≠92-【答案】D【解析】首先解此分式方程,可得x=﹣a﹣3,由关于x的方程的解是非负数,即可得﹣a﹣3≥0且﹣a﹣3≠32,解不等式组即可求得答案.【详解】解:解方程323x ax+-=1,得:x=﹣a﹣3,∵方程323x ax+-=1的解是非负数,∴﹣a﹣3≥0且﹣a﹣3≠32,解得:a≤﹣3且a≠﹣92,故选D.【点睛】考查了分式方程的解法、分式方程的解以及不等式组的解法.此题难度适中,注意不要漏掉分式方程无解的情况.10.下面的多项式中,能因式分解的是()A.2m n+B.221m m-+C.2m n-D.21m m-+【答案】B【解析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+二、填空题题11.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.某同学得分不低于80分,那这名同学至少要答对_________道题.【答案】1【解析】根据该同学得分不低于80分,就可以得到不等关系:该同学的得分≥80分,设应答对x 道,则根据不等关系就可以列出不等式求解.【详解】解:设应答对x 道,则:10x-5(20-x )≥80,解得:x≥1,∵x 取整数,∴x 最小为:1,即:他至少要答对1道题.故答案是:1.【点睛】本题考查一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出该同学的得分是解决本题的关键.12.如图,直线a ∥b ,将三角尺的直角顶点放在直线b 上,∠1=35°,则∠2的度数是__________.【答案】55°【解析】根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【详解】解:如图,∵∠1=35°,∴∠3=180°-35°-90°=55°,∵a∥b,∴∠2=∠3=55°.故答案为:55°.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.如图,∠AED=∠C,BE平分∠ABC,若∠ADE=58°,则∠BED的度数是_____.【答案】29°.【解析】根据平行线的判定得出DE∥BC,进而得∠ADE=∠ABC=58°,再利用角平分线定义得∠CBE=12∠ABC=29°.【详解】∵∠AED=∠C,∴DE∥BC,∴∠ADE=∠ABC=58°,∵BE平分∠ABC,∴∠CBE=12∠ABC=29°.∴∠BED=∠CBE=29°,故答案为:29°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为_______°.【答案】1【解析】解:如图:∵∠3=180°-∠1=180°-55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°-90°=1°.故答案为1.15.某街道积极响应“创卫”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.求甲、乙两种树木各购买了多少棵?设甲种树木购买了x 棵,乙种树木购买了y 棵,则列出的方程组是______.【答案】7290806160x y x y +=⎧⎨+=⎩【解析】根据题意可得等量关系:①甲、乙两种树木共72棵;②共用去资金6160元,根据等量关系列出方程,再解即可;【详解】设甲种树木的数量为x 棵,乙种树木的数量为y 棵, 根据题意可得等量关系:①甲、乙两种树木共72棵;②共用去资金6160元,根据等量关系列出方程:7290806160x y x y +=⎧⎨+=⎩. 【点睛】本题考查列二元一次方程组,解题的关键是读懂题意,得到等量关系.16.如果x y 、满足()21240x y x y +-+--=,则()2x y -=________________.【答案】9【解析】根据绝对值的性质和平方差的性质进行计算,求得x ,y 的值,再得到答案. 【详解】由题意可得10x y +-=,240x y --=,两式联立可得10240x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=-⎩,所以()2x y -=9.【点睛】本题考查绝对值的性质和平方差的性质,解题的关键是熟悉掌握绝对值的性质和平方差的性质.17.已知不等式组1x x a >⎧⎨<⎩无解,则a 的取值范围是_____. 【答案】a≤1【解析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【详解】解:∵不等式组{x 1x a ><无解,∴a 的取值范围是a≤1.故答案为a≤1.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题18.计算 (1) 100101021()3(3)(2)3π--⨯----(2)(2a 3b -4ab 3)·(-12ab )-(-2a 2)2(-b 2) (3)先化简,再求代数式(a +2b)(a -2b)+(a +2b)2-4ab 的值,其中 a =1,b =12013 【答案】 (1) 74(2) 2a 2b 4+3a 4b 2(3)原式= 2a 2,代入=2. 【解析】(1)根据幂的运算公式进行化简即可求解;(2)根据整式的乘法法则进行计算即可;(3)根据就平方差公式与完全平方公式进行化简合并求解.【详解】(1) 100101021()3(3)(2)3π--⨯---- =10011(3)3134-⨯⨯-- =1314--=74(2)(2a 3b -4ab 3)·(-12ab )-(-2a 2)2(-b 2) =-a 4b 2+2a 2b 4+4a 4b 2=2a 2b 4+3a 4b 2(3) (a +2b)(a -2b)+(a +2b)2-4ab= a 2-4b 2+ a 2+4ab+4b 2-4ab=2a 2把a=1代入原式=2.【点睛】此题主要考查整式的运算,解题的关键是熟知整式的运算公式与法则.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个21人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费645元,两种客房各租住了多少间?【答案】租住三人间3间,两人间6间.【解析】设租住三人间x间,两人间y间,根据人数和住宿费用各列一个方程,组成方程组求解即可. 【详解】设租住三人间x间,两人间y间,根据题意得:,解得:.答:租住三人间3间,两人间6间.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.景观大道要进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要370元;购买A种树苗5棵,B种树苗2棵,需要430元(1)求购买A,B两种树苗每棵各需多少元?(2)现需购买这两种树苗共100棵,要求购买这两种树苗的资金不超过5860元,求最多能购买多少棵A 种树苗?【答案】(1)购买A,B两种树苗每棵分别需70元,40元;(2)最多能购买1棵A种树苗.【解析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“购买A种树苗3棵,B种树苗4棵,需要370元;购买A种树苗5棵,B种树苗2棵,需要430元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗m棵,则购进B种树苗(100﹣m)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于5860元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,则解得,答:购买A,B两种树苗每棵分别需70元,40元.(2)设购进A种树苗m棵,则70m+40(100﹣m)≤5860解得m≤1.∴最多能购买1棵A种树苗.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.21.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P.已知,,,.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.【答案】(1)66°;(2)11.1.【解析】(1)根据全等三角形的性质得到∠ABC=∠DBE,计算即可;(2)根据全等三角形的性质求出BE、DE,根据三角形的周长公式计算即可.【详解】(1)∵△ABC≌△DBE,∴∠ABC=∠DBE.∴∠ABC-∠DBC =∠DBE-∠DBC,即∠ABD=∠CBE.∵∠ABD+∠DBC+∠CBE =∠ABE,∴∠CBE=(∠ABE-∠DBC)=×(162°-30°)=66°.(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=1,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.1+1+4+4=11.1.【点睛】本题考查的是全等三角形的性质、角的和与差的应用,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.22.已知,如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°求:(1)∠BDC的角度;(2)∠BFD的度数.【答案】(1)97°;(2)63°【解析】∵∠BDC=∠A+∠ACD(三角形的一个外角等于和它不相邻的两个内角的和)∠A=62° ,∠ACD=35°∴∠BDC=62°+35°=97°(等量代换)(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理)∴∠BFD=180°-∠BDC-∠ABE(等式的性质)∵∠BDC=97°,∠ABE=20°(已知)∴∠BFD=180°-97°-20°=63°(等量代换).【点睛】本题考查了三角形内角和定理,解题的关键是掌握定理并使用.23.(1)因式分解:-28m3n2+42m2n3-14m2n(2)因式分解:9a2(x-y)+4b2(y-x)(3)求不等式x x1132-≤+的负整数解(4)解不等式组()2x15x7x102x3⎧+-⎪⎨+⎪⎩>>,把它们的解集在数轴上表示出来.【答案】(1)-14m2n(2mn-n2+1);(2)(x-y)(3a+2b)(3a-2b);(3)负整数解有-3,-2,-1;(4)x<2,见解析【解析】(1)直接提取公因式因式分解求解即可;(2)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.(3)先去分母,再去括号,移项,合并同类项,把x的系数化为1,再求出它的负整数解即可;(4)分别求出各不等式的解集,再求出其公共解集,把它们的解集在数轴上表示出来即可.【详解】解:(1)-28m3n2+42m2n3-14m2n=-14m2n(2mn-n2+1);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);(3)x x1132-≤+,2x≤6+3(x-1),2x≤6+3x-3,2x-3x≤6-3,-x≤3,x≥-3,故负整数解有-3,-2,-1.(4)()2x15x7x102x3⎧+-⎪⎨+⎪⎩>①>②,解不等式①得:x<3,解不等式②得:x<2,故原不等式组的解集为:x<2,在数轴上表示出来为:【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.同时考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.解不等式组,并将解集表示在数轴上.()()281043131132x xx x⎧+≤--⎪⎨++-<⎪⎩【答案】11x-<≤,数轴表示见解析.【解析】先分别解不等式,再求公共解集.【详解】解不等式()()281043x x+≤--,得1x≤解不等式131132x x++-<,得1x>-则不等式组的解集为11x-<≤将解集表示在数轴上如图所示:【点睛】考核知识点:解不等式组.解不等式是关键.25.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台) a b经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.【答案】(1)3018ab=⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【解析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤ 3∴整数x=2 或3当x=2 时购买费用=30×2+18×8=204(元)当x=3 时购买费用=30×3+18×7=216(元)∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,过边长为1的等边ABC的边AB上一点,作PE AC⊥于,E Q为BC延长线上一点,当PA CQ=时,连接PQ交AC于D,则DE的长为()A .1 3B.12C.23D.34【答案】B【解析】过P作BC的平行线交AC于F,结合已知条件易证APF是等边三角形,由等边三角形的性质及PA CQ=可得PF CQ=.利用AAS证明PFD≌QCD∆,根据全等三角形的性质可得FD CD=.利用等腰三角形三线合一的性质可得AE EF=,由此可得12ED AC=,从而求得DE的长.【详解】过P作BC的平行线交AC于F,∴Q FPD∠=∠.∵ABC是等边三角形,∴60APF B︒∠=∠=,60AFP ACB︒∠=∠=,∴APF是等边三角形,∴AP PF=.∵AP CQ=,∴PF CQ=.在PFD和QCD∆中,∵FPD QPDF QDCPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFD≌QCD∆,∴FD CD =.∵PE AC ⊥于E , APF 是等边三角形,∴AE EF =,∴AE DC EF FD +=+, ∴12ED AC =. ∵1AC =,∴12DE =. 故DE 的长为12. 故选B.【点睛】 本题考查了全等三角形的判定与性质及全等三角形的判定与性质,通过作辅助线,构造全等三角形,利用等边三角形的性质建立等边三角形边长与ED 之间的关系是解决问题的关键.2.点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴四个单位长,点P 的坐标是( )A .(34),- B .(34)-, C .(43)-, D .(43)-,【答案】B 【解析】试题分析:根据点到x 轴的距离即是这点的纵坐标的绝对值,点到y 轴的距离即是这点的横坐标的绝对值,再根据点P 位于y 轴左方,位于x 轴上方,即可得到结果.∵点P 位于y 轴左方,∴点的横坐标小于0,∵距y 轴3个单位长,∴点P 的横坐标是-3;又∵P 点位于x 轴上方,距x 轴4个单位长,∴点P 的纵坐标是4,∴点P 的坐标是(-3,4).故选B .考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握点到x 轴的距离即是这点的纵坐标的绝对值,点到y 轴的距离即是这点的横坐标的绝对值,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.已知不等式3x ﹣a ≤0的正整数解恰是1,2,3,4,那么a 的取值范围是( )A .a >12B .12≤a ≤15C .12<a ≤15D .12≤a <15【答案】D【解析】首先确定不等式组的解集,利用含a 的式子表示,再根据整数解的个数就可以确定有哪些整数解,然后根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】不等式的解集是:x≤3a , ∵不等式的正整数解恰是1,2,3,4,∴4≤3a <5, ∴a 的取值范围是12≤a <1.故选D .【点睛】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定3a 的范围,是解决本题的关键.解不等式时要用到不等式的基本性质.4.如图所示,已知直线AB ,CD 被直线AC 所截,AB CD ∥,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+;②αβ-;③βα-;④180αβ--;⑤360αβ--,AEC ∠的度数可能是( )A .①②③④B .①②④⑤C .①②③⑤D .①②③④⑤【答案】C 【解析】根据点E 有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】(1)如图,由AB ∥CD ,可得∠AOC=∠DCE 1=β,∵∠AOC=∠BAE 1+∠AE 1C ,∴∠AE 1C=β-α.(2)如图,过E 2作AB 平行线,则由AB ∥CD ,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.∴∠AEC的度数可能为β-α,α+β,α-β,360°-α-β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α-β或β-α.故选:C.【点睛】考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.5.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的50亩杂交水稻的产量进行了检测,在这个问题中,数字50是()A.个体B.总体C.样本容量D.总体的样本【答案】C【解析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的50亩杂交水稻的产量进行了检测,在这个问题中,数字50是样本容量,故选C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.6.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()A.10x-5(20-x)≥90B.10x-5(20-x)>90C.20×10-5x>90 D.20×10-5x≥90【答案】B【解析】据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.【详解】解:根据题意,得10x-5(20-x)>1.故选:B.【点睛】本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.7.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是().A.18 B.15 C.18或15 D.无法确定【答案】C.【解析】试题分析:分情况讨论,假设7作腰长,则三边分别为7,7,4,周长为18;假设4作腰长,则三边分别为4,4,7,周长为15,所以此等腰三角形的周长是18或15.故选:C.考点:等腰三角形的周长;三角形的三边关系.8.如果m2+km+14是一个完全平方式,则k为()A.1 B.±1 C.-1 D.4 【答案】B【解析】根据首末两项分别是m和12的平方,可得中间一项为加上或减去它们乘积的2倍【详解】m2+km+14是完全平方式,∴km=±2×m×12,解得k=±1.【点睛】本题根据完全平方公式的结构特征进行分析,两倍的平方和,加上或减去它们乘积的2倍,在已知首尾的两位数的情况下,对中间项2倍乘积要分正负两种情况,这点特别注意。

2018-2019学年上海市浦东新区七年级(下)期末数学试卷(含解析)印刷版

2018-2019学年上海市浦东新区七年级(下)期末数学试卷(含解析)印刷版

2018-2019学年上海市浦东新区七年级(下)期末数学试卷一、单项选择题(本大题共有6小题,每题2分,共12分)1.(2分)下列各数中是无理数的是()A.B.C.D.2.(2分)下列说法正确的是()A.﹣a2一定没有平方根B.4是16的一个平方根C.16的平方根是4D.﹣9的平方根是±33.(2分)已知三角形三边长分别为3,x,10,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.74.(2分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=36°,那么∠2=()A.54°B.56°C.44°D.46°5.(2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°6.(2分)将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q,则点Q坐标为()A.(1,﹣4)B.(1,2)C.(5,﹣4)D.(5,2)二、填空题(本大题共有12小题,每题3分,共36分)7.(3分)实数81的平方根是.8.(3分)用幂的形式表示:=.9.(3分)计算:16=.10.(3分)已知a,b为两个连续的整数,且a<<b,则a+b=.11.(3分)在△ABC中,∠A=∠B=∠C,则∠B=度.12.(3分)点A(11,12)与点B(﹣11,12)关于对称.(填“x轴”或y轴”)13.(3分)已知点P(2﹣a,3a+10)且点P到两坐标轴距离相等,则a=.14.(3分)如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为°.15.(3分)如图,△ABC中AB=AC,D是AC上一点且BC=BD,若∠CBD=46°,则∠A=°.16.(3分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是cm.17.(3分)如图,如果正方形ABCD的面积为5,正方形BEFG的面积为7,则△ACE的面积.18.(3分)如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠BDC=m°,∠BGC=n°,则∠A的度数为.(用m,n表示)三、解答题(本大题共8小题,第19至24题每题6分,第25、26题每题8分,共52分)19.(6分)计算;()2+(1﹣)2;20.(6分)计算:()0×(﹣)2.21.(6分)阅读并填空:如图,已知在△ABC中,AB=AC,点D、E在边BC上,且AD=AE,试说明BD=CE的理由.解:因为AB=AC,所以(等边对等角).因为,所以∠AED=∠ADE(等边对等角).在△ABE与△ACD中,,∠AED=∠ADE,AB=AC所以△ABE≌△ACD()所以(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.22.(6分)在直角坐标平面内,已知点A(3,0)、B(2,3),点B关于原点对称点为C.(1)写出C点的坐标;(2)求△ABC的面积.23.(6分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.24.(6分)如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.25.(8分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ 是什么形状的三角形?试说明你的结论.26.(8分)已知:如图,在△ABC中,点D,E是边BC上的两点,且AB=BE,AC=CD.(1)若∠BAC=90°,求∠DAE的度数;(2)若∠BAC=120°,直接写出∠DAE的度数;(3)设∠BAC=α,∠DAE=β,猜想α与β的之间数量关系(不需证明).2018-2019学年上海市浦东新区七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(本大题共有6小题,每题2分,共12分)1.(2分)下列各数中是无理数的是()A.B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.,是有理数,故选项A不合题意;B.,是有理数,故选项B不合题意;C.是有理数,故选项C不合题意;D.是无理数,故选项D符合题意.故选:D.2.(2分)下列说法正确的是()A.﹣a2一定没有平方根B.4是16的一个平方根C.16的平方根是4D.﹣9的平方根是±3【分析】根据平方根的概念分别对每一项进行分析,即可得出答案.【解答】解:A、﹣a2不一定是负数,故本选项错误;B、4是16的算术平方根,正确;C、16的平方根是±4,故本选项错误;D、﹣9没有平方根,故本选项错误;故选:B.3.(2分)已知三角形三边长分别为3,x,10,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.7【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣3=7,10+3=13,∴7<x<13,∵若x为正整数,∴x的可能取值是8,9,10,11,12五个,故这样的三角形共有5个.故选:C.4.(2分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=36°,那么∠2=()A.54°B.56°C.44°D.46°【分析】先根据AB⊥BC,即可得到∠3=90°﹣∠1=54°.再根据a∥b,即可得出∠3=∠2=54°.【解答】解:∵AB⊥BC,∠1=36°,∴∠3=90°﹣∠1=54°.∵a∥b,∴∠3=∠2=54°.故选:A.5.(2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°【分析】利用全等三角形的性质即可解决问题;【解答】解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS)∴∠DBF=∠CAD=25°,∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.6.(2分)将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q,则点Q坐标为()A.(1,﹣4)B.(1,2)C.(5,﹣4)D.(5,2)【分析】让P的横坐标减2,纵坐标减3即可得到点Q的坐标.【解答】解:根据题意,点Q的横坐标为:3﹣2=1;纵坐标为﹣1﹣3=﹣4;∴点Q的坐标是(1,﹣4).故选:A.二、填空题(本大题共有12小题,每题3分,共36分)7.(3分)实数81的平方根是±9.【分析】首先根据平方根的定义可以求得结果.【解答】解:实数81的平方根是:±=±9.故答案为:±9.8.(3分)用幂的形式表示:=.【分析】直接利用=(m、n为正整数)得出结果即可.【解答】解:====.故答案为:.9.(3分)计算:16=6.【分析】直接利用分数指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=4+2=6.故答案为:6.10.(3分)已知a,b为两个连续的整数,且a<<b,则a+b=11.【分析】首先估算在5和6之间,然后可得a、b的值,进而可得答案.【解答】解:∵<,∴a=5,b=6,∴a+b=11,故答案为:11.11.(3分)在△ABC中,∠A=∠B=∠C,则∠B=60度.【分析】本题考查的是三角形内角和定理.设∠A为X,然后根据三角形内角和为180°的等量关系求解即可.【解答】解:设∠A为x.x+2x+3x=180°⇒x=30°.∴∠A=30°,∠B=60°,∠C=90°.故填60.12.(3分)点A(11,12)与点B(﹣11,12)关于y轴对称.(填“x轴”或y轴”)【分析】利用平面内两点关于y轴对称时:纵坐标不变,横坐标互为相反数,关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:∵点A(11,12)与点B(﹣11,12),横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(﹣11,12)关于y轴对称.故答案为:y轴.13.(3分)已知点P(2﹣a,3a+10)且点P到两坐标轴距离相等,则a=﹣2或﹣6.【分析】根据点到两坐标轴的距离相等,即点的横纵坐标相等或互为相反数,计算即可.【解答】解:根据题意,得:2﹣a=3a+10或2﹣a+3a+10=0,解得:a=﹣2或a=﹣6,故答案为:﹣2或﹣6.14.(3分)如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°﹣∠BEF=180°﹣50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°﹣∠BEF=180°﹣50°=130°.故答案为:130°.15.(3分)如图,△ABC中AB=AC,D是AC上一点且BC=BD,若∠CBD=46°,则∠A=46°.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵BC=BD,∠CBD=46°,∴∠C=∠BDC=(180°﹣46°)=67°,∵AB=AC,∴∠ABC=∠C=67°,∴∠A=46°,故答案为:46.16.(3分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是7cm.【分析】根据全等三角形的性质得到DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,求出OB,根据等腰三角形的性质解答.【解答】解:∵△ABC≌△DCB,∴DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,∴OB=DB﹣DO=7cm,∠OBC=∠OCB,∴OC=OB=7cm,故答案为:7.17.(3分)如图,如果正方形ABCD的面积为5,正方形BEFG的面积为7,则△ACE的面积.【分析】求出正方形的边长,根据S△ACE=•CE•AB计算即可.【解答】解:∵正方形ABCD的面积为5,正方形BEFG的面积为7,∴AB=BC=,BE=,∴∠ABC=90°,∴S△ACE=•CE•AB=×(﹣)×=.故答案为.18.(3分)如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠BDC=m°,∠BGC=n°,则∠A的度数为2n°﹣m°.(用m,n表示)【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°﹣m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°﹣n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=180°﹣n°﹣180°+m°=m°﹣n°,∴∠ABC+∠ACB=180°﹣m°+2(m°﹣n°)=180°+m°﹣2n°,∴∠A=180°﹣(180°+m°﹣2n°)=2n°﹣m°.故答案为:2n°﹣m°.三、解答题(本大题共8小题,第19至24题每题6分,第25、26题每题8分,共52分)19.(6分)计算;()2+(1﹣)2;【分析】利用二次根式的性质和完全平方公式计算.【解答】解:原式=+﹣3+1﹣2+3=+﹣2+1.20.(6分)计算:()0×(﹣)2.【分析】直接利用零指数幂的性质以及立方根的性质分别化简得出答案.【解答】解:原式=1×﹣2=﹣1.21.(6分)阅读并填空:如图,已知在△ABC中,AB=AC,点D、E在边BC上,且AD=AE,试说明BD=CE的理由.解:因为AB=AC,所以∠B=∠C(等边对等角).因为AD=AE,所以∠AED=∠ADE(等边对等角).在△ABE与△ACD中,∠B=∠C,∠AED=∠ADE,AB=AC所以△ABE≌△ACD(AAS)所以BE=CD(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.【分析】根据等腰三角形的性质、以及全等三角形的判定方法AAS即可解决问题.【解答】解:因为AB=AC,所以∠B=∠C(等边对等角).因为AD=AE,所以∠AED=∠ADE(等边对等角).所以△ABE≌△ACD(AAS),在△ABE与△ACD中,,所以(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.故答案为∠B=∠C,AD=AE,∠B=∠C,AAS,BE=CD.22.(6分)在直角坐标平面内,已知点A(3,0)、B(2,3),点B关于原点对称点为C.(1)写出C点的坐标;(2)求△ABC的面积.【分析】(1)根据两个点关于原点对称时,它们的坐标符号相反可得答案;(2)分别计算出△AOB和△AOC的面积,再求和即可.【解答】解:(1)B(2,3)关于原点对称点为C(﹣2,﹣3);(2)∵S△AOB=,S△AOC=,∴S△ABC=S△AOB+S△AOC=9.23.(6分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.【分析】由“SAS”可证△AFB≌△CED,可得∠A=∠C,可证AB∥CD.【解答】证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD24.(6分)如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.【分析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【解答】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.25.(8分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ 是什么形状的三角形?试说明你的结论.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠P AC=60°,∴∠P AQ=∠CAQ+∠P AC=60°,∴△APQ是等边三角形.26.(8分)已知:如图,在△ABC中,点D,E是边BC上的两点,且AB=BE,AC=CD.(1)若∠BAC=90°,求∠DAE的度数;(2)若∠BAC=120°,直接写出∠DAE的度数;(3)设∠BAC=α,∠DAE=β,猜想α与β的之间数量关系(不需证明).【分析】(1)根据等腰三角形性质得出∠BAE=∠BEA,∠CAD=∠CDA,根据三角形内角和定理得出∠B=180°﹣2∠BAE①,∠C=180°﹣2∠CAD②,①+②得出∠B+∠C=360°﹣2(∠BAE+∠CAD),求出2∠DAE=180°﹣∠BAC,代入求出即可;(2),(3)同(1).【解答】解:(1)∵BE=BA,∴∠BAE=∠BEA,∴∠B=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴∠C=180°﹣2∠CAD,②①+②得:∠B+∠C=360°﹣2(∠BAE+∠CAD)∴180°﹣∠BAC=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)],∴﹣∠BAC=180°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE],∴﹣∠BAC=180°﹣2(∠BAC+∠DAE),∴2∠DAE=180°﹣∠BAC.∵∠BAC=90°,∴2∠DAE=180°﹣90°=90°,∴∠DAE=45°;(2)由(1)知,∠DAE=(180°﹣∠BAC)=(180°﹣120°)=30°;(3)由(1)知,β=(180°﹣α),∴α+2β=180°.。

《试卷3份集锦》上海市浦东新区2018-2019年七年级下学期期末学业质量监测数学试题

《试卷3份集锦》上海市浦东新区2018-2019年七年级下学期期末学业质量监测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若要使4x2+mx+164成为一个两数差的完全平方式,则m的值应为()A.±12B.-12C.±14D.-14【答案】A【解析】首末两项是±2x和±18这两个数的平方,那么中间一项为减去±2x和±18积的2倍,故m=±12.【详解】∵(2x-18)2=4x2-11264x+或22111[2()]48264x x x--=++,∴m=-12或12.故选:A.【点睛】考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,正负号都有可能.2.若大军买了数支10 元及15 元的两种圆珠笔,共花费90 元,则这两种圆珠笔的数量可能相差A.5 支B.4 支C.3 支D.2 支【答案】B【解析】设10元的原子笔有x支,15元的原子笔有y支.则10x+15y=90,求整数解可得.【详解】设10元的原子笔有x支,15元的原子笔有y支.则10x+15y=90,因为x,y均为整数,可解得x=3,y=4或x=6,y=1.所以这两种圆珠笔的数量可能相差1或4故选:B.【点睛】考核知识点:二元一次方程的应用.求出整数解是关键.3.在5,6,7,8)A.5 B.6 C.7 D.8【答案】B【解析】直接利用各数的平方进而比较得出答案.【详解】解:∵52=25,12=31,72=49,82=14,2=34,∴在5,1,7,8这四个整数中,大小最接近34的是1.故选:B .【点睛】此题主要考查了估算无理数的大小,正确将各数平方是解题关键.4.不等式a >2a 成立的条件是( ).A .不存在这样的aB .a <0C .a =0D .a >0【答案】B【解析】根据不等式的性质解答即可.【详解】解:不等式a >2a 成立的条件是a <0,故选:B .【点睛】此题考查不等式的性质,关键是根据不等式的性质得出不等式的成立条件.5.如图,小明用两块同样的三角板,按下面的方法做出了平行线,则AB ∥CD 的理由是( )A .∠2=∠4B .∠3=∠4C .∠5=∠6D .∠2+∠3+∠6=180°【答案】B 【解析】根据平行线的判定定理进行判定即可.【详解】∵∠3=∠4,∴AB ∥CD.故选B.【点睛】此题考查了平行线的判定,运用的知识为:内错角相等,两条直线平行.6.下列各式由左到右的变形中,属于分解因式的是( )A .()a m n am an +=+B .()()2222a b c a b a b c --=+--C .()2105521x x x x -=-D .()()168448x x x x x -+=+-+【答案】C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式. 7.如图,从位置P到直线公路MN有四条小道,其中路程最短的是()A.PA B.PB C.PC D.PD【答案】B【解析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路MN的小道是PB,故选:B.【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.8.如图,∠1=50°,直线a平移后得到直线b,则∠2﹣∠3=()A.l30°B.120°C.100°D.80°【答案】A【解析】由平移的性质得到a与b平行,利用两直线平行同旁内角互补以及三角形外角性质,即可求出所求.【详解】解:如图∵直线a平移后得到直线b,∴a∥b,∴∠1+∠ABO=180°,∵∠1=50°,∴∠ABO=130°,∵∠3=∠BOC,∠2=∠BOC+∠ABO,∴∠2﹣∠3=∠2﹣∠BOC=∠ABO=130°.故选:A.【点睛】此题考查了平移的性质,平行线的性质,以及三角形外角的性质,熟练掌握平移的性质是解本题的关键.9.二元一次方程2x+3y=10的正整数解有()A.0个B.1个C.3个D.无数多个【答案】B【解析】将x看做已知数求出y,即可确定出方程的正整数解.【详解】2x+3y=10,解得:y=,当x=2时,y=2,则方程的正整数解有1个.故选B【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.若关于x的不等式组5335x xx a-+⎧⎨⎩><无解,则a的取值范围为()A.a<4 B.a=4 C.a≤4D.a≥4【答案】C【解析】解:5335x xx a-+⎧⎨⎩>①<②,由①得:x>1.∵不等式组无解,∴a≤1.故选C.点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题题11.六边形的外角和等于°.【答案】1.【解析】根据任何多边形的外角和是1度即可求出答案.【详解】六边形的外角和等于1度.故答案为1.12.将一副三角板(30A ∠=︒)按如图所示方式摆放,使得AB EF ,则1∠等于______度.【答案】105°【解析】依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB ∥EF ,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质. 13.若a -b =5,ab =14,则(a +b)2的值为_______.【答案】81【解析】直接利用完全平方公式将原式变形进而得出答案.【详解】∵a-b=5,ab=14,∴(a+b )2=a 2+2ab+b 2= a 2-2ab+b 2+4ab=(a-b)2+4ab=52+4×14=81,故答案为:81.【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.14.如图(1),在三角形ABC 中,38A ∠=,72C ∠=,BC 边绕点C 按逆时针方向旋转一周回到原来的位置(即旋转角0360α≤≤),在旋转过程中(图2),当'//CB AB 时,旋转角为________度;当CB 所在直线垂直于AB 时,旋转角为__________度.【答案】70或250 160或1【解析】在△ABC 中,根据三角形的内角和得到∠B 的度数,如图1,当CB'∥AB 时,根据平行线的性质即可得到结论;如图2,当CB'⊥AB时根据垂直的定义和周角的定义即可得到结论.【详解】∵在△ABC中,∠A=38°,∠C=72°,∴∠B=180°﹣38°﹣72°=70°,如图1,当CB'∥AB时,旋转角=∠B=70°,当CB″∥AB时,∠B″CA=∠A=38°,∴旋转角=360°﹣38°﹣72°=250°.综上所述:当CB'∥AB时,旋转角为70°或250°;如图2,当CB'⊥AB时,∠BCB″=90°﹣70°=20°,∴旋转角=180°﹣20°=160°,当CB″⊥AB时,旋转角=180°+160°=1°.综上所述:当CB'⊥AB时,旋转角为160°或1°.故答案为:70或250;160或1.【点睛】本题考查了三角形的内角和定理,平行线的性质,正确的画出图形是解题的关键.15.三角形A′B′C′是由三角形ABC平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C的坐标为______.【答案】(-2,5)【解析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C 点的坐标.【详解】解:∵点A(-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.16.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为_______m.【答案】1.05×10-5【解析】根据科学计数法的表示方法即可求解.【详解】0.0000105=1.05×10-5,故填1.05×10-5.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.17.若从长度分别为3cm 、4cm 、7cm 和9cm 的小木棒中任选取3根搭成了一个三角形,则这个三角形的周长为__________.【答案】19cm 或20cm【解析】先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:任意三条组合有4cm 、7cm 、9cm ;3cm 、4cm 、7cm ;3cm 、7cm 、9cm ;3cm 、4cm 、9cm 共四种情况,根据三角形的三边关系,则只有4cm 、7cm 、9cm ;3cm 、7cm 、9cm 两种情况符合,故周长是19cm 或20cm .故答案为:19cm 或20cm .【点睛】此题考查了三角形的三边关系.关键是掌握判断能否组成三角形的简便方法是看较小的两边的和是否大于第三边.三、解答题18.如图,已知//AB CD .点C 在点D 的右侧,70ADC ︒∠= ,BE 平分么ABC,DE ∠,平分,,ADC BE DE ∠所在的直线交于点E ,点E 在,AB CD 之间。

(数学试卷13份合集)上海市浦东新区名校2018-2019学年七下数学期末模拟试卷

(数学试卷13份合集)上海市浦东新区名校2018-2019学年七下数学期末模拟试卷

七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一.选择题(共10小题,每小题2分,共20分)1、下列图案分别是奔驰、奥迪、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是( )A .B .C .D .2、下列各数中,是无理数的是( )A .16B .7C .113 D .314 3、在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .轴上D .y 轴上4、若a <b ,则下列各式中一定成立的是( )A .a-c <b-cB .a 2<b 2C .-a <-bD .ac <bc5、若2a+6的值是正数,则a 的取值范围是( )A .a >0B .a >3C .a >-3D .a <-3 6、下列各组,y 的值中,是方程3+y=5的解的是( )A .⎩⎨⎧==21y xB .⎩⎨⎧==12y xC .⎩⎨⎧==12-y xD .⎩⎨⎧==5-0y x 7、下列问题中,不适合用全面调查的是( )A 了解全班同学每周体育锻炼的时间B 旅客上飞机前的安检C 选出某校短跑最快的学生参加全市比赛D 调查某批次汽车的抗撞击能力8、如图,平行线AB 、CD 被直线AE 所截,∠A=110°,则∠1的度数为( )A .110° B.80° C .70° D.40°9、某次考试中,某班级的数学成绩统计图如图所示,下列说法错误的是( )A 得分在70-80分之间的人数最多B 该班的总人数为40C 得分在90-100分之间的人数最少D 及格(≥60分)人数是2610、为了绿化校园,甲、乙两班共植树苗30棵。

2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)

2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)

2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)是()A.整数B.分数C.有理数D.无理数2.(3分)下列说法中不正确的是()A.﹣1的立方是﹣1B.﹣1的立方根是﹣1C.﹣1的平方是1D.﹣1的平方根是﹣13.(3分)如图,可以推断AB∥CD的是()A.∠2=∠3B.∠1=∠4C.∠BCD=∠BAD D.∠B+∠4+∠5=180°4.(3分)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形5.(3分)平面直角坐标系中,到x轴距离为2,y轴距离为2的点有()个.A.1B.2C.3D.46.(3分)如果一个三角形的三边a、b、c满足ab+bc=b2+ac,那么这个三角形一定是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形二、填空题(本大题共13空,每空2分,满分26分)7.(2分)11的平方根是.8.(2分)比较大小:﹣(填“<“”或“=“”或“>”)9.(2分)平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是.10.(4分)点M(4,3)向(填“上”、“下”、“左”、“右”)平移个单位后落在y轴上.11.(2分)等腰三角形的周长是15,其中一条边的长度为3,那么它的腰长是.12.(2分)等腰三角形中,角平分线、中线、高的条数一共最多有条.(重合的算一条)13.(2分)在不等边三角形△ABC中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为.14.(2分)如图,直线l1∥l2,∠1=43°,∠2=72°,则∠3的度数是度.15.(2分)如图,已知EF∥GH,AC⊥CD,∠DCG=143°,则∠CBF=度.16.(2分)用直尺和圆规作一个角等于已知角的示意图如图,则可说明∠A′O′B′=∠AOB,其中判断△COD≌△C′O′D′的依据是.17.(2分)如图,在△ABC中,AB=AC,高BD,CE交于点O,连接AO并延长交BC 于点F,则图中共有组全等三角形.18.(2分)如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.三、简答题(本大题共5小题,每小题5分,满分25分)19.(5分)计算:(﹣8)﹣﹣(﹣π)0+()﹣320.(5分)利用幂的性质计算:÷﹣21.(5分)已知点A(a﹣3,1﹣a)在第三象限且它的坐标都是整数,求点A的坐标.22.(5分)如图,已知CD∥BE,且∠D=∠E,试说明AD∥CE的理由.23.(5分)如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B求证:ED=EF.证明:∵∠DEC=∠B+∠BDE()且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∴∠BDE=∠(等式性质)在△EBD与△FCE中,∠BDE=∠(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE()∴ED=EF()四、解答题(本大题共4题,24题每小题5分,共5分,25-27题每题6分,满分23分)24.(5分)如图,在直角坐标平面内,已知点A的坐标是(0,3),点B的坐标是(﹣3,﹣2)(1)图中点C的坐标是.(2)三角形ABC的面积为.(3)点C关于x轴对称的点D的坐标是(4)如果将点B沿着与x轴平行的方向向右平移3个单位得到点B′,那么A、B′两点之间的距离是.(5)图中四边形ABCD的面积是.25.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.26.(6分)已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.27.(6分)公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 是BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.(提示:可通过证明∠EMF =180°)五、能力题(满分8分)28.(8分)在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 和CB (或它们的延长线)于E ,F .(1)当DE ⊥AC 于E 时(如图1),可得S △DEF +S △CEF = S △ABC ;(2)当DE 与AC 不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给子证明;若不成立,请直接给出S △DEF 、S △CEF 、S △ABC 的关系.(3)当点E 在AC 延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出的关系S △DEF ,S △CEF ,S △ABC 的关系.2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)是()A.整数B.分数C.有理数D.无理数【分析】根据无理数的概念作答.【解答】解:是无理数故选:D.【点评】本题考查了无理数的概念,属于基础题.2.(3分)下列说法中不正确的是()A.﹣1的立方是﹣1B.﹣1的立方根是﹣1C.﹣1的平方是1D.﹣1的平方根是﹣1【分析】A、根据立方运算法则计算即可判定;B、根据立方根的定义即可判定;C、根据平方运算的法则计算即可判定;D、根据平方根的定义分析即可判定.【解答】解:A、﹣1的立方是﹣1;故选项正确;B、﹣1的立方根是﹣1;故选项正确;C、﹣1的平方是1;故选项正确.D、由于负数没有平方根,故选项错误.故选:D.【点评】本题主要考查了立方根及平方根的概念.3.(3分)如图,可以推断AB∥CD的是()A.∠2=∠3B.∠1=∠4C.∠BCD=∠BAD D.∠B+∠4+∠5=180°【分析】由平行线的判定定理,即可求得答案;注意排除法在解选择题中的应用.【解答】解:A、由∠2=∠3不能判定AB∥CD,故本选项错误.B、由∠1=∠4可以判定AD∥BC,不能判定AB∥CD,故本选项错误.C、由∠BCD=∠BAD不能判定AB∥CD,故本选项错误.D、由∠B+∠4+∠5=180°能判定AB∥CD(同旁内角互补,两直线平行),故本选项正确.故选:D.【点评】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用.4.(3分)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形【分析】两边相等,面积相等或者角相等的三角形都不能证明三角形全等.【解答】A、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等;B、错误,三个内角分别相等的两个三角形不一定全等,可能相似;C、错误,两条边和其夹角相等的两个三角形全等;D、错误,面积相等但边长不一定相等.故选:A.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.5.(3分)平面直角坐标系中,到x轴距离为2,y轴距离为2的点有()个.A.1B.2C.3D.4【分析】根据平面直角坐标系内的点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求出点可能的横坐标与纵坐标,即可得解.【解答】解:∵平面直角坐标系中,到x轴距离为2,y轴距离为2的点横坐标为2或﹣2,纵坐标为2或﹣2,∴所求点的坐标为(2,2)或(2,﹣2)或(﹣2,2)或(﹣2,﹣2).故选:D.【点评】本题考查了坐标与图形性质,熟记点到x轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.6.(3分)如果一个三角形的三边a、b、c满足ab+bc=b2+ac,那么这个三角形一定是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形【分析】把原式变形因式分解得出(b﹣c)(a﹣b)=0,得出b﹣c=0或a﹣b=0,即可得出结论.【解答】解:∵ab+bc=b2+ac,∴ab+bc﹣b2﹣ac=0,∴(b﹣c)(a﹣b)=0,∴b﹣c=0或a﹣b=0,∴这个三角形一定是等腰三角形;故选:B.【点评】本题考查了因式分解的应用、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.二、填空题(本大题共13空,每空2分,满分26分)7.(2分)11的平方根是.【分析】根据正数有两个平方根可得11的平方根是±.【解答】解:11的平方根是±.故答案为:±.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.8.(2分)比较大小:﹣<(填“<“”或“=“”或“>”)【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:∵=,∴﹣<.故答案为:<.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.9.(2分)平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是(3,2).【分析】根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果.【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于x轴对称的点的坐标的知识,注意掌握两点关于x轴对称,横坐标不变,纵坐标互为相反数.10.(4分)点M(4,3)向左(填“上”、“下”、“左”、“右”)平移4个单位后落在y轴上.【分析】根据:“上加下减、右加左减”求解可得.【解答】解:点M(4,3)向左平移4个单位后落在y轴上.故答案为:左、4.【点评】本题考查的是坐标与图形变化﹣平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.11.(2分)等腰三角形的周长是15,其中一条边的长度为3,那么它的腰长是6.【分析】分别从腰长为3与底边长为3,去分析求解即可求得答案.【解答】解:若腰长为3,则底边长为:15﹣3﹣3=9,∵3+3<9,∴不能组成三角形,舍去;若底边长为3,则腰长为:=6;∴该等腰三角形的腰长为:6.故答案为:6.【点评】此题考查了等腰三角形的性质以及三角形的三边关系.注意分别从腰长为3与底边长为3去分析求解是关键.12.(2分)等腰三角形中,角平分线、中线、高的条数一共最多有7条.(重合的算一条)【分析】根据等腰三角形与等边三角形三线合一的性质进行分析即可.【解答】解:在底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段7条,故答案为:7.【点评】本题考查了等腰三角形的性质的运用,熟练掌握等腰三角形的性质是解题的关键.13.(2分)在不等边三角形△ABC中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为4.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据第三边应是整数,即可求解.【解答】解:根据三角形的三边关系,得第三边应大于3﹣2=1,而小于3+2=5.又因为第三边为整数,所以第三边应是2或3或4,因为是不等边三角形,则第三边是4.故答案为:4.【点评】本题考查了三角形的三边关系,理解不等边三角形是解答本题的关键,难度不大.14.(2分)如图,直线l1∥l2,∠1=43°,∠2=72°,则∠3的度数是65度.【分析】利用平行线的性质,三角形的内角和定理解决问题即可.【解答】解:∵l1∥l2,∠1=43°,∠2=72°,∴∠5=∠2=72°,∠4=∠1=43°,∴∠3=180°﹣72°﹣43°=65°,【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(2分)如图,已知EF∥GH,AC⊥CD,∠DCG=143°,则∠CBF=127度.【分析】首先根据垂直定义可得∠ACD=90°,再根据余角的定义可得∠ACH的度数,然后再根据平行线的性质可得∠FBC+∠ACH=180°,进而可得答案.【解答】解:∵AC⊥CD,∴∠ACD=90°,∵∠DCG=143°,∴∠DCH=37°,∴∠ACH=90°﹣37°=53°,∵EF∥GH,∴∠FBC+∠ACH=180°,∴∠FBC=180°﹣53°=127°,故答案为:127.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.(2分)用直尺和圆规作一个角等于已知角的示意图如图,则可说明∠A′O′B′=∠AOB,其中判断△COD≌△C′O′D′的依据是SSS.【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.【解答】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以△COD≌△C′O′D′(SSS).【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形全等的判定.17.(2分)如图,在△ABC中,AB=AC,高BD,CE交于点O,连接AO并延长交BC 于点F,则图中共有7组全等三角形.【分析】在△ABC中,AB=AC则三角形是等腰三角形,做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:∵AB=AC,BD,CE分别是三角形的高,∴∠AEC=∠ADB=90°,∴∠ABD=∠ACE,∴Rt△ABD≌Rt△ACE(AAS),∴CE=BD,又∵AB=AC,∴∠ABC=∠ACB,又∵∠ABD=∠ACE,∴∠BCE=∠CBD,∴△BCE≌△CBD(AAS)同理还有△ABF≌△ACF;△AEO≌△ADO;△ABO≌△ACO;△OBE≌△OCD;△BFO ≌△CFO,总共7对.故答案为:7【点评】本题考查了等腰三角形的性质、三角形全等的判定方法,做题时要从很容易的找起,由易到难,不重不漏.18.(2分)如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是15°.【分析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.【解答】解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.【点评】本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.三、简答题(本大题共5小题,每小题5分,满分25分)19.(5分)计算:(﹣8)﹣﹣(﹣π)0+()﹣3【分析】直接利用二次根式的性质以及分数值数幂的性质、零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣5﹣1+8=4﹣5﹣1+8=6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)利用幂的性质计算:÷﹣【分析】直接利用二次根式的性质以及分数值数幂的性质、零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣(3)=﹣3=﹣=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.(5分)已知点A(a﹣3,1﹣a)在第三象限且它的坐标都是整数,求点A的坐标.【分析】根据第三象限点的符号特点列出关于a的不等式组,解之求出a的范围,再由坐标都是整数得出a的值,从而得出答案.【解答】解:由题意知,解得1<a<3,∵a是整数,∴a=2,∴点A的坐标为(﹣1,﹣1).【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(5分)如图,已知CD∥BE,且∠D=∠E,试说明AD∥CE的理由.【分析】根据平行线的性质得出∠ACD=∠B,根据三角形内角和定理求出∠A=∠BCE,根据平行线的判定推出即可.【解答】解:理由是:∵CD∥BE,∴∠ACD=∠B,∵∠D=∠E,∠A+∠D+∠ACD=180°,∠B+∠E+∠BCE=180°,∴∠A=∠BCE,∴AD∥CE.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力.23.(5分)如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B求证:ED=EF.证明:∵∠DEC=∠B+∠BDE(三角形的一个外角等于与它不相邻的两个内角和,)且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∴∠BDE=∠FEC(等式性质)在△EBD与△FCE中,∠BDE=∠FEC(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE(ASA)∴ED=EF(全等三角形的对应边相等)【分析】首先根据三角形的外角等于与它不相邻的两个内角的和可得∠DEC=∠B+∠BDE,再由条件∠DEF=∠B可得∠BDE=∠CEF,再加上条件BD=CE,∠B=∠C可利用ASA证明△EBD≌△FCE再根据全等三角形对应边相等可得ED=EF.【解答】证明:∵∠DEC=∠B+∠BDE(三角形的一个外角等于与它不相邻的两个内角和,)且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∠BDE=∠FEC(等式性质)在△EBD与△FCE中,∠BDE=∠FEC(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE(ASA)∴ED=EF(全等三角形的对应边相等)故答案为:三角形的一个外角等于与它不相邻的两个内角和,FEC,FEC,ASA,全等三角形的对应边相等【点评】本题主要考查了全等三角形的判定与性质,关键是掌握两个三角形全等的判定定理:SSS、ASA、SAS、AAS.四、解答题(本大题共4题,24题每小题5分,共5分,25-27题每题6分,满分23分)24.(5分)如图,在直角坐标平面内,已知点A的坐标是(0,3),点B的坐标是(﹣3,﹣2)(1)图中点C的坐标是(3,﹣2).(2)三角形ABC的面积为15.(3)点C关于x轴对称的点D的坐标是(3,2)(4)如果将点B沿着与x轴平行的方向向右平移3个单位得到点B′,那么A、B′两点之间的距离是5.(5)图中四边形ABCD的面积是21.【分析】(1)根据平面直角坐标系可直接写出C点坐标;(2)根据三角形的面积公式可得答案;(3)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得D点坐标;(4)根据点的平移:横坐标,右移加,左移减;纵坐标,上移加,下移减可得B′点坐标,进而得到答案;(5)用△ABC的面积加上△ACD的面积即可.【解答】解:(1)根据题意得点C的坐标为(3,﹣2);故答案为:(3,﹣2);(2)△ABC的面积:.故答案为:15;(3)点C关于x轴对称的点D的坐标是(3,2);故答案为:(3,2);(4)将点B沿着与x轴平行的方向向右平移3个单位得到点B′(﹣3+3,﹣2),即(0,﹣2),A、B′两点之间的距离是:3﹣(﹣2)=5;故答案为:5;(5),∴四边形ABCD的面积为:S△ABC +S△ACD=15+6=21.故答案为:21【点评】此题主要考查了坐标与图形变化﹣平移,关于x轴对称的点的坐标,平面直角坐标系,以及三角形的面积,关键是掌握点的坐标的变化规律.25.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.26.(6分)已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.【点评】本题考查了等腰三角形的性质,用到的知识点是全等三角形的判定和性质、等腰三角形三线合一的性质,关键是找出全等三角形.27.(6分)公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M是BC的中点,试说明三只石凳E,F,M恰好在一条直线上.(提示:可通过证明∠EMF=180°)【分析】先根据SAS 判定△BEM ≌△CFM ,从而得出∠BME =∠CMF .通过角之间的转换可得到E ,M ,F 在一条直线上.【解答】证明:连接ME ,MF .∵AB ∥CD ,(已知)∴∠B =∠C (两线平行内错角相等).在△BEM 和△CFM 中,∴△BEM ≌△CFM (SAS ).∴∠BME =∠CMF ,∴∠EMF =∠BME +∠BMF =∠CMF +∠BMF =∠BMC =180°,∴E ,M ,F 在一条直线上.【点评】此题主要考查了学生对全等三角形的判定的掌握情况,注意共线的证明方法.五、能力题(满分8分)28.(8分)在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 和CB (或它们的延长线)于E ,F .(1)当DE ⊥AC 于E 时(如图1),可得S △DEF +S △CEF = S △ABC ;(2)当DE 与AC 不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给子证明;若不成立,请直接给出S △DEF 、S △CEF 、S △ABC 的关系.(3)当点E 在AC 延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出的关系S △DEF ,S △CEF ,S △ABC 的关系.【分析】(1)当∠EDF 绕D 点旋转到DE ⊥AC 时,四边形CEDF 是正方形,边长是AC 的一半,即可得出结论;(2)成立;先证明△CDE ≌△BDF ,即可得出结论;(3)不成立;同(2)得:△DEC ≌△DBF ,得出S △DEF =S 五边形DBFEC =S △CFE +S △DBC =S △CFE +S △ABC .【解答】解:(1)如图1中,当∠EDF 绕D 点旋转到DE ⊥AC 时,四边形CEDF 是正方形.设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为a .∴S △ABC =a 2,S 正方形DECF =(a )2=a 2即S △DEF +S △CEF =S △ABC ; 故答案为.(2)上述结论成立;理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD ,如图3所示:同(2)得:△DEC ≌△DBF ,∠DCE =∠DBF =135°∴S △DEF =S 五边形DBFEC ,=S △CFE +S △DBC ,=S △CFE +S △ABC ,∴S △DEF ﹣S △CFE =S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF ﹣S △CEF =S △ABC .【点评】本题属于几何变换综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.。

{3套试卷汇总}2018年上海市浦东新区七年级下学期数学期末综合测试试题

{3套试卷汇总}2018年上海市浦东新区七年级下学期数学期末综合测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.关于x 的不等式组30x x a ->⎧⎨<⎩的解集为3x <,那么a 的取值范围为( )A .3a =B .3a >C .3a <D .3a【答案】D【解析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m 的范围即可.【详解】30x x a ->⎧⎨<⎩不等式组变形得3x x ⎧⎨⎩<<a则可得a 的取值范围是3a 故选D. 【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.2.如图所示,一块白色正方形板,边长是18cm ,上面横竖各有两道彩条,各彩条宽都是2cm ,问白色部分面积( )A .220cm 2B .196cm 2C .168cm 2D .无法确定【答案】B【解析】根据平移的知识,把横竖各两条彩条平移到正方形的边上,求剩余空白部分的面积即可. 【详解】解:由平移,可把白色部分面积看成是边长为14cm 的正方形的面积. ∴白色部分面积为:14×14=196(cm 2). 【点睛】此题考查列代数式问题,解答此题的关键是:利用“平移法”,求出剩余的正方形的边长,进而求其面积. 3.若ABC ∆中,90A ∠=︒,且30B C ∠-∠=︒,那么C ∠的度数为( ) A .30 B .40︒C .50︒D .60︒【答案】A【解析】根据三角形的内角和定理进行计算即可得解. 【详解】∵90A ∠=︒ ∴+1809090B C ∠∠=︒-︒=︒ ∵30B C ∠-∠=︒∴6030B C ∠=︒∠=︒,, 故选:A. 【点睛】本题主要考查了三角形的内角和定理,熟练掌握角的和差计算是解决本题的关键. 4.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为A .B .C .D .【答案】D【解析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n 的有n 个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式. 【详解】在横坐标上,第一列有一个点,第二列有2个点第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为;偶数列的坐标为,由加法推算可得到第100个点位于第14列自上而下第六行. 代入上式得,即.故选D . 【点睛】本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键. 5.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为16cm ,則四辺形ABFD 的周长为( )A.16cm B.18cm C.20cm D.22cm【答案】C【解析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【详解】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()次数100 200 300 400 500 600 700 800 900 1000频率0.60 0.30 0.50 0.36 0.42 0.38 0.41 0.39 0.40 0.40A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5【答案】C【解析】根据利用频率估计概率得到实验的概率在0.4左右,再分别计算出四个选项中的概率,然后进行判断.【详解】A、掷一个质地均匀的骰子,向上的面点数是“6”的概率为:16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是20.4 5,符合题意;D、三张扑克牌,分别是3、5、5,背面朝上洗均后,随机抽出一张是5的概率为23,不符合题意.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.7.下列代数式符合书写要求的是()A.B.C. 5 D.【答案】A【解析】根据代数式的表达方式,可得答案.【详解】A.a+5符合要求,故A正确;B.系数应为假分数,故B错误;C.系数应写在字母的前面,故C错误;D.应写成分式的形式,故D错误.故选A.【点睛】本题考查了代数式,系数应为假分数,系数应写在字母的前面是解题的关键.8.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点()A.(1,-1) B.(-1,1) C.(-1,2) D.(1,-2)【答案】B【解析】试题分析:先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可.解:如图,“炮”位于点(﹣1,1).故选B.考点:坐标确定位置. 9.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)mm m +-=-D .22(2)(1)aa a a --=-+【答案】D【解析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.10.已如一组数据10861091311,111010,,,,,,,,,下列各组中频率为0.2的是( ) A .5.57.5- B .7.59.5-C .9.511.5-D .11.513.5-【答案】B【解析】首先由表格,知共有10个数据;再根据频数=频率×总数,知要使其频率为0.2,则应观察哪组的数据有2个即可. 【详解】根据表格,知这组数据共10个,要使其频率为0.2,则应观察哪组的数据有2个, A 、频数是1,故错误; B 、频数是2,故正确; C 、频数是4,故错误; D 、频数是1,故错误; 故选B.【点睛】此题考查频数与频率,解答本题的关键在于掌握频数=频率×总数.二、填空题题11.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于.【答案】70°.【解析】试题解析:∵a∥b,∠3=40°,∴∠1+∠2=180°-40°=140°,∠2=∠4,∵∠1=∠2,∴∠2=70°,∴∠4=∠2=70°.考点:平行线的性质.12.如图,是一块缺角的四边形钢板,根据图中所标出的结果,可得所缺损的∠A的度数是_____.【答案】73°【解析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+∠D=(4-2)×180°=360°,∠C=80°,∠D=89°,∴∠A=360°-∠ABC-∠C-∠D=73°,故答案为:73°.【点睛】本题考查了多边形的内角和外角,能求出四边形的内角和是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.13.如图,如果∠________=∠________,那么根据____________可得AD ∥BC.(写出一个正确的就可以)【答案】5 B 同位角相等,两直线平行(答案不唯一) 【解析】根据平行线的判定方法解答即可.【详解】如果∠5=∠B ,那么根据(同位角相等,两直线平行)可得AD ∥BC , 或:如果∠1=∠3,那么根据(内错角相等,两直线平行)可得AD ∥BC . 故答案为5,B ,同位角相等,两直线平行. 【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.14.如图,直线 AB ,CD 相交于点 O ,EO ⊥AB ,垂足为 O ,∠AOC :∠COE=3: 2,则∠AOD=___ .【答案】126º【解析】根据EO ⊥AB ,可得∠AOE =∠EOB =90°,再根据∠AOC :∠COE=3: 2,可得∠COE 的度数,进而可求∠BOC 的度数,然后利用对顶角的性质,即可得出∠AOD 的度数. 【详解】解:∵EO ⊥AB , ∴∠AOE =∠EOB =90°, ∠AOC :∠COE=3: 2, ∴∠COE=290=3632⨯+, ∴∠BOC=90°+36°=126°, ∴∠AOD=∠BOC=126°. 故答案为126°.点睛:掌握垂直得定义以及对顶角的性质是解题关键.如果两条直线垂直,那么这两条直线所夹的角为直角,反之,如果两条直线相交,有一个角为直角,那么这两条直线垂直.对顶角的性质:对顶角相等. 15.1的四次方根是___________. 【答案】±1【解析】根据(±1)4=1,即可得到答案. 【详解】∵(±1)4=1, ∴1的四次方根是:±1.故答案是:±1.【点睛】本题主要考查四次方根的意义,掌握四次方运算与开四次方运算是互逆运算,是解题的关键.16.如图是一组密码的一部分,为了保密,许多情况下采用不同的密码.请你运用所学知识,找到破译的“钥匙”.目前,据此“钥匙”已破译出“动脑思考”的真实意思是“装好收获”.请破译“正在做题”真实意思是_____.【答案】我爱数学【解析】根据题意找出破译的“钥匙”,以此来破译“正在做题”真实意思即可.【详解】∵“动脑思考”的真实意思是“装好收获”∴每个格子对应的是该格子往右1个单位长度,往上2个单位长度所对应的格子∴“正在做题”真实意思是“我爱数学”故答案为:我爱数学.【点睛】本题考查了图形类的规律问题,掌握破译的“钥匙”是解题的关键.17.已知关于x的方程3a﹣x=x+2的解为2,则代数式a2+1=______【答案】5【解析】把x=2代入方程,即可求出a,把a的值代入求出即可.【详解】把x=2代入方程3a-x=x+2,得:3a-2=4,解得:a=2,所以a2+1=22+1=5,故答案为5【点睛】本题考查了解一元一次方程和一元一次方程的解的应用,能求出a的值是解此题的关键.三、解答题18.如图,在Rt△ABC 中,AB=AC,∠BAC=90°,直线AE 是经过点A 的任一直线,且与直线BC 交于点 P(异于点 B 、C),BD ⊥AE ,垂足为 D ,CE ⊥AE ,垂足为 E .试问: (1)AD 与 CE 的大小关系如何?请说明理由.(2)写出线段 DE 、BD 、CE 的数量关系.(直接写出结果,不需要写过程.)【答案】(1)AD=CE,理由见解析;(2)若点P 在线段BC 上, DE=BD-CE ;若点P 在线段BC 的延长线上,DE=BD+CE.【解析】(1)利用等腰直角三角形的性质得出,∠CAE=∠ABD ,AB=AC 进而得出△ABD ≌△CAE 得出答案即可;(2)根据点P 在线段BC 上,以及点P 在线段BC 的延长线上,分别求出即可. 【详解】解;(1)AD=CE , 理由:∵∠BAC=90°, ∴∠BAD+∠CAE=90°, 又∵BD ⊥AE , ∴∠BAD+∠ABD=90°, ∴∠CAE=∠ABD , 在△ABD 和△CAE 中,CEA ADB CAE ABD AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE ∴AD=CE ;(2)如图1所示:若点P 在线段BC 上,∵△ABD ≌△CAE , ∴BD=AE ,AD=CE , ∴AE-AD=DE=BD-CE ,如图2所示:若点P 在线段BC 的延长线上,∵△ABD ≌△CAE , ∴BD=AE ,AD=CE , 则DE=AE+AD=BD+CE. 【点睛】本题考查了三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS ,ASA ,HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 19.已知关于x ,y 二元一次方程组326x y nx y +=⎧⎨-=⎩.(1)如果该方程组的解互为相反数,求n 的值及方程组的解; (2)若方程组解的解为正数,求n 的取值范围. 【答案】n>1【解析】(1)先根据题意求出n 的值,再求出方程组的解;(2)用含m 的代数式表示出x 、y ,根据x 的值为正数,y 的值为正数,得关于m 的一元一次不等式组,求解即可.【详解】(1)依题意得0x y +=,所以n=0026x y x y +=⎧⎨-=⎩解得2-2x y =⎧⎨=⎩(2)由326x y nx y+=⎧⎨-=⎩解得222x ny n=+⎧⎨=-⎩∴20 220 nn+>⎧⎨->⎩∴n>1【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.会用代入法或加减法解二元一次方程组是解决本题的关键.20.(1)如图,DE∥BC,∠1 = ∠3 ,请说明FG ∥ DC ;(2)若把题设中DE ∥ BC 与结论中FG ∥ DC 对调,命题还成立吗?试证明。

┃精选3套试卷┃2018届上海市浦东新区七年级下学期数学期末统考试题

┃精选3套试卷┃2018届上海市浦东新区七年级下学期数学期末统考试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 【答案】B【解析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A 、1+2<4,不能组成三角形;B 、4+6>8,能组成三角形;C 、5+6<11,不能够组成三角形;D 、2+3<5,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.2.若方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n ,的值分别是( ) A .2,1B .2,3C .1,8D .无法确定【答案】B【解析】方程组的解就是能够使方程组中的方程同时成立的未知数的解,把方程组的解代入方程组即可得到一个关于m ,n 的方程组,即可求得m ,n 的值.【详解】根据题意,得 2128m n n m -⎧⎨⎩=+=, 解,得m =2,n =1.故选:B .【点睛】本题主要考查了方程组解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解. 3.对于命题“若22a b >,则a b >”,下列四组关于a 、b 的值中,能说明这个命题是假命题的是( ) A .3a =,1b =B .3a =-,2b =C .3a =,1b =-D .1a =-,3b =【答案】B【解析】说明命题为假命题,即a 、b 的值满足a 2>b 2,但a >b 不成立,把四个选项中的a 、b 的值分别代入验证即可.【详解】解:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=9,b 2=4,且-3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a 2=9,b 2=1,且3>-1,满足“若a 2>b 2,则a >b”,故C 选项中a 、b 的值不能说明命题为假命题; 在D 中,a 2=1,b 2=9,且-1<3,此时满足a 2<b 2,得出a <b ,即意味着命题“若a 2>b 2,则a >b”成立,故D 选项中a 、b 的值不能说明命题为假命题;故选:B .【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.4.下列说法中,正确的是( )A .2是分数B .0是正整数C .227是有理数 D【答案】C【解析】根据分数,整数,有理数,无理数的定义即可解答.【详解】解:A B 、0既不是正整数,也不是负整数.故本选项错误;C 、227是分数,属于有理数,故本选项正确;D 4故选:C .【点睛】本题考查分数,整数,有理数,无理数的定义,熟悉掌握是解题关键.5.若ab>0,a+b<0,则()A .a 、b 都为负数B .a 、b 都为正数C .a 、b 中一正一负D .以上都不对【答案】A【解析】根据两数相乘同号为正,两数和为负必有负数判断即可【详解】由ab>0得a ,b 同号,又a+b<0,a ,b 同为负,故选A【点睛】本题主要是有理数乘法同号为正和加法运算的简单判断,比较简单6.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为【 】A.20° B.25° C.30° D.35°【答案】A。

2018-2019学年上海市浦东新区上南中学南校七年级下学期期末考试数学试卷

2018-2019学年上海市浦东新区上南中学南校七年级下学期期末考试数学试卷

2018-2019学年上海市浦东新区上南中学南校七年级下学期期末考试数学试卷一、填空题(本大题共14小题,每小题2分,满分28分)3 小1、(2019 期末1)若x 8,贝y x ________【答案】2【解析】根据立方根的定义求解,因为2的立方根等于8,所以8的立方根为22、(2019期末2)1的四次方根是__________【答案】 1【解析】解:1的四次方根是41 123、(2019 期末3)计算:273= ____________【答案】92【解析】根据分数指数幕,可得273 3 27 兮32 94、(2019期末4)用计算器比较大小:_________ (在横线上填写“ ”、“ ”、或“=”)【答案】【解析】因为 3.142, -,10 3.162,所以J05、(2019期末5)如图,|a b| .b2= ____________【答案】a【解析】解:由图可知: b 0 a,| b| a,所以a b 0,所以原式=a b ( b) a6、(2019 期末6)计算:,6 2・、3= __________【答案】6 2【解析】根据二次根式的乘法运算可得,原式=2 18 6.27、(2019期末7)上海迪士尼乐园是中国大陆首座迪士尼乐园,2016年6月16日开园,其8总面积约为3.90 10平方米,这个近似数有______________ 个有效数字【答案】3【解析】有效数字的计算方法:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关,3.90 108有3、9、0共3个有效数字& (2019期末8)在平面直角坐标系中,点A(2, 1)关于x轴对称的点的坐标是______________ 【答案】(2, -1)【解析】点关于坐标轴对称的坐标记忆方法是:结合图形记忆,或者关于横坐标的对称点,横坐标不变,纵坐标变成相反数;关于纵坐标对称的点,纵坐标不变,横坐标变成相反数. 故点(2,1)关于x轴对称的点的坐标为(2,-1)9、(2019期末9)在平面直角坐标系中,经过点Q(1,-5)且垂直于y轴的直线可以表示为直线____________【答案】y 5【解析】由题意得:经过点Q(1,-5)且垂直于y轴的直线可以表示为直线:y 510、(2019期末10)如图,直线AB、CD相交于点O, OE平分BOC,已知COE 65 ,【答案】50【解析】因为OE平分BOC,所以BOC 2 COE 2 65 130,所以BOD 180 BOC 180 130 5011、(2019期末11)如图,直线a、b被直线c所载,a//b,已知1 60,则2= __________【答案】120【解析】因为a//b, 1 60,所以3 1 60,所以2 180 1 180 60 12012、(2019期末12)如图,如果出一个正确的就可以)【答案】5; B ;同位角相等,两直线平行 【解析】解:如果5 B ,那么根据(同位角相等,两直线平行)可得 AD//BC ,或:如果 5 B ,根据(内错角相等,两直线平行)可得 AD//BC 13、( 2019期末13)如图,已知在ABC 中,AB=AC,点D 在边BC 上,要使BD=CD,还需添加一个条件,这个条件是 _____________ (只需填上一个正确的条件)等腰三角形的三线合一14、( 2019期末14)在 ABC 中,AB=AC,把 ABC 折叠,使点B 与点A 重合,折痕交 AB于点M ,交BC 于点N.如果 CAN 是等腰三角形,则 B 的度数为 _____________【答案】 B 45或36【解析】因为把 ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是 AB 的中垂线, NB=BA , B BAN , Q AB AC则 C BAN x . ( 1)当 AN=NC 时, CAN____ ,那么根据 ____________ 可得AD//BC (写CAD 或者ADBC (只填一个)【解析】解:在 ABC中,AB=AC , BADCAD , BD CD ;或者在 ABC 中,AB=AC , AD BC ,BD CD ;故答案为:BAD CAD 或者AD BC .考查B C ,设 B x ,C x ,在ABC 中,根据三角形 内角和定理得 4x 180,得 x 45,故 B 45 ;(2)当 AN=AC 时,ANC而 ANC BAN ,故此时不成立; (3)当 CA=CN 时,NAC ANC180 x2 ,于是得x x罟180,解得x 36 .综上所述: B 45或36——QQA15、( 2019 期末 15 )在 0、 2、72 诉、3.1416、0.23、一、 73位数无限且相邻两个“3”之间“7”的个数依次加1个),这十个数中,无理数的个数是(个)共4个,故选D16、( 2019期末16)下列运算中,正确的是(【A 】.2)2【C 】正确;故此题选 D、8-、0.3737737773L (它的【A 】1 【B 】2 【C 】3【D 】4【答案】D【解析】有理数是:0、0、2、3.1416、0.23、22、8丄共7 36个;无理数是、0.3737737773L (它的位数无限且相邻两个 “ 3 ”之间 “7 ”的个数依次加12、、5【D 】'、(3) ( 5) 【答案】D【解析】A 、、.躬、2不是同类二次根式,不能合并,因此A 错误;3 2.3 2 5 2.6,因此 B 错误;C 、•.( 2)25 ^5,因此C 错误;2分,满分12分)17、(2019期末17)如图,在ABC中, BAC 90,且AD BC 于点D,B 35,那么下列说法中错误的是(离是线段 AB 的长,正确;因此此题选 B 18、(2019 期末 18 )下列说法中,正确的有( ①如果两条直线被第三条直线所载, 那么内错角相等; 直线与已知直线平行; ③联结直线外一点与直线上各点的所有线段中, 垂线段最短; ④如果 两个角相等,那么这两个角是对顶角A 】 0 个B 】 1 个C 】 2 个D 】 3 个答案】 C【解析】①内错角不一定相等,应加条件两直线平行才能得出内错角相等,因此 ②经过直线外的一点, 有且只有一条直线与已知直线平行, 正确; ③联结直线外一点与直线 上各点的所有线段中,垂线段最短, 正确;④如果两个角相等,那么这两个角不一定是对顶19、(2019 期末 19)下列长度的三根木棒,不能构成三角形框架的是( 【 A 】 7cm ,【 B 】 5cm , 【C 】 5cm ,【 D 】 5cm ,答案】格纸中的两个格点(即正方形的顶点) ,在这个5X 5的方格纸中,找出格点 C 使 ABC 的 面积为2个平方单位,则满足条件的格点C 的个数是(【A 】直线AB 与直线BC 的夹角为 【B 】直线AC 与直线AD 的夹角为 【C 】点 【D 】点 C 到直线 B 到直线 AD 的距离是线段 AC 的距离是线段 35 55CD 的长AB 的长答案】解析】 A 、因为B 35 ,所以直线 AB 与 BC 的夹角为35,故A 正确;B 、因为BAC 90 ,且 AD BC ,所以 CAD35 ,故直线 AC 与 AD 夹角为 35 ,因此B 错误;C 、点C 到直线AD 的距离是线段CD 的长,正确;D 、点B 到直线AC 的距②经过直线外的一点, 有且只有一条 A 错误; 角,还要强调位置关系,所以错误;因此正确的说法有 2 个 .选 C10cm , 4cm ; 7cm , 11cm ;解析】 A 、 4+7>10 ,则能构成三角形; B 、 5+7>11,能构成三角形; C 、 5+7>10 ,能构成 三角形; D 、 5+10=15,不能构成三角形 .因此选 D20、(2019 期末 20 )在如图的方格纸中, 每个小方格都是边长为1的正方形,点A 、B 是方【B 】4 【C 】3 【D 】2 【答案】A【解析】满足条件的 C 点有5个,如图平行于 AB 的直线上,与网格的所有交点就是.选A.【答案】4.3 3【答案】6三、简答题(本大题共 6题,每小题5分,满分30 分)21、( 2019 期末 21)计算:2— \64,132 1223( 8)2 ;1【答案】14【解析】解:323而^3:层3歹22、( 2019 期末 22)计算:(3 2.3) 3、3 3" (.5 2)0【解析】解:原式 「3 2 了 13 2 3 3 1 = 4.3 323、( 2019期末23)利用幕的运算性质 计算:32 3262.1 1 1丄【解析】原式=3 22 23 26 3 2224、(2019期末24)如图,点A、B、C和点D、E、F分别在同一直线上,A试说明 与 相等的理由 解:因为 A F (已知) 所以 DF//AC ( _________________________________ ) 所以 D DBA ( ______________________________________ ) 又因为 C D (已知),所以 C DBA . 所以 ______ // ______ ; 所以 _____ ; 又______;所以【答案】内错角相等,两直线平行;两直线平行,内错角相等;【解析】解:因为 A F (已知)所以DF//AC ( 内错角相等,两直线平行•)所以 D DBA (两直线平行,内错角相等)又因为 C D (已知),所以 C DBA 所以 DB // CE 所以 2又2 ;所以25( 2019期末25)如图,在 ABC 和 A'B'C'中,已知 A A', B试把下面运用“叠合法”说明ABC 和 A'B'C'全等的过程补充完整:说理过程:把 ABC 放到 A'B'C'上,使点A 与点A'重合,因为 _____________________ ,所以可以使 _____________________ ,并使点C 和C'在AB ( A'B')同一侧,这时点 A 与A'重合, 点B 与B'重合,由于 _______________ ,因此, _______________________________ ;DB ; CE ; 2;2.B', AB A'B',由于_____________ ,因此,______________________________ ;于是点C (射线AC与BC的交点)与点C'(射线A'C'与B'C'的交点)重合,这样__________________________________ . 【答案】AB A'B' ; AB与A'B'重合;A A';射线AC与射线A'C'叠合;B B';射线BC与射线B'C'叠合;ABC与A'B'C'重合即ABC与A'B'C'全等。

最新最新题库上海市浦东新区七年级下学期期末数学试卷及参考答案(五四学制)

最新最新题库上海市浦东新区七年级下学期期末数学试卷及参考答案(五四学制)

D.( a+1, b﹣ 3)
【解答】 解:由图可得,点 A、 B 的对应点分别为点 C、 D,而 B( 1, 3), D (2, 0),
∴线段 AB 向右平移 1 个单位,向下平移 3 个单位得到线段 CD ,
又∵ P( a, b),
∴Q( a+1, b﹣ 3),
故选: D.
二、填空题(本大题共 12 小题,每题 -2018 学年上海市浦东新区七年级下学期期末数学试卷(五
6.( 2 分)线段 AB 经过平移得到线段 CD,其中点 A、 B 的对应点分别为点 C、 D ,这四个 点都在如图所示的格点上,那么线段 AB 上的一点 P(a,b)经过平移后,在线段 CD 上
的对应点 Q 的坐标是(

第 7 页(共 19 页)
A .( a﹣ 1,b+3 ) B .(a﹣ 1, b﹣ 3) C.( a+1, b+3 )
故选: B.
2.( 2 分)
在两个连续整数
a 和 b 之间( a< b),那么
b
a
的值是(

A .5
B.6
C. 8
D.9
【解答】 解:∵ 2
< 3,
∴a= 2, b= 3, ∴ab= 23= 8,
故选: C.
3.( 2 分)如图,直线 l 1∥l2,∠ 1= 110°,∠ 2= 130°,那么∠ 3 的度数是(
2018(保留两个有效数字) ,结果是
3
2.0× 10

【解答】 解:按定义,将 2018 用科学计数法表示为 2.18× 103,保留两位有效数字为 2.0×
103. 故答案为: 2.0× 103
12.( 3 分)如图,把一块三角板的 = 80 °.

沪科版2018-2019学年度第二学期期末考试七年级数学试卷(含答案)

沪科版2018-2019学年度第二学期期末考试七年级数学试卷(含答案)

2018-2019学年度第二学期期末考试七年级数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1•— 8的立方根是()A. 2B. -2C. ±2D. - 3/22.下列实数中,是无理数的是()J^3- B . — 43C. 0.101001D. 23.若实数x和y满足x>y,则下列式子中错误的是()A. 2x-6>2y— 6 B . x+1>y+1x yC. — 3x > — 3y D .-3 34.如图,下列各组角中,是对顶角的一组是()A./I 和/2B./2 和/3C./2 和/4D./I 和/55.计算a・a5—(2a3)2的结果为()A. a6—2a5B . -a6C. a6—4a5D . —3a62 2a b_ ab6.化简ab的结果是()b — aA. — ab B . abC. a2- b2D . b2—a27.如图,已知a//b,直角三角板的直角顶点在直线 b 上,若/ 1 = 58 则下列结论错误的是( ) A. /3=58°B. /4=122°C. /5=42°D. /2=58°8 .如图,四个实数mn n, p, q 在数轴上对应的点分别为 M, N, P, Q,若 n + q = 0,则m, n, p, q 四个实数中,绝对值最小的是( )A. p B . q C . m D . nM Q.第8题图9 .如图,以表示2的点为圆心,以边长为1的正方形的对角线长为半径画 弧与数轴交于点A,则点A 表示的数为( )A. 2B. 2-1C.啦-2 D . 2-啦x>a,10.不等式组」的整数解有4个,则a 的取值范围是()A. -2<a<-1 B . - 2<a<- 1C. — 20 a& — 1 D . — 2< a0 — 1二、填空题(本大题共4小题,每小题5分,满分20分) 11 .分解因式:3x 2 —3y2 =.12 .我们的生活离不开氧气.已知氧原子的半径大约是 0.000000000074米, 0.000000000074米用科学记数法表示为____________ 米. 13 .夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美 好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为 800m 且桥宽忽略不计,则小桥的总长为 m.14 .有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点展<3有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段 中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论 是(填序号).三、(本大题共2小题,每小题8分,满分16分)16.如图,用相同的小正方形按照某种规律进行摆放.□□□□ □□□□ □□□□□ □□□匚□□□□□□□□□□□□…□□ □□□口 □ □□□□ □□□□□□ □□□ □□□□ □ □□□□ □□□□□□第1个图 第2个图第3个图第4个图根据图中小正方形的排列规律解密卜列问题:(1)第5个图中有 个小正方形,第6个图中有 个小正方形;(2)写出你猜想的第n 个图中小正方形的个数是 (用含n 的式 子表示). 四、(本大题共2小题,每小题8分,满分16分)A…,’x—1<2 ①, — 17.解不等式组」 … 请结合题意填空,完成本题的解答.» + 3》x —1②.(1)解不等式①,得; (2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;-4 -3 -2-1 0 1 2 3 4(4)该不等式组的解集为.18 .外商要买项链和发箍一共 48个,项链每条10元,发箍每个13元,但 总费用不能超过580元,发箍好卖,外商要买尽可能多的发箍,问外商最多能 买到发箍多少个?五、(本大题共2小题,每小题10分,满分20分) 19 .已知实数 m, n 满足mHn = 6, mn= — 3. ⑴求(m- 2)( n —2)的值;⑵求m+n 2的值.八入 一 a 2 — 1 15.先化简,再求化存a-2aa 1 [,其中 a= -8.20.甲、乙两名同学的家与学校的距离均为3000米.甲同学先步行600米, 然后乘公交车去学校;乙同学骑自行车去学校.已知乙骑自行车的速度是甲步行速度的2倍,公交车的速度是乙骑自行车的速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求甲步行的速度;(2)当甲到达学校时,乙同学离学校还有多远?六、(本题满分12分)21.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%平时成绩占20%并且当综合评价彳#分大于或等于80分时,该生综合评价为A等.(1)陈海同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则陈海同学测试成绩和平时成绩各得了多少分?(2)某同学的测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果某同学的综合评价要达到A等,那么他的测试成绩至少要得多少分?七、(本题满分12分) 22 .如图a,点E 是直线AB, CD 内部一点,AB// CQ 连接EA ED (1)探究猜想:①若/A= 22 , /D= 61° ,则/ AED 的度数为; ②若/A= 32 , /D= 45° ,则/ AED 的度数为;③猜想图a 中/AED / EAB / EDC 之间的关系并说明理由. (2)拓展应用:如图b,射线FE 与长方形ABCD 勺边AB 交于点E,与边CD 交于点F,①②③④ 分别是被射线FE 隔开的四个区域(不含边界,其中区域①②位于直线AB 的上方, 区域③④位于直线AB 的下方、直线CD 的上方),点P 是位于以上四个区域内的 点,连接PE, PF,猜想/ PEB 八、(本题满分14分)23 .如图①,长方形OABC 勺边OA 在数轴上,O 为原点,长方形OABC 勺面 积为12, OC 边的长为3.将长方形OABCfi ■数轴水平移动,移动后的长方形记为 O' A B' C',移动后的长方形 O' A B' C'与原长方形OABC 勺重叠部分(如 图②中阴影部分)的面积记为S,设点A 的移动距离AA =x.(1)填空:数轴上点A 表示的数为; (2)求当S=4时x 的值;(3)长方形纸片平移到某一位置时,S 恰好等于原长方形OABCH 积的一半, 求此时x 的值和数轴上点A 表示的数;/ PFC / EPF 之间的关系(不要求写出过程).图a 图16 . (1)41 55(4 分) ⑵ n 2+ 3n+1(8 分)17 .解:(1) x<3(2 分) (2) x>-4(4 分) ⑶如图所示.(6分)-4 -3 -2 -I 0 I 2 3 4(4) -4<x<3(8 分)18.解:设外商买了发箍x 个,则买了项链(48—x )条.根据题意得10(48 —x )+13x0 580, (3分)解得xw100(6分)因为x 为整数,所以x 的最大值为 33.(7 分)答:外商最多能买到发箍33个.(8分)19.解:(1)因为 m+ n = 6, mn= -3,所以(m- 2)(n —2)=mn- 2m- 2n+ 4 = mn- 2(叫 n )+4= —3 —2X6+ 4=—11.(5 分)⑷若点D 为线段AA 的中点,点E 在线段OO 上,且。

2018-2019学年沪科版七年级数学第二学期期末测试卷(含答案)

2018-2019学年沪科版七年级数学第二学期期末测试卷(含答案)

2018-2019学年七年级(下)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1.下列计算正确的是()A.﹣ =﹣3 B.(﹣)2=64 C. =±25 D. =3 2.下列数据中准确数是()A.上海科技馆的建筑面积约98000平方米B.“小巨人”姚明身高2.26米C.我国的神州十号飞船有3个舱D.截止去年年底中国国内生产总值(GDP)676708亿元3.如图,已知直线a、b被直线c所截,那么∠1的同旁内角是()A.∠3 B.∠4 C.∠5 D.∠64.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或125.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(﹣2,﹣1)和(3,1),那么表示棋子“将”的点的坐标为()A.(1,2)B.(1,0)C.(0,1)D.(2,2)二、填空题:(本大题共12题,每题2分,满分24分)7.计算: = .8.(﹣8)2的六次方根为.9.在π(圆周率)、﹣1.5、、、0.五个数中,无理数是.10.计算:(﹣)×÷2= (结果保留三个有效数字).11.在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)12.已知点P(﹣1,a)与点Q(b,4)关于x轴对称,那么a+b= .13.已知点M在第二象限,它到x轴、y轴的距离分别为2个单位和3个单位,那么点M的坐标是.14.如图,已知直线a∥b,将一块三角板的直角顶点放在直线a上,如果∠1=42°,那么∠2= 度.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为.16.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是.17.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,等于.OF∥AC,交边BC于点E、F,如果BC=10,那么C△OEF18.如图,在△ABC中,∠CAB=65°,把△ABC绕着点A逆时针旋转到△AB'C',联结CC',并且使CC'∥AB,那么旋转角的度数为度.三、计算题,写出计算过程(本大题共4题,每题6分,满分24分)19.计算:+﹣.20.计算:(﹣)2﹣(+)2.21.计算:﹣3÷()(结果表示为含幂的形式).22.解方程:()3=﹣512.四、解答题(本大题共5题,满分40分,其中第23、24每题6分,第25、26每题8分,第27题12分)23.阅读并填空:如图,在△ABC中,点D、P、E分别在边AB、BC、AC上,且DP∥AC,PE∥AB.试说明∠DPE=∠BAC的理由.解:因为DP∥AC(已知),所以∠=∠().因为PE∥AB(已知),所以∠=∠()所以∠DPE=∠BAC(等量代换).24.如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26°方向,从B处测得灯塔C在北偏西52°方向,求B处到达塔C的距离.25.如图,在平面直角坐标系内,已知点A的位置;点B与点(﹣3,﹣1)关于原点O 对称;将点A向下平移5个单位到达点C.(1)写出A,B,C三点的坐标,并画出△ABC;(2)判断△ABC的形状,并求出它的面积;(3)过点B作直线BD平行于y轴,并且B、D两点的距离为3个单位,描出点D,并写出点D的坐标.26.如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1= (角平分线定义).同理:∠2= .因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(),所以(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,无需说理过程:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(3)如图④,△ABC中,∠A=90°,BF、CF分别平分∠ABC、∠ACB,CD是△ABC的外角∠ACE的平分线.试说明DC=CF的理由.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题2分,满分12分)1.下列计算正确的是()A.﹣ =﹣3 B.(﹣)2=64 C. =±25 D. =3【考点】二次根式的乘除法;二次根式的性质与化简.【专题】计算题;实数.【分析】原式各项利用二次根式性质及乘除法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣|﹣3|=﹣3,正确;B、原式=8,错误;C、原式=|﹣25|=25,错误;D、原式==,错误,故选A【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.2.下列数据中准确数是()A.上海科技馆的建筑面积约98000平方米B.“小巨人”姚明身高2.26米C.我国的神州十号飞船有3个舱D.截止去年年底中国国内生产总值(GDP)676708亿元【考点】近似数和有效数字.【分析】根据精确数与近似数的定义对各选项进行判断.【解答】解:A、上海科技馆的建筑面积约98000平方米,98000为近似数,所以A选项错误;B、“小巨人”姚明身高2.26米,2.26为近似数,所以B选项错误;C、我国的神州十号飞船有3个舱,3为准确数,所以C选项正确;D、截止去年年底中国国内生产总值(GDP)676708亿元,676708为近似数,所以D选项错误.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.3.如图,已知直线a、b被直线c所截,那么∠1的同旁内角是()A.∠3 B.∠4 C.∠5 D.∠6【考点】同位角、内错角、同旁内角.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解答】解:∵直线a、b被直线c所截,∴∠1的同旁内角是∠4.故选(B)【点评】本题主要考查了同旁内角的概念,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.5.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【考点】等边三角形的性质.【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.【点评】本题考查了等边三角形的性质、三角形内角和定理、平角的定义;熟练掌握等边三角形的性质和三角形内角和定理是解决问题的关键.6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(﹣2,﹣1)和(3,1),那么表示棋子“将”的点的坐标为()A.(1,2)B.(1,0)C.(0,1)D.(2,2)【考点】坐标确定位置.【分析】直接利用已知点的坐标确定原点的位置,进而得出棋子“将”的点的坐标.【解答】解:如图所示:由题意可得,“帅”的位置为原点位置,则棋子“将”的点的坐标为:(1,0).故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.二、填空题:(本大题共12题,每题2分,满分24分)7.计算: = 3 .【考点】分数指数幂.【专题】计算题.【分析】利用=(a≥0)进行计算即可.【解答】解: ==3,故答案是3.【点评】本题考查了分数指数幂.解题的关键是知道开方和分数指数幂之间的关系.8.(﹣8)2的六次方根为±2 .【考点】分数指数幂.【分析】根据分数指数幂,即可解答.【解答】解:± =±=±2,故答案为:±2.【点评】本题考查了分数指数幂,解决本题的关键是熟记分数指数幂.9.在π(圆周率)、﹣1.5、、、0.五个数中,无理数是π、.【考点】无理数.【分析】无理数常见的三种类型(1)开不尽的方根(2)特定结构的无限不循环小数(3)含有π的绝大部分数,如2π.【解答】解:在π(圆周率)是无理数,﹣1.5是有理数,是分数,是有理数,是无理数,0.无限循环小数是有理数.故答案为:π、.【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.10.计算:(﹣)×÷2= ﹣0.242 (结果保留三个有效数字).【考点】二次根式的乘除法;近似数和有效数字.【专题】计算题;实数.【分析】原式利用二次根式的乘除法则计算,取其近似值即可.【解答】解:原式=﹣××=﹣≈﹣0.242,故答案为:﹣0.242【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.11.在数轴上,实数2﹣对应的点在原点的左侧.(填“左”、“右”)【考点】实数与数轴.【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.12.已知点P(﹣1,a)与点Q(b,4)关于x轴对称,那么a+b= ﹣5 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点横坐标相同,纵坐标互为相反数即可得出结果.【解答】解:∵点P(﹣1,a)与点Q(b,4)关于x轴对称,∴b=﹣1,a=﹣4,∴a+b=﹣1+(﹣4)=﹣5,故答案为:﹣5.【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,解决本题的关键是熟记关于x轴对称的点横坐标相同,纵坐标互为相反数.13.已知点M在第二象限,它到x轴、y轴的距离分别为2个单位和3个单位,那么点M的坐标是(﹣3,2).【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点M在第二象限,到x轴、y轴的距离分别为2个单位和3个单位,∴点M的横坐标是﹣3,纵坐标是2,∴点M的坐标是(﹣3,2).故答案为:(﹣3,2).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.如图,已知直线a∥b,将一块三角板的直角顶点放在直线a上,如果∠1=42°,那么∠2= 48 度.【考点】平行线的性质.【分析】由平行可得∠2=∠3,又结合直角定义可得出∠3+∠1=90°,可求得答案.【解答】解:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣∠1=48°,∴∠2=48°,故答案为:48;【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为29°.【考点】平行线的性质;三角形的外角性质.【分析】根据AB∥CD,求出∠DFE=56°,再根据三角形外角的定义性质求出∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=56°,又∵∠C=27°,∴∠E=56°﹣27°=29°,故答案为29°.【点评】本题考查了平行线的性质、三角形的外角的性质,找到相应的平行线是解题的关键.16.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是AC=ED或∠A=∠FED或∠ABC=∠F .【考点】全等三角形的判定.【分析】要使△ABC≌△EFD,已知CB=DF,∠C=∠D,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:要使△ABC≌△EFD,已知CB=DF,∠C=∠D,则可以添加AC=ED,运用SAS来判定其全等;也可添加一组角∠A=∠FED或∠ABC=∠F运用AAS来判定其全等.故答案为:AC=ED或∠A=∠FED或∠ABC=∠F.【点评】本题主要考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.17.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,OF∥AC,交边BC于点E、F,如果BC=10,那么C等于10 .△OEF【考点】等腰三角形的判定与性质;平行线的性质.【分析】由OB,OC分别是△ABC的∠ABC和∠ACB的平分线,OE∥AB、OF∥AC,可推出BE=EO,OF=FC,显然△OEF的周长即为BC的长度.【解答】解:OB,OC分别是∠ABC和∠ACB的平分线∴∠ABO=∠OBF,∠ACO=∠OCF∵OE∥AB,OF∥AC∴∠ABO=∠BOE,∠ACO=∠COF∴△BOE和△OCF为等腰三角形∴BE=EO,OF=FC∴△OEF的周长=OE+EF+OF=BE+EF+FC=BC=10.故答案为:10【点评】此题主要考查了平行线性质、角平分线性质以及等腰三角形的性质,难度中等.解题的关键是判定△BOE与△COF是等腰三角形.18.如图,在△ABC中,∠CAB=65°,把△ABC绕着点A逆时针旋转到△AB'C',联结CC',并且使CC'∥AB,那么旋转角的度数为50 度.【考点】旋转的性质.【专题】计算题.【分析】先画出几何图形,再根据旋转的性质得旋转角等于∠CAC′,AC=AC′,接着根据平行线的性质得∠ACC′=∠CAB=65°,然后根据等腰三角形的性质和三角形内角和可计算出∠CAC′的度数.【解答】解:如图,∵△ABC绕着点A逆时针旋转到△AB'C',∴旋转角等于∠CAC′,AC=AC′,∴∠ACC′=∠AC′C,∵CC'∥AB,∴∠ACC′=∠CAB=65°,∴∠CAC′=180°﹣65°﹣65°=50°.故答案为50.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是画出几何图形和判断△ACC′为等腰三角形.三、计算题,写出计算过程(本大题共4题,每题6分,满分24分)19.计算:+﹣.【考点】二次根式的加减法.【分析】依据二次根据加减法则计算即可.【解答】解:原式=(+﹣)×=.【点评】本题主要考查的是二次根式的加减,掌握二次根式的加减法则是解题的关键.20.计算:(﹣)2﹣(+)2.【考点】二次根式的混合运算.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3﹣2+2﹣3﹣2﹣2=﹣4.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.21.计算:﹣3÷()(结果表示为含幂的形式).【考点】分数指数幂.【分析】先算幂的乘方,再根据分数指数幂的乘法法则计算即可求解.【解答】解:﹣÷()=﹣÷=﹣÷32=﹣=﹣.【点评】考查了分数指数幂,关键是熟练掌握计算法则正确进行计算.22.解方程:()3=﹣512.【考点】立方根.【分析】利用立方根定义求出解即可.【解答】解:()3=﹣512,=﹣8,x=﹣32.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.四、解答题(本大题共5题,满分40分,其中第23、24每题6分,第25、26每题8分,第27题12分)23.阅读并填空:如图,在△ABC中,点D、P、E分别在边AB、BC、AC上,且DP∥AC,PE∥AB.试说明∠DPE=∠BAC的理由.解:因为DP∥AC(已知),所以∠BDP =∠BAC (两直线平行,同位角相等).因为PE∥AB(已知),所以∠DPE =∠BDP (两直线平行,内错角相等)所以∠DPE=∠BAC(等量代换).【考点】平行线的性质.【分析】先根据DP∥AC得出∠BDP=∠BAC,再由PE∥AB得出∠DPE=∠BDP,利用等量代换即可得出结论.【解答】解:因为DP∥AC(已知),所以∠BDP=∠BAC(两直线平行,同位角相等).因为PE∥AB(已知),所以∠DPE=∠BDP(两直线平行,内错角相等),所以∠DPE=∠BAC(等量代换).故答案为:BDP,BAC,两直线平行,同位角相等;DPE,BDP,两直线平行,内错角相等.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等.24.如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26°方向,从B处测得灯塔C在北偏西52°方向,求B处到达塔C的距离.【考点】等腰三角形的判定与性质;方向角.【专题】应用题.【分析】根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【解答】解:据题意得,∠A=26°,∠DBC=52°,∵∠DBC=∠A+∠C,∴∠A=∠C=26°,∴AB=BC,∵AB=20×=35,∴BC=35(海里).∴B处到达塔C的距离是35海里.【点评】本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.25.如图,在平面直角坐标系内,已知点A的位置;点B与点(﹣3,﹣1)关于原点O 对称;将点A向下平移5个单位到达点C.(1)写出A,B,C三点的坐标,并画出△ABC;(2)判断△ABC的形状,并求出它的面积;(3)过点B作直线BD平行于y轴,并且B、D两点的距离为3个单位,描出点D,并写出点D的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据题意分别得出B,C点坐标,即可得出△ABC;(2)利用已知图形得出△ABC的形状以及三角形面积;(3)利用B点坐标以及BD的长即可得出符合题意的图形.【解答】解:(1)A(﹣2,1),B(3,1),C(﹣2,﹣4),所以△ABC即为所求作的三角形.(2)由题意可得:AB=|3﹣(﹣2)|=5,AC=|1﹣(﹣4)|=5,∵AB=AC=5,且∠A=90°,∴△ABC为等腰直角三角形,=•AB•AC=×5×5=;因此S△ABC(3)如图,点D的坐标为:(3,4)或(3,﹣2).【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平面内线段长是解题关键.26.如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】计算题;证明题;图形的全等.【分析】AC与BD垂直,理由为:由AB=AD,利用等边对等角得到一对角相等,利用等式性质得到∠BDC=∠DBC,利用等角对等边得到DC=BC,利用SSS得到三角形ABC与三角形ADC全等,利用全等三角形对应角相等得到∠DAC=∠BAC,再利用三线合一即可得证.【解答】解:AC⊥BD,理由为:∵AB=AD(已知),∴∠ADB=∠ABD(等边对等角),∵∠ABC=∠ADC(已知),∴∠ABC﹣∠ABD=∠ADC﹣∠ADB(等式性质),即∠BDC=∠DBC,∴DC=BC(等角对等边),在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠DAC=∠BAC(全等三角形的对应角相等),又∵AB=AD,∴AC⊥BD(等腰三角形三线合一).【点评】此题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1= ∠ABC (角平分线定义).同理:∠2= ∠ACB .因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(三角形的内角和等于180°),所以∠D=180°﹣(∠ABC+∠ACB)(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,无需说理过程:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是∠D=90°﹣∠A .(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是∠D=∠A .(3)如图④,△ABC中,∠A=90°,BF、CF分别平分∠ABC、∠ACB,CD是△ABC的外角∠ACE的平分线.试说明DC=CF的理由.【考点】三角形的外角性质;三角形内角和定理.【专题】推理填空题.【分析】(1)、(2)、(3)关键“三角形的一个内角等于和它不相邻的两个外角的和”、“三角形的内角和等于180°”及等式的性质分析求解.(4)利用前三个小题的结论,证明∠D=∠DFC即可.【解答】(1)解:因为BD平分∠ABC(已知),所以∠1=∠ABC (角平分线定义).同理:∠2=∠ACB.因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°(三角形的内角和等于180°),所以∠D=180°﹣(∠1+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A(等式性质).即:∠D=90°+∠A.(2)解:(i)∠D与∠A之间的等量关系是:∠D=90°﹣∠A.理由:∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∴∠DBC+∠DCB+∠D=180°,∴∠A+∠ABC+∠ACB=180°,而∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A﹣2∠D=180°,∴∠D=90°﹣(ii)∠D与∠A之间的等量关系是:∠D=∠A.理由:∵BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线,∴∠DCE=∠DBC+∠D,∵∠A+2∠DBC=2∠DCE∴∠A+2∠DBC=2∠DBC+2∠D∴∠A=2∠D即:∠D=(3)解:因为 BD平分∠ABC(已知),所以∠DBC=∠ABC(角平分线定义).同理:∠ACF=∠ACB,∠DCA=∠DCE=∠ACE.∵∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D(三角形的一个外角等于两个不相邻的内角和),∴∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC)=∠A.又∵∠A=90°(已知),∴∠D=45°(等式性质).∵∠ACB+∠ACE=180°(平角的定义),∴∠FCD=∠FCA+∠ACD=(∠BCA+∠ACE)=90°.∵∠D+∠DFC+∠FCD=180°(三角形的内角和等于180°),∴∠DFC=45°(等式性质).∴∠D=∠DFC(等量代换).∴DC=FC.(等角对等边).【点评】本题考查了三角形的外角性质的应用,能熟记三角形外角性质定理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.。

zjm┃精选3套试卷┃2019届上海市浦东新区七年级下学期期末监测数学试题

zjm┃精选3套试卷┃2019届上海市浦东新区七年级下学期期末监测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知,则的值为()A.B.C.D.【答案】A【解析】直接利用同底数幂的乘除运算法则计算得出答案【详解】解:∴2÷=36÷3=12故选:A【点睛】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.将图中的叶子平移后,可以得到的图案是()A.B.C.D.【答案】A【解析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.3.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】A【解析】解:设多边形的边数是n ,根据题意得,(n ﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C .【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.4.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【答案】D 【解析】试题分析:∵ D 为BC 中点,∴CD=BD ,又∵∠BDO=∠CDO=90°,∴在△ABD 和△ACD 中, AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ;∵EF 垂直平分AC ,∴OA=OC ,AE=CE ,在△AOE 和△COE 中, 0A 0C OE 0E AE CE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△COE ;在△BOD 和△COD 中,BD CD BDO CDO OD 0D =⎧⎪∠=∠⎨⎪=⎩,∴△BOD ≌△COD ; 在△AOC 和△AOB 中,AC AB OA 0A OC 0B =⎧⎪=⎨⎪=⎩,∴△AOC ≌△AOB ;所以共有4对全等三角形,故选D .考点:全等三角形的判定.5.下列调查方式,你认为最合适的是( )A .了解北京市每天的流动人口数,采用抽样调查方式B .旅客上飞机前的安检,采用抽样调查方式C .了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D .日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、了解北京市每天的流动人口数,采用抽样调查方式,正确;B 、旅客上飞机前的安检,采用全面调查方式,故错误;C 、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D 、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.对于代数式:,下列说法正确的是( ) A .有最大值B .有最小值C .有最小值D .无法确定最大最小值 【答案】B 【解析】首先将代数式化为,即可判定其最值. 【详解】解:代数式可化为: =, ∴当时,代数式有最小值1,故选B.【点睛】此题主要考查完全平方公式,掌握完全平方公式的结构特点,即可解题.7.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A .-3B .-1C .1D .-3或1 【答案】D【解析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键. 8.已知,则的大小关系是( ) A .B .C .D . 【答案】B【解析】先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】,,,.故选:.【点睛】此题主要考查幂的运算,准确进行计算是解题的关键.9.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠α=∠DCE+∠B,∴∠α=45°+30°=75°.故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.10.如图,两条直线a、b被第三条直线c所截,若直线a∥b,∠1=80°,则∠2=()A.80°B.100°C.120°D.130°【答案】B【解析】根据平行线的性质:两直线平行,同位角相等;则可以直接选出答案.【详解】∵a∥b,∴∠1=∠3=80°,∵∠3+∠2=180°,∴∠2=180°﹣80°=100°,故选:B.【点睛】本题考查了学生对平行线性质的掌握,掌握平行线同位角相等的性质是解决此题的关键.二、填空题题11.在图中,x的值为__________.【答案】135【解析】103o的邻补角=(180-103)o=77o,∵四边形的内角和为360度,即x o +65 o +83 o +77 o=360 o∴x=360-65-83-77=135.故答案是:135.12.如图,已知∠1=∠2=∠3=65°,则∠4的度数为___________.【答案】115°.【解析】根据平行线的判定与性质,可得∠3=∠5=65°,又根据邻补角可得∠5+∠4=180°,即可得出∠4的度数.【详解】解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.【点睛】本题主要考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.13.使代数式135x-的值不小于﹣7且不大于9的x的最小整数值是_____.【答案】﹣14【解析】首先根据题意列出不等式,再根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数值即可.【详解】依题意得-7≤135x -≤9解得443-≤x≤12所以x的最小整数值是-14故答案为:-14【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是_____.【答案】1【解析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【详解】根据题意得3﹣a+2a+1=0,解得:a=﹣4,∴这个正数为(3﹣a)2=72=1,故答案为:1.【点睛】本题考查了平方根的性质,熟知一个正数有两个平方根,它们互为相反数是解题的关键.15.已知关于x,y的二元一次方程组336x y kx y+=⎧⎨+=⎩的解互为相反数,则k的值是_____.【答案】-1【解析】方程组两方程相加表示出x+y,根据x+y=0求出k的值即可.【详解】解:336 x y k x y+=⎧⎨+=⎩①②①+②得:3(x+y)=k+1,解得:x+y=k63+,由题意得:x+y=0,可得k63+=0,解得:k=﹣1,故答案为:﹣1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是_____.【答案】36【解析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解【详解】如图,过点O作OB⊥AB于E作OF ⊥AC 于F,∵OB 、OC 分別平分∠ABC 和∠ACB,OD ⊥BC∴OE=OD=OF=4△ABC 的面积=12×18×4=36 故答案为36 【点睛】此题考查角平分线的性质,解题关键在于做辅助线 17.x 的12与5的和不大于3,用不等式表示为______________ 【答案】2x +5≤3 【解析】根据x 的12,即2x ,然后与5的和不大于3得出即可. 【详解】解:又题意得:2x +5≤3 故答案为:2x +5≤3. 【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.三、解答题18.已知直线l 1∥l 2,l 3和11,l 2分别交于C ,D 两点,点A ,B 分别在线l 1,l 2上,且位于l 3的左侧,点P 在直线l 3上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P 在射线DC 上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.【答案】(3)∠3=∠3+∠3;(3)不成立,应为∠3=∠3+∠3,证明见解析.【解析】试题分析:(3)过点P 作PE ∥l 3,根据l 3∥l 3可知PE ∥l 3,故可得出∠3=∠APE ,∠3=∠BPE .再由∠3=∠APE +∠BPE 即可得出结论;(3)设PB 与l 3交于点F ,根据l 3∥l 3可知∠3=∠PFC .在△APF 中,根据∠PFC 是△APF 的一个外角即可得出结论.试题解析:解:(3)∠3=∠3+∠3.证明如下:如图①,过点P 作PE ∥l 3.∵l 3∥l 3,∴PE ∥l 3,∴∠3=∠APE ,∠3=∠BPE .又∵∠3=∠APE +∠BPE ,∴∠3=∠3+∠3;(3)上述结论不成立,新的结论:∠3=∠3+∠3.证明如下:如图②,设PB 与l 3交于点F .∵l 3∥l 3,∴∠3=∠PFC .在△APF 中,∵∠PFC 是△APF 的一个外角,∴∠PFC=∠3+∠3,即∠3=∠3+∠3.点睛:本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 19.如图,已知点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B , DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE ,说明△ABC 与△DEF 全等的理由.【答案】见解析【解析】由垂直定义可得∠B=∠E=90°,根据等式的性质可得BC=EF ,然后可利用SAS 判定△ABC ≌△DEF .【详解】∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,∵BF=CE ,∴BF+FC=EC+FC ,即BC=EF ,在△ABC 和△DEF 中,AB DE B E BC EF ⎧⎪∠∠⎨⎪⎩=== , ∴△ABC ≌△DEF (SAS ).【点睛】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.如图,在平面直角坐标系中,线段AB 在x 轴上点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .得平行四边形ABDC(1)补全图形,直接写出点C ,D 的坐标;(2)若在y 轴上存在点M ,连接MA ,MB ,使S △MAB=S 四边形ABDC ,求出点M 的坐标.(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,探索∠CPO 、∠DCP 、∠BOP 的数量关系并说明理由.【答案】(1)(0,2)C ,(4,2)D ;详见解析;(2)M 点的坐标为(0,4)或(0,4)-;(3)详见解析,①当点P 在BD 上,CPO DCP BOP ∠=∠+∠;②当点P 在线段BD 的延长线上时,CPO BOP DCP ∠=∠-∠③当点P 在线段DB 的延长线上时,CPO DCP BOP ∠=∠-∠【解析】(1)根据平移法则作图即可,由平移法则可得出点C ,D 的坐标;(2)求出8ABDC S =平行四边形,设M 坐标为(0,)m ,利用三角形面积公式列式求解即可;(3)分类讨论:当点P 在BD 上,如图1,作PE ∥CD ,根据平行线的性质得CD ∥PE ∥AB ,则∠DCP=∠EPC ,∠BOP=∠EPO ,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ;当点P 在线段BD 的延长线上时,如图2,同样有∠DCP=∠EPC ,∠BOP=∠EPO ,由于∠EPO-∠EPC=∠BOP-∠DCP ,于是∠BOP-∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP-∠BOP=∠CPO .【详解】解:(1)如图,∵将(1,0)A -,(3,0)B 分别向上平移2个单位,再向右平移1个单位,∴(0,2)C ,(4,2)D ;(2)∵4AB =,2CO =,∴428ABDC S AB CO =⨯=⨯=平行四边形,设M 坐标为(0,)m , ∴1482m ⨯⨯=,解得4m =± ∴M 点的坐标为(0,4)或(0,4)-;(3)三种情况①当点P 在BD 上,如图1,由平移的性质得,//AB CD ,过点P 作//PE AB ,则//PE CD ,∴DCP CPE ∠=∠,BOP OPE ∠=∠,∴CPO CPE OPE DCP BOP ∠=∠+∠=∠+∠,②当点P 在线段BD 的延长线上时,如图2,由平移的性质得,//AB CD ,过点P 作//PE AB ,则//PE CD ,∴DCP CPE ∠=∠,BOP OPE ∠=∠,∴CPO OPE CPE BOP DCP ∠=∠-∠=∠-∠,③当点P 在线段DB 的延长线上时,如图3,同(2)的方法得出CPO DCP BOP ∠=∠-∠【点睛】本题属于几何变换综合题,考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.也考查三角形面积公式和平行线的性质.21.化简:(a ﹣1)(a +3)﹣(2﹣a )(2+a )【答案】2a 2+2a ﹣1【解析】先计算多项式乘多项式、平方差公式,再合并同类项即可得.【详解】解:原式=a 2﹣a+3a ﹣3﹣22+a 2=2a 2+2a ﹣1.【点睛】考查了平方差公式和多项式乘多项式,属于基础计算题,熟记计算法则解题即可.22.有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?【答案】(1)这个游戏不公平.(2)游戏规则修改见解析(答案不唯一)【解析】试题分析:分别求出甲胜利的概率和乙胜利的概率,比较大小看判断游戏是否公平,游戏规则修改只要是两人获胜的概率相等即可.试题解析:(1)这个游戏不公平.因为正方体的每个面分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方的胜利的机会不是均等的,所以说这个游戏不公平.(2)可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则游戏是公平的.(答案不唯一) 考点:简单事件的概率.23.关于x 的一元二次方程222(1)0x mx m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.【答案】 (1) 12m > ;(2) 120,2x x ==. 【解析】(1)由题意,得()()222410m m ∆=--->;可再求m 的取值范围;(2)比如取m=1.【详解】解:(1)由题意,得()()222410m m ∆=--->. 解得12m >. (2)答案不唯一.如:取m=1,此时方程为220x x -=.解得 120,2x x ==.【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:熟记一元二次方程根判别式的意义.24.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?【答案】(1)女生15人,男生27人;(2)至少派22人【解析】(1)设该班男生有x 人,女生有y 人,根据男女生人数的关系以及全班共有42人,可得出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设派m 名男学生,则派的女生为(30-m )名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m 的一元一次不等式,解不等式即可得出结论.【详解】(1)设该班男生有x 人,女生有y 人,依题意得:4223x y x y ⎨⎩+-⎧==, 解得:2715x y ⎧⎨⎩==. ∴该班男生有27人,女生有15人.(2)设派m 名男学生,则派的女生为(30-m )名,依题意得:50m+45(30-m )≥1460,即5m+1350≥1460,解得:m≥22,答:至少需要派22名男学生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.25.解不等式组x2132(1)5x+⎧<⎪⎨⎪-≤⎩()1(2)【答案】31 2x-≤<【解析】求出每个不等式的解集,再求其解集的公共部分即可.【详解】解:解不等式(1),得:x<1,解不等式(2),得:32x≥-,所以,不等式组的解集为:31 2x-≤<.【点睛】此题考查了解不等式组,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系内,点P (a ,a+3)的位置一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】判断出P 的横纵坐标的符号,即可判断出点P 所在的相应象限.【详解】当a 为正数的时候,a+3一定为正数,所以点P 可能在第一象限,一定不在第四象限, 当a 为负数的时候,a+3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a 的取值判断出相应的象限.2.若代数912x ++的值不小于113x +-的值,则x 的取值范围是( )A .x >37B .x≥﹣37C .x >175D .x≥175【答案】B【解析】根据题意列出不等式,求出解集即可. 【详解】根据题意得:911123x x +++-去分母得:3x+27+6≥2x+2-6,移项合并得:x≥-37,故选B .【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.3.已知点1,0A ,()0,2B ,点P 在x 轴的负半轴上,且PAB ∆的面积为5,则点P 的坐标为() A .()0,4- B .()0,8- C .()4,0- D .()6,0 【答案】C【解析】由三角形的面积公式求解PA 的长度,结合1,0A 直接得到答案.【详解】解:152APB S PA OB ∆=⋅=,525252PA OB ⨯⨯∴===.(1,0)A ,点P 在x 轴负半轴()4,0P ∴-.故选C .【点睛】本题考查的是坐标系内三角形的面积,同时考查坐标轴上线段的长度与坐标的关系,掌握相关知识点是解题关键.4.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+【答案】B【解析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.5.在平面直角坐标系中,点(2018,)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】根据各象限内的坐标的特征解题即可【详解】解:点(2018,)所在的象限是第四象限,故选D .【点睛】本题考查各象限内的坐标的特征,掌握基础知识是本题关键6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD(不包括∠FCD)相等的角有( )A.5个B.2个C.3个D.4个【答案】D【解析】分析:如下图,根据“三角形内角和为180°”结合“垂直的定义”和已知条件进行分析解答即可.详解:如下图,∵AB⊥EF,CD⊥EF,∴∠ABE=∠ABF=∠CDF=90°,∵∠1=∠F=45°,∴∠FCD=180°-90°-45°=45°,∠A=180°-90°-45°=45°,∠2=90°-45°=45°,∴∠FCD=∠F=∠1=∠A=∠2=45°,即和∠FCD相等的角有4个.故选D.点睛:“根据三角形内角和为180°结合垂直的定义及已知条件证得∠FCD=∠A=∠2=45°”是解答本题的关键.7.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则下列结论正确的有()①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.A.1个B.2个C.3个D.4个【答案】C【解析】根据角平分线的定义,平行线的性质和判定解答即可.【详解】∵AB∥CD,∴∠DFE=∠AEF(两直线平行,内错角相等),①正确;∵AB∥CD, ∴∠MFE+∠MEF=180°,∵FM 平分∠EFD ,EM 平分∠BEF,∴∠MFE=12∠DFE,∠MEF =12∠BEF , ∴∠EMF=∠MFE+∠MEF = 12∠DFE+12∠BEF=90°, ②正确; ∵AB ∥CD, ∴∠AEF=∠DFE,∵EG 平分∠AEF ,∴∠AEG=∠GEF=12∠AEF , ∵FM 平分∠DFE , ∴∠EFM=∠MFD=12∠DFE , ∴∠GEF=∠EFM, ∴EG ∥FM,③正确;∵∠AEF =∠DFE≠∠EGC,④错误,正确的有3个,故选C .【点睛】考查了角平分线的定义,平行线的性质和判定定理,掌握平行线的性质和判定是解题的关键. 8.若关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( ) A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣1 【答案】B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围. 【详解】解:∵x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴整数解为1,0,-1,∴-2≤a <-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.9.已知:如图,在ABC ∆中,点D ,E 、F 分别在AB 、AC 、BC 上,连接DE 、CD 、DF ,则下列条件中,不能..判定AC DF ∥的有:( ) ①13∠=∠;②24∠∠=;③;5ACB ∠=∠;④ADE B ∠=∠;⑤180ACB CED ∠+∠=A .1个B .2个C .3个D .4个【答案】C 【解析】先观察已知角的位置关系,根据平行线的判定定理判断通过已知角可得哪两条直线平行,可得出结论.【详解】①13∠=∠,根据内错角相等,两直线平行,可判断AC DF ∥;②24∠∠=,根据内错角相等,两直线平行,可判断DE FC ;③5ACB ∠=∠,根据同位角相等,两直线平行,可判断AC DF ∥;④ADE B ∠=∠,根据同位角相等,两直线平行,可判断DE FC ;⑤180ACB CED ∠+∠=,根据同旁内角互补,两直线平行,可判断DE FC ; 故不能判定AC DF ∥的有②④⑤,共三个,选C.【点睛】本题考查平行线的判定定理,本题中每组条件都可判断直线平行,但是有三个不能判断题目所需的直线平行,所以依据平行线的判定定理,要找准截线和被截线.10.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A .75°B .65°C .60°D .45°【答案】A 【解析】根据直角三角板的度数和三角形内角和定理可知∠2度数,再根据对顶角相等可知∠3度数,最后利用三角形外角定理即可知∠1度数. 【详解】如图,根据三角板的角度特征可知∠2=45°,因为∠3与∠2是对顶角,所以∠3=45°,根据三角形外角和定理可知∠1=∠3+30°=45°+30°=75°,故答案选A.【点睛】本题考查的是与三角形有关的角的问题,熟知三角形内角和定理和外角定理是解题的关键.二、填空题题11.已知x,y满足二元一次方程3x+y=6,若y<0,则x的取值范围是_____.【答案】x>2.【解析】把x看作已知数求出y,根据y<0求出x的范围即可.【详解】方程整理得:y=6-3x,由y<0,得到6-3x<0,解得:x>2.故答案为:x>2.【点睛】此题考查了二元一次方程的解,解一元一次不等式,熟练掌握定义是解本题的关键.12.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.【答案】1.【解析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=1米,故答案为:1.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.13.如图,已知AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.【答案】5;【解析】由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.【详解】∵AB ∥CD ∥EF , ∴∠AGE=∠GAB=∠DCA ; ∵BC ∥AD , ∴∠GAE=∠GCF ; 又∵AC 平分∠BAD , ∴∠GAB=∠GAE ; ∵∠AGE=∠CGF.∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF. ∴图中与∠AGE 相等的角有5个。

上海上南中学南校七年级下册数学期末压轴难题试卷(带答案)-百度文库

上海上南中学南校七年级下册数学期末压轴难题试卷(带答案)-百度文库

上海上南中学南校七年级下册数学期末压轴难题试卷(带答案)-百度文库一、选择题1.下列各式中,没有平方根的是()A .-22B .(-2)2C .-(-2)D .∣-2∣ 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()A .B .C .D . 3.在平面直角坐标系中,点P (-3,0)在( )A .第二象限B .第三象限C .x 轴上D .y 轴上 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10° 6.下列计算正确的是( ) A .2(3)3-=-B .366=±C .393=D .382--= 7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为( )A .10°B .14°C .20°D .31°8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)二、填空题9.计算:﹣9=_____.10.点(,1)a 关于x 轴的对称点的坐标为(5,)b ,则+a b 的值是______.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为______.13.如图,点E 、点G 、点F 分别在AB 、AD 、BC 上,将长方形ABCD 按EF 、EG 翻折,线段EA 的对应边EA '恰好落在折痕EF 上,点B 的对应点B '落在长方形外,B 'F 与CD 交于点H ,已知∠B 'HC =134°,则∠AGE =_____°.14.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.在平面直角坐标系中,点A 与原点重合,将点A 向右平移1个单位长度得到点A 1,将A 1向上平移2个单位长度得到点A 2,将A 2向左平移3个单位长度得到A 3,将A 3向下平移4个单位长度得到A 4,将A 4向右平移5个单位长度得到A 5…按此方法进行下去,则A 2021点坐标为_______________.三、解答题17.计算:(1)()()2201730.042731+-+--- (2)()231664532-----18.求下列各式中x 的值:(1)225x =;(2)2810x -=;(3)22536x =.19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.如图,三角形ABC 在平面直角坐标系中.(1)请写出三角形ABC 各点的坐标;(2)求出三角形ABC 的面积;(3)若把三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C ''',在图中画出平移后三角形A B C '''.21.阅读材料,解答问题:材料:∵479,<<即273<<,∴7的整数部分为2,小数部分为72-. 问题:已知52a +的立方根是3,31a b +-的算术平方根是4,c 是13的整数部分. (1)求13的小数部分.(2)求3a b c -+的平方根.二十二、解答题22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 二十三、解答题23.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.24.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示). 25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时,∵∠ACD -∠ABD =∠______∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【参考答案】一、选择题1.A解析:A【分析】把各数进行化简,再根据平方根的性质即可进行求解.【详解】解:A、-22=-4,是负数,负数没有平方根,故该选项符合题意;B、(-2)2=4,是正数,正数有平方根,故该选项不符合题意;C、-(-2)=2,是正数,正数有平方根,故该选项不符合题意;D、∣-2∣=2,是正数,正数有平方根,故该选项不符合题意;故选:A.【点睛】本题主要考查了平方根,熟练掌握平方根的性质是解本题的关键.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D 、是由基本图形平移得到的,故选此选项.综上,本题选择D .【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断. 3.C【分析】根据点的坐标特点判断即可.【详解】解:在平面直角坐标系中,点P (-3,0)在x 轴上,故选C .【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,∴∠=∠-∠=︒-︒=︒,CAE BAE BAC453015故选:C.【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.6.D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A、()233-=,故本选项不合题意;B、366=,故本选项不合题意;C、393≠,故本选项不合题意;D、382--=,故本选项符合题意;故选:D.【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.7.B【分析】根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵直角三角形ADE中,∠ADE=45°,∴∠1=45°-31°=14°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),…,∵2021÷6=336…5,∴小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B.【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】9﹣3.故答案是﹣3.考点:算术平方根.10.4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点关于轴的对称点的坐标为,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点(,1)a关于x轴的对称点的坐标为(5,)b,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC和∠CDE的平分线交于点F,∴∠CBF+∠CDF=1×270°=135°,2∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF平分∠CEG,∴∠CEG=2∠CEF,又∵AB∥CD,∴∠2=∠CEF=(180°−∠1)=50°,解析:50°【分析】由角平分线的定义,结合平行线的性质,易求∠2的度数.【详解】解:∵EF平分∠CEG,∴∠CEG=2∠CEF,又∵AB∥CD,∴∠2=∠CEF=1(180°−∠1)=50°,2故答案为:50°.【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系.13.11【分析】由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.【详解】解:如图,,,,,折叠,,,,,故答案为:11.解析:11【分析】由外角的性质和平行线的性质求出IEB ∠的度数,即可求出FEB ∠的度数,进而求出AEF ∠的度数,求得AEG ∠的度数,即可求出AGE ∠的度数.【详解】解:如图,134B HC '∠=︒,1349044B IH B HC B '''∴∠=∠-∠=︒-︒=︒,//CD AB ,44IEB B IH '∴∠=∠=︒,折叠,1222BA F B IH ''∴∠=∠=︒, 18022158AEA '∴∠=︒-︒=︒,1792AEG AEA '∴∠=∠=︒, 180907911AGE ∴∠=︒-︒-︒=︒,故答案为:11.【点睛】本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 14.【分析】根据新定义,将3与-2代入原式求解即可.【详解】.故答案为:.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键. 解析:3-【分析】根据新定义,将3与-2代入原式求解即可.【详解】()()()23*223232-=-+⨯--+461=-- 3=-.故答案为:3-.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1,故202112+=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题17.(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(27【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式()()0.23310.2331 1.2=+-+--=-++=(2)原式(445244527=---=---=18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1)x=5±;(2)x=9±;(3)x=6 5±【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵225x=,∴5x=±;(2)∵2810x-=,∴281x=,∴9x=±;(3)∵22536x=,∴23625x=,∴65x=±.【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1),,;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标解析:(1)()2,2A --,()3,1B ,()0,2C ;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形ABC 的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得A B C '''、、三点坐标,连接对应线段即可.【详解】解:(1)根据平面直角坐标系中点的位置,可得:()2,2A --,()3,1B ,()0,2C ;(2)三角形ABC 的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯ 2047.5 1.520137=---=-=;(3)三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C '''可得()3,0A '-,()2,3B ',()1,4C '-,连接''''''A B A C B C 、、,三角形A B C '''如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.21.(1);(2).【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即,∴的整数部分为3,小数部分为, 解析:(1133;(2)4±.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵91316,即3134<, ∴133133, ∴13133;(2)∵52a +的立方根是3,31a b +-的算术平方根是4,c 13 ∴5227a +=,3116a b +-=,3c =,∴5a =,2b =,3c =,∴316a b c -+=,3a b c -+的平方根是4±.本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.二十二、解答题22.符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.二十三、解答题23.(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒,//MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=,180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n n βββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n-∠∠==-, 故答案为1n -.本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式. 24.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠,111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒,50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=, 解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=,解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)∠A ;70°;35°;(2)∠A=2n ∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC ,∠A1CD解析:(1)∠A ;70°;35°;(2)∠A=2n ∠A n(3)25°(4)①∠Q+∠A 1的值为定值正确,Q+∠A 1=180°.【分析】(1)根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解;(2)由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠BAC=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE )=360°-(α+β)=2∠FBC+(180°-2∠DCF )=180°-2(∠DCF-∠FBC )=180°-2∠F ,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A 1=∠AEC+∠ACE=2(∠QEC+∠QCE ),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。

2020-2021学年上海市浦东新区上南中学南校、傅雷中学七年级(下)期末数学试卷(学生版+解析版)

2020-2021学年上海市浦东新区上南中学南校、傅雷中学七年级(下)期末数学试卷(学生版+解析版)

2020-2021学年上海市浦东新区上南中学南校、傅雷中学七年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,共12分) 1.(2分)下列实数中,一定是无理数的是( ) A .√32 B .0.1010010001C .227D .3.142.(2分)下列计算正确的是( ) A .−√(−8)2=−8 B .(−√8)2=64C .√(−25)2=±25D .√9116=3143.(2分)据报道,国新办于2021年5月11日上午就第七次全国人口普查主要数据结果举行发布会,发布会上透露全国人口已达14.1178亿人,这里的近似数“14.1178亿”精确到( ) A .亿位B .千万位C .万分位D .万位4.(2分)如图所示,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠BFD =∠D .A .1个B .2个C .3个D .4个5.(2分)下列说法正确的是( ) A .三角形的外角等于两个内角的和 B .等腰三角形的角平分线和中线重合 C .含60°的两个直角三角形全等D .有一个角是60°的等腰三角形是等边三角形6.(2分)点P 的横坐标是﹣3,且到x 轴的距离为5,则P 点的坐标是( ) A .(5,﹣3)或(﹣5,﹣3)B .(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)二、填空题(本大题共12题,每题3分,共36分)7.(3分)√81的平方根为.5化成幂的形式为.8.(3分)把√239.(3分)比较大小:﹣4 −√17(填“>”、“=”或“<”).10.(3分)近似数1.024有个有效数字.11.(3分)如图,点A到直线BC的距离是线段的长度.12.(3分)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是.13.(3分)如图,在△ABC和△FED中,AD=FC,∠A=∠F,请添加一个条件:,使△ABC≌△FED.14.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为.15.(3分)如果等腰三角形的两条边分别为5厘米和10厘米,那么这个等腰三角形的周长是.16.(3分)如果点P(a,b)与点Q(2,﹣3)关于原点对称,那么a+b=.17.(3分)在平面直角坐标系中,线段AB=3,且AB∥x轴,如果点A的坐标为(﹣1,2),那么点B 的坐标是 .18.(3分)如图,已知长方形纸片ABCD ,点E 、F 分别在边AD 、BC 上,将长方形纸片沿直线EF 折叠后,点D 、C 分别落在D 1、C 1的位置,如果∠AED 1=30°,那么∠EFB 的度数为 .三、简答题(本大题共4题,其中第19、20题每题5分,第21、22题每题6分,共22分) 19.(5分)计算:2713−(12)−2+|3−√5|−20210.20.(5分)用幂的运算性质计算:√43×√8÷√326(结果表示为含幂的形式).21.(6分)如图,在△ABC 中,E 是AD 上的一点,EB =EC ,∠ABE =∠ACE ,请说明AD ⊥BC .解:因为EB =EC (已知),所以∠EBC =∠ECB ( ). 又因为∠ABE =∠ACE (已知),所以∠ABE +∠EBC =∠ACE +∠ECB ( ). 即∠ABC =∠ACB .所以AB =AC ( ).在△ABE 和△ACE 中{AB =AC(已证)EB =EC(已知)AE =AE(),所以△ABE ≌△ACE ( ). 得∠BAD =∠CAD ( ). 所以AD ⊥BC ( ).22.(6分)如图,在平面直角坐标系中,O 为坐标原点,△ABC 的三个顶点坐标分别为A (﹣1,﹣2),B (1,1),C (﹣3,1),△A 1B 1C 1与△ABC 关于原点O 对称. (1)写出点A 1、B 1、C 1的坐标,并在右图中画出△A 1B 1C 1;(2)求△A1B1C1的面积.四、解答题(本大题共4题,其中第23、24题每题7分,第25、26题每题8分,共30分)23.(7分)如图,∠ABE=80°,BF是∠ABE的平分线,且BF∥CD,求∠C的度数.24.(7分)如图,在三角形ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD =DE,BF=CD,∠FDE=∠B,那么∠B与∠C相等吗?为什么?25.(8分)已知:点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC 于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.26.(8分)在平面直角坐标系中,已知点A(﹣3,0),B(﹣2,﹣2),将线段AB平移到线段DC.(1)如图1,直接写出线段AB和线段CD的位置和数量关系;(2)如图2,若线段AB平移到线段DC,D、C两点恰好分别在y轴、x轴上,求点D 和点C的坐标;(3)若点D在y轴的正半轴上,点C在第一象限内,且S△ACD=5,直接写出点C、点D的坐标.2020-2021学年上海市浦东新区上南中学南校、傅雷中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,共12分) 1.(2分)下列实数中,一定是无理数的是( ) A .√32 B .0.1010010001C .227D .3.14【解答】解:A 、√32是无理数,故此选项符合题意; B 、0.1010010001是有限小数,属于有理数,故此选项不符合题意; C 、227是分数,属于有理数,故此选项不符合题意;D 、3.14是有限小数,属于有理数,故此选项不符合题意. 故选:A .2.(2分)下列计算正确的是( ) A .−√(−8)2=−8 B .(−√8)2=64C .√(−25)2=±25D .√9116=314【解答】解:−√(−8)2=−8,A 正确; (−√8)2=8,B 错误; √(−25)2=25,C 错误;√9116=√1454,D 错误,故选:A .3.(2分)据报道,国新办于2021年5月11日上午就第七次全国人口普查主要数据结果举行发布会,发布会上透露全国人口已达14.1178亿人,这里的近似数“14.1178亿”精确到( ) A .亿位B .千万位C .万分位D .万位【解答】解:近似数“14.1178亿”精确到万位, 故选:D .4.(2分)如图所示,能说明AB ∥DE 的有( )①∠1=∠D;②∠CFB+∠D=180°;③∠B=∠D;④∠BFD=∠D.A.1个B.2个C.3个D.4个【解答】解:①∵∠1=∠D,∴AB∥DE(同位角相等,两直线平行);②∵∠CFB=∠AFD(对顶角相等),又∠CFB+∠D=180°,∴∠AFD+∠D=180°,∴AB∥DE(同旁内角互补,两直线平行);③中的∠B和∠D不符合“三线八角”,不能构成平行的条件;④∵∠BFD=∠D,∴AB∥DE(内错角相等,两直线平行);所以①②④都能说明AB∥DE.故选:C.5.(2分)下列说法正确的是()A.三角形的外角等于两个内角的和B.等腰三角形的角平分线和中线重合C.含60°的两个直角三角形全等D.有一个角是60°的等腰三角形是等边三角形【解答】解:A、三角形的外角等于与它不相邻的两个内角之和,本选项说法不正确;B、等腰三角形的顶角平分线和中线重合,本选项说法不正确;C、含有60°的两个直角三角形的对应边不一定相等,则这两个直角三角形不一定全等,本选项说法不正确;D、有一个角是60°的等腰三角形是等边三角形,本选项说法正确;故选:D.6.(2分)点P的横坐标是﹣3,且到x轴的距离为5,则P点的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)【解答】解:∵点P 到x 轴的距离为5, ∴P 点的纵坐标是5或﹣5, ∵点P 的横坐标是﹣3,∴P 点的坐标是(﹣3,5)或(﹣3,﹣5). 故选:B .二、填空题(本大题共12题,每题3分,共36分) 7.(3分)√81的平方根为 ±3 . 【解答】解:∵√81=9 ∴√81的平方根为±3. 故答案为:±3. 8.(3分)把√235化成幂的形式为235.【解答】解:√235=235,故答案为:235.9.(3分)比较大小:﹣4 > −√17(填“>”、“=”或“<”). 【解答】解:∵16<17, ∴4<√17, ∴﹣4>−√17, 故答案为:>.10.(3分)近似数1.024有 4 个有效数字. 【解答】解:似数1.024有四个有效数字, 故答案为:4.11.(3分)如图,点A 到直线BC 的距离是线段 AE 的长度.【解答】解:∵AE ⊥BC ,垂足为E ,∴点A到直线BC的距离是线段AE的长度.故答案为:AE.12.(3分)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是40°.【解答】解:∵a∥b,∠2=80°,∴∠ABC=∠2=80°.∵∠1是△ABC的外角,∠1=120°,∴∠3=∠1﹣∠ABC=120°﹣80°=40°.故答案为:40°.13.(3分)如图,在△ABC和△FED中,AD=FC,∠A=∠F,请添加一个条件:AB=FE或∠B=∠E或∠ACB=∠FDE或DE∥BC,使△ABC≌△FED.【解答】解:∵AD=FC,∴AC=FD,∵∠A=∠F,∴添加AB=FE,利用SAS得出△ABC≌△FED,添加∠B=∠E,利用AAS得出△ABC≌△FED,添加∠ACB=∠FDE,利用ASA得出△ABC≌△FED,添加DE∥BC,得出∠EDF=∠BCA,利用ASA得出△ABC≌△FED,故答案为:AB=FE或∠B=∠E或∠ACB=∠FDE或DE∥BC.14.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为75°或15°.【解答】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=12∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.15.(3分)如果等腰三角形的两条边分别为5厘米和10厘米,那么这个等腰三角形的周长是25cm.【解答】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍去;当10厘米是腰时,则三角形的周长是5+10×2=25(厘米).故答案为:25cm.16.(3分)如果点P(a,b)与点Q(2,﹣3)关于原点对称,那么a+b=1.【解答】解:∵点P(a,b)与点Q(2,﹣3)关于原点对称,∴a=﹣2,b=3,∴a+b=1.故答案为:1.17.(3分)在平面直角坐标系中,线段AB=3,且AB∥x轴,如果点A的坐标为(﹣1,2),那么点B的坐标是(﹣4,2),(2,2).【解答】解:∵AB∥x轴且A(﹣1,2),∴点B的纵坐标为2,又∵AB=3,∴点B的横坐标为﹣1+3=2或﹣1﹣3=﹣4,∴点B的坐标为(2,2)或(﹣4,2),故答案为:(﹣4,2),(2,2).18.(3分)如图,已知长方形纸片ABCD,点E、F分别在边AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在D1、C1的位置,如果∠AED1=30°,那么∠EFB的度数为75°或105°.【解答】解:由折叠可得,∠DEF=∠D'EF,∵∠AED1=30°,∴∠DEF=180°−30°2=75°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EFB=∠DEF=75°,当D'在AD上方时,由折叠可得,∠DEF=∠D'EF,∵∠AED1=30°,∴∠DEF=180°+30°2=105°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EFB=∠DEF=105°,故答案为:75°或105°.三、简答题(本大题共4题,其中第19、20题每题5分,第21、22题每题6分,共22分)19.(5分)计算:2713−(12)−2+|3−√5|−20210. 【解答】解:原式=3﹣4+3−√5−1=1−√5.20.(5分)用幂的运算性质计算:√43×√8÷√326(结果表示为含幂的形式).【解答】解:原式=413×812÷3216 =223×232÷256 =223+32−56 =243.21.(6分)如图,在△ABC 中,E 是AD 上的一点,EB =EC ,∠ABE =∠ACE ,请说明AD⊥BC .解:因为EB =EC (已知),所以∠EBC =∠ECB ( 等边对等角 ).又因为∠ABE =∠ACE (已知),所以∠ABE +∠EBC =∠ACE +∠ECB ( 等式性质 ).即∠ABC =∠ACB .所以AB =AC ( 等角对等边 ).在△ABE 和△ACE 中{AB =AC(已证)EB =EC(已知)AE =AE(),所以△ABE ≌△ACE ( ).得∠BAD =∠CAD ( 全等三角形对应角相等 ).所以AD ⊥BC ( 等腰三角形的三线合一 ).【解答】解:因为EB =EC (已知),所以∠EBC =∠ECB (等边对等角).又因为∠ABE =∠ACE (已知),所以∠ABE +∠EBC =∠ACE +∠ECB (等式性质).即∠ABC =∠ACB .所以AB =AC (等角对等边).在△ABE 和△ACE 中{AB =AC(已证)EB =EC(已知)AE =AE(公共边),所以△ABE ≌△ACE (SSS ),得∠BAD =∠CAD (全等三角形对应角相等),所以AD ⊥BC (等腰三角形的三线合一).故答案为:①等边对等角;②等式性质;③等角对等边;④公共边;⑤边、边、边(sss );⑥全等三角形对应角相等;⑦等腰三角形的三线合一.22.(6分)如图,在平面直角坐标系中,O 为坐标原点,△ABC 的三个顶点坐标分别为A(﹣1,﹣2),B (1,1),C (﹣3,1),△A 1B 1C 1与△ABC 关于原点O 对称.(1)写出点A 1、B 1、C 1的坐标,并在右图中画出△A 1B 1C 1;(2)求△A 1B 1C 1的面积.【解答】解:(1)如图,△A 1B 1C 1为所作,点A 1、B 1、C 1的坐标分别为(1,2),(﹣1,﹣1),(3,﹣1);(2)△A1B1C1的面积=12×4×3=6.四、解答题(本大题共4题,其中第23、24题每题7分,第25、26题每题8分,共30分)23.(7分)如图,∠ABE=80°,BF是∠ABE的平分线,且BF∥CD,求∠C的度数.【解答】解:∵BF是∠ABE的平分线,∴∠ABF=12∠ABE,∵∠ABE=80°,∴∠ABF=40°,∵BF∥CD,∴∠C=∠ABF,∴∠C=40°.24.(7分)如图,在三角形ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD =DE,BF=CD,∠FDE=∠B,那么∠B与∠C相等吗?为什么?【解答】解:∠B 与∠C 相等,理由:∵∠FDC =∠FDE +∠EDC ,又∵∠FDC =∠B +∠BFD ,∴∠FDE +∠EDC =∠B +∠BFD ,又∵∠FDE =∠B ,∴∠BFD =∠EDC ,在△BFD 和△CDE 中{FD =DE ∠BFD =∠EDC BF =CD,∴△BFD ≌△CDE (SAS ),∴∠B =∠C .25.(8分)已知:点B ,C ,D 在同一直线上,△ABC 和△CDE 都是等边三角形,BE 交AC于点F ,AD 交CE 于点H ,(1)求证:△BCE ≌△ACD ;(2)求证:CF =CH ;(3)判断△CFH 的形状并说明理由.【解答】解:(1)证明:∵△ABC 和△CDE 都是等边三角形,∴∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,∴∠BCE =ACD .在△BCE 和△ACD 中,{AC =BC ∠ACD =∠BCE DC =EC,∴△BCE ≌△ACD (SAS );(2)∵△BCE ≌△ACD ,∴∠CBE =∠CAD .∵∠ACB +∠ACE +∠DCE =180°,∴∠ACE =60°,∴∠ACE =∠ACB .在△ACH 和△BCF 中,{∠CBE =∠CADAC =BC ∠ACE =∠ACB,∴△ACH ≌△BCF (ASA ),∴CH =CF ;(3)△CFH 是等边三角形.理由:连接FH .∵∠ACE =60°,CH =CF ,∴△CFH 是等边三角形.26.(8分)在平面直角坐标系中,已知点A (﹣3,0),B (﹣2,﹣2),将线段AB 平移到线段DC .(1)如图1,直接写出线段AB 和线段CD 的位置和数量关系;(2)如图2,若线段AB 平移到线段DC ,D 、C 两点恰好分别在y 轴、x 轴上,求点D 和点C 的坐标;(3)若点D 在y 轴的正半轴上,点C 在第一象限内,且S △ACD =5,直接写出点C 、点D 的坐标.【解答】解:(1)由平行的性质可知,线段AB =CD ,AB ∥CD .(2)如图2中,过点B 作BE ⊥x 轴,垂足为E ,则∠AEB =∠COD =90°,∵AB ∥CD ,∴∠EAB =∠OCD ,在△AEB 和△COD 中,∠EAB =∠OCD{∠AEB =∠DOC∠BAE =∠DCO AB =CD,∴△AEB ≌△COD (AAS ),∴AE =CO ,BE =DO ,∵A (﹣3,0),B (﹣2,﹣2),∴AE =CO =1,BE =DO =2,∴点C 坐标为(1,0),点D 坐标为(0,2).(3)如图1中,连接AC,OC.设D(0,m),则C(1,m﹣2).∵S△ADC=S△AOD+S△OCD﹣S△AOC,∴5=12×3×m+12×m×1−12×3×(m﹣2),∴m=4,∴点C(1,2)点D(0,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年上海市浦东新区上南中学南校七年级下学期期末考试数学试卷一、填空题(本大题共14小题,每小题2分,满分28分)1、(2019期末1)若38x =,则x =___________【答案】2【解析】根据立方根的定义求解,因为2的立方根等于8,所以8的立方根为2 2、(2019期末2)1的四次方根是___________ 【答案】1±【解析】解:1的四次方根是1=± 3、(2019期末3)计算:2327=___________ 【答案】9【解析】根据分数指数幂,可得2232739====4、(2019期末4)用计算器比较大小:_____π-“>”、“<”、或“=”) 【答案】>【解析】因为 3.142, 3.162π-≈-≈-,所以π->5、(2019期末5)如图,||a b -=___________【答案】a【解析】解:由图可知:0,||b a b a <<>,所以0a b ->,所以原式=()a b b a ---=6、(2019期末6___________【答案】【解析】根据二次根式的乘法运算可得,原式==7、(2019期末7)上海迪士尼乐园是中国大陆首座迪士尼乐园,2016年6月16日开园,其总面积约为83.9010⨯平方米,这个近似数有___________个有效数字 【答案】3【解析】有效数字的计算方法:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a 有关,与10的多少次方无关,83.9010⨯有3、9、0共3个有效数字8、(2019期末8)在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是___________ 【答案】(2,-1)【解析】点关于坐标轴对称的坐标记忆方法是:结合图形记忆,或者关于横坐标的对称点,横坐标不变,纵坐标变成相反数;关于纵坐标对称的点,纵坐标不变,横坐标变成相反数.故点(2,1)关于x 轴对称的点的坐标为(2,-1)9、(2019期末9)在平面直角坐标系中,经过点Q (1,-5)且垂直于y 轴的直线可以表示为直线___________ 【答案】5y =-【解析】由题意得:经过点Q (1,-5)且垂直于y 轴的直线可以表示为直线:5y =- 10、(2019期末10)如图,直线AB 、CD 相交于点O ,OE 平分BOC ∠,已知65COE ∠=︒,则BOD ∠=___________【答案】50︒【解析】因为OE 平分BOC ∠,所以2265130BOC COE ∠=∠=⨯︒=︒,所以180********BOD BOC ∠=︒-∠=︒-︒=︒11、(2019期末11)如图,直线a 、b 被直线c 所载,a//b ,已知160∠=︒, 则2∠=___________【答案】120【解析】因为a//b ,160∠=︒,所以3160∠=∠=︒,所以21801∠=︒-∠18060120=︒-︒=︒12、(2019期末12)如图,如果________∠=∠,那么根据___________可得AD//BC (写出一个正确的就可以)【答案】5;B ;同位角相等,两直线平行【解析】解:如果5B ∠=∠,那么根据(同位角相等,两直线平行)可得AD//BC ,或:如果5B ∠=∠,根据(内错角相等,两直线平行)可得AD//BC13、(2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是___________(只需填上一个正确的条件)【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一14、(2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为___________ 【答案】4536B ∠=︒︒或【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802xNAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或二、选择题(本大题共6题,每小题2分,满分12分)15、(2019期末15)在0、2212 3.14160.2380.373773777373π⋅⋅-L 、、、、、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),这十个数中,无理数的个数是( ) 【A 】1 【B 】 2 【C 】3 【D 】4【答案】D【解析】有理数是:0、22102 3.14160.23873⋅⋅-、、、、、共6个;无理数是0.3737737773πL 、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个)共4个,故选D16、(2019期末16)下列运算中,正确的是( )【A =【B 】21=【C =-【D =【答案】D【解析】A A 错误;B 、2=3225-=-B 错误;C =C 错误;D 、正确;故此题选D17、(2019期末17)如图,在ABC ∆中,90BAC ∠=︒,且AD BC ⊥于点D ,35B ∠=︒,那么下列说法中错误的是( )【A 】直线AB 与直线BC 的夹角为35︒ 【B 】直线AC 与直线AD 的夹角为55︒【C 】点C 到直线AD 的距离是线段CD 的长 【D 】点B 到直线AC 的距离是线段AB 的长 【答案】B【解析】A 、因为35B ∠=︒,所以直线AB 与BC 的夹角为35︒,故A 正确;B 、因为90BAC ∠=︒,且AD BC ⊥,所以35CAD B ∠=∠=︒,故直线AC 与AD 夹角为35︒,因此B 错误;C 、点C 到直线AD 的距离是线段CD 的长,正确;D 、点B 到直线AC 的距离是线段AB 的长,正确;因此此题选B18、(2019期末18)下列说法中,正确的有( )①如果两条直线被第三条直线所载,那么内错角相等;②经过直线外的一点,有且只有一条直线与已知直线平行;③联结直线外一点与直线上各点的所有线段中,垂线段最短;④如果两个角相等,那么这两个角是对顶角. 【A 】0个 【B 】1个 【C 】2个 【D 】3个 【答案】C【解析】①内错角不一定相等,应加条件两直线平行才能得出内错角相等,因此A 错误;②经过直线外的一点,有且只有一条直线与已知直线平行,正确;③联结直线外一点与直线上各点的所有线段中,垂线段最短,正确;④如果两个角相等,那么这两个角不一定是对顶角,还要强调位置关系,所以错误;因此正确的说法有2个.选C19、(2019期末19)下列长度的三根木棒,不能构成三角形框架的是( ) 【A 】7cm ,10cm ,4cm ; 【B 】5cm ,7cm ,11cm ; 【C 】5cm ,7cm ,10cm ; 【D 】5cm ,10cm ,15cm 【答案】D【解析】A 、4+7>10,则能构成三角形;B 、5+7>11,能构成三角形;C 、5+7>10,能构成三角形;D 、5+10=15,不能构成三角形.因此选D20、(2019期末20)在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使ABC ∆的面积为2个平方单位,则满足条件的格点C 的个数是( )【A 】5 【B 】4 【C 】3 【D 】2 【答案】A【解析】满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是. 选A.三、简答题(本大题共6题,每小题5分,满分30分)21、(2019期末21)计算: 【答案】14-515444=-+-=-22、(2019期末22)计算:32(332)--【答案】3【解析】解:原式2121=+=323、(2019期末23)利用幂的运算性质 计算: 【答案】6【解析】原式=111111362362322232326++⨯⨯⨯=⨯=⨯=24、(2019期末24)如图,点A 、B 、C 和点D 、E 、F 分别在同一直线上,A F ∠=∠,C D ∠=∠,试说明αβ∠∠与相等的理由. 解:因为A F ∠=∠(已知)所以DF//AC ( ) 所以D DBA ∠=∠( ) 又因为C D ∠=∠(已知),所以C DBA ∠=∠. 所以 // ; 所以____α∠=∠;又_____β∠=∠;所以αβ∠=∠.【答案】内错角相等,两直线平行;两直线平行,内错角相等;DB ;CE ;2;2. 【解析】解:因为A F ∠=∠(已知)所以DF//AC ( 内错角相等,两直线平行. ) 所以D DBA ∠=∠( 两直线平行,内错角相等 ) 又因为C D ∠=∠(已知),所以C DBA ∠=∠ 所以 DB // CE 所以2α∠=∠又2β∠=∠;所以αβ∠=∠25、(2019期末25)如图,在'''ABC A B C ∆∆和中,已知'A A ∠=∠,'B B ∠=∠,''AB A B =,试把下面运用“叠合法”说明ABC ∆和'''A B C ∆全等的过程补充完整:说理过程:把ABC ∆放到'''A B C ∆上,使点A 与点'A 重合,因为 ,所以可以使 ,并使点C 和'C 在AB (''A B )同一侧,这时点A 与'A 重合,点B 与'B 重合,由于 ,因此, ;由于 ,因此, ;于是点C (射线AC 与BC 的交点)与点'C (射线''A C 与''B C 的交点)重合,这样 . 【答案】''AB A B =; AB 与''A B 重合;'A A ∠=∠;射线AC 与射线''A C 叠合;B B'∠=∠;射线BC 与射线''B C 叠合;'''ABC A B C ∆∆与重合即'''ABC A B C ∆∆与全等。

相关文档
最新文档