材料力学第二章习题课

合集下载

材料力学第二章习题

材料力学第二章习题

材料力学第二章习题2-1试绘出下列各杆的轴力图。

2-3求下列结构中指定杆的应力。

已知(b)图中杆的横截面面积A1=850 mm2,A2=600 mm2,A3=500 mm2。

2-4 求下列各杆的最大正应力。

(1)图(a)为开槽拉杆,两端受力F=10 kN,b=4mm,h=20mm,h0=10mm;2-6图示短柱,上段为钢制,截面尺寸为100×100mm2,钢的弹性模量E s=200GPa,下段为铝制,截面尺寸为200×200mm2,E a=70GPa。

当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值(注:不计杆的自重)。

2-11图示结构中,AB为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E3=10GPa。

当G点受力F=60kN作用时,求该点的竖直位移ΔG。

2-13图示结构,CD 杆为刚性杆,C 端铰接于墙壁上,AB 杆为钢杆,直径d =30mm ,容许应力[]170MPa σ=,弹性模量52.010MPa E =⨯。

试求结构的容许荷载F 。

2-14图示正方形砖柱,顶端受集中力16kN F =作用,柱边长为0.4m ,砌筑在高为0.4m 的正方形块石底脚上。

已知砖的容重3116kN m g ρ=,块石容重3220kN m g ρ=。

地基容许应力[]0.08MPa σ=。

试设计正方形块石底脚的边长a 。

Fa 3m0.4m2-17图示AB 杆为刚性杆,长为3a 。

A 端铰接于墙壁上,在C 、B 两处分别用同材料、同面积的1、2两杆拉住。

在D 点受力F 作用,求1、2两杆的应力。

设弹性模量为E ,横截面面积为A 。

BF C D 12a a a aaA。

(优)优选材料力学第二章课后习题参考答案pptppt文档

(优)优选材料力学第二章课后习题参考答案pptppt文档

变形几何方程
变形几何方程
d
பைடு நூலகம்
2F
32.6mm
切应力
拉伸强度与剪切强度
其它: 1.书写要规范, 2.答案不能用分数、根号, 3.中间步骤过多或过少; 4.作业本不要一分为二,图要在同一侧。
谢谢观看
2-2面的面积计算
①最大切应力;②单位;③公式又推导一遍。
圆整b=120mm,h=165mm
①思路; ②表达; ③计算结果保留数字。
①单位;②轴力图。
(3)理由阐述不准确
考虑自重时没考虑
用卡氏定理
①受力图; ②力的方向与变形假设 不一致; ③步骤思路表现不清。
②力的方向与变形假设不一致; 圆整b=120mm,h=165mm 答答圆圆②圆 答圆答答圆圆答 答答答②②圆圆圆圆答答答圆②案案整整力整案整案案整整案案案案力力整整整整案案案整力不 不 bb的 b不 b不 不 bb不不 不 不 的 的 bbbb不 不 不 b的===========能能方能能能能 能能能方方能能能方1111111111122222222222用用向用用用用 用用用向向用用用向00000000000mmmmmmmmmmm分分与分分分分 分分分与与分分分与mmmmmmmmmmm数数变数数数数 数数数变变数数数变,,,,,,,,,,,hhhhhhhhhhh、、形、、、、 、、、形形、、、形===========11111111111根根假根根根根 根根根假假根根根假66666666666号号设号号号号 号号号设设号号号设55555555555mmmmmmmmmmm,,不,,,,,,,不不,,,不mmmmmmmmmmm一一一一致致致致;;;; ②力的方向与变形假设不一致; 圆整b=120mm,h=165mm

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。

α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

材料力学第五版第二章习题答案

材料力学第五版第二章习题答案
(a)
F F
m m
m m
F
(b)
FN
x m m
FN F
F
(c)
FN
(a)
F
m
m
F
(b)
F
FN
m
FN
x m m
m
FN F
F
(c)
若用平行于杆轴线的坐标表示横截面的位置,用 垂直于杆轴线的坐标表示横截面上轴力的数值, 所绘出的图线可以表明轴力与截面位置的关系, 称为轴力图。
F F F
讨论: ( 1) 0
90 (2) 45 45
0
max 0 (横截面) 0 (纵截面) max 0 / 2 min 0 / 2
0 0
(横截面) (纵截面)
90
观察现象:
等直杆相邻两条横向线在杆受拉(压)后仍 为直线,仍相互平行,且仍垂直于杆的轴线。 F
a a' b' b c c' d' d
F
平面假设
原为平面的横截面在杆变形后仍为平面, 对于拉(压)杆且仍相互平行,仍垂直于轴线。
推论:
1、等直拉(压)杆受力时没有发生剪切变形, 因而横截面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线 段的伸长(缩短)变形是均匀的。 亦即横截面上各点处的正应力 都相等。
FN,max FN2 50kN

补充 例题1
l
F
F
q=F/l
F 2l l 3 F
解: 1、求支反力
1 FR 1 F F F 2 F'=2ql F 3 F 2 q
FR

第2章—力系的简化—工程力学(静力学和材料力学)课后习题答案

第2章—力系的简化—工程力学(静力学和材料力学)课后习题答案

工程力学(静力学与材料力学)习题详细解答(第2章)习题2-2图第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。

二力作用线之间的距离为d 。

试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。

解:由习题2-1解图,假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++−x F x d F ,dx =∴,F F F F =−=∴2R ,方向如图示。

合力矢量属于滑动矢量。

2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。

若已知:M A =20 kN·m 、M B =0和M C =-10kN·m ,求:这一力系最后简化所得合力的大小、方向和作用线。

解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(习题2-2解图)在图中设OF = d ,则θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD −== (2)即θθsin )25.4(2sin )3(dd −=+ d d −=+93 3=d习题2-1图习题2-1解图R∴ F 点的坐标为(-3, 0)合力方向如图所示,作用线过B 、F 点; 34tan =θ 8.4546sin 6=×==θAG 8.4R R ×=×=F AG F M A kN 6258.420R ==F 即 )kN 310,25(R=F 作用线方程:434+=x y 讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。

2-3三个小拖船拖着一条大船,如图所示。

材料力学第五版课后习题答案详解

材料力学第五版课后习题答案详解

Microsoft Corporation材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)。

《材料力学》课后习题答案(详细)

《材料力学》课后习题答案(详细)

第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。

(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。

(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积2400mm A =,试求各横截面上的应力。

解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。

解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-13图示结构的AB杆为刚性杆,A处为铰接,AB杆由钢杆BE与铜杆CD吊起。已知CD杆的长度为 ,横截面面积为 ,铜的弹性模量 ;BE杆的长度为 ,横截面面积为 ,钢的弹性模量 。试求CD杆和BE杆中的应力以及BE杆的伸长。
解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件

可得螺栓的直径应为

3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象

由此可知:当 时,
由 ≤
可得

3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得

《材料力学》第二章课后习题及参考答案

《材料力学》第二章课后习题及参考答案
简答题2答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案

材料力学第五版课后习题答案详解

材料力学第五版课后习题答案详解

Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

材料力学课后复习习题集

材料力学课后复习习题集

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

材料力学第二章习题

材料力学第二章习题

材料力学第二章习题习题2.1试画出图示各杆的轴力图题2.1图2.2图示中段开槽的杆件,两端受轴向载荷P作用,试计算截面1-1和截面2–2上的正应力。

已知:,mmb20=,mmb100=,mmt4=。

题2.2图2.3图示等直杆的横截面直径mmd50=,轴向载荷。

(1)计算互相垂直的截面AB和BC上正应力和切应力;(2)计算杆内的最大正应力和最大切应力。

2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。

问α为何值时,胶缝处的切应力和正应力同时达到各自的许用应力。

2.5图示用绳索起吊重物,已知重物,绳索直径。

许用应力,试校核绳索的强度。

绳索的直径应多大更经济。

,2.6冷镦机的曲柄滑块机构如图所示。

镦压工件时连杆接近水平位置,镦压力P=1100KN。

连杆矩形截面的高度h与宽度b之比为:h/b=1.4。

材料为45钢,许用应力【σ】=58MPa,试确定截面尺寸h及b。

2.7图示结构杆1与杆2由同一种材料制成,其许用应力[σ]=100MPa。

杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m,ED=1.5m。

试按杆1,杆2的强度确定许可载荷[F]。

2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。

欲组装成图示等边三角架。

已知杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力=30MPa,许用压应力=90MPa。

试问如何安装较为合理?求这时的最大许可载荷[F]。

2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。

杆1,杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限σ=320MPa,安全系数n=2.0。

试校核桁架的强度。

题2.9图2.10油缸盖与缸体采用6个螺栓连接如图所示。

D=350mm,油压p=1MPa,若螺栓材料的许用应力【σ】=40MPa,试确定螺栓的内径。

孙训方材料力学(I)第五版课后习题答案完整版

孙训方材料力学(I)第五版课后习题答案完整版
解:混凝土柱各段轴力分别为:
混凝土柱各段危险截面分别为柱中截面和柱底截面,其轴力分别为:
由强度条件:
取A1=0.576m²
取A2=0.664m²
柱底固定,则柱顶位移值等于柱的伸缩量,可用叠加原理计算
2-21(1)刚性梁AB用两根钢杆AC、BD悬挂着,其受力如图所示。已知钢杆AC和BD的直径分别为 和 ,钢的许用应力 ,弹性模量 。试校核钢杆的强度,并计算钢杆的变形 、 及A、B两点的竖向位移 、 。
解: kN
kN
kN
kN
3-2实心圆轴的直径 mm,长 m,其两端所受外力偶矩 ,材料的切变模量 。试求:
(1)最大切应力及两端截面间的相对扭转角;
(2)图示截面上A,B,C三点处切应力的数值及方向;
(3)C点处的切应变。

式中, 。3-2
故:
,式中, 。故:
(2)求图示截面上A、B、C三点处切应力的数值及方向
(3)计算两端截面的相对扭转角
式中,
3-7图示一等直圆杆,已知 , , , 。试求:
(1)最大切应力;
(2)截面A相对于截面C的扭转角。
解:(1)由已知得扭矩图(a)
(2)
3-8直径 的等直圆杆,在自由端截面上承受外力偶 ,而在圆杆表面上的A点将移动到A1点,如图所示。已知 ,圆杆材料的弹性模量 ,试求泊松比 (提示:各向同性材料的三个弹性常数E、G、 间存在如下关系: 。
第二章轴向拉伸和压缩
2-12-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解: ; ;
(b)解: ; ;
(c)解: ; 。
(d)解: 。
2-2一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx²(k为常数),试作木桩的轴力图。

材料力学第二章习题课

材料力学第二章习题课

故该杆满足强度条件。
例已知三铰屋架如图,承受竖向均布载荷,载荷的分布集度为: q =4.2kN/m,屋架中的钢拉杆材料为Q235钢,[σ]=170MPa,试 选择钢拉杆的直径。(不计钢拉杆的自重) q
C
FAx
A 0.4m
FAy
钢拉杆
8.5m
B
FB
0.4m
解: 整体平衡求支反力 ①
Fx 0 FAx 0
o
120kN 220kN 260kN

B
FN / kN 120

C

160
160kN
A
D
BC段: 100 3 FN 2 100 10 N 160 106 Pa 160MPa(压应力) 2 A2 625 106 m2 CD段: 3 FN 3 160 10 N (拉应力) 177.8 106 Pa 177.8MPa 3 6 2 A3 900 10 m
Fy 0, FN 2 sin 30 2W 0
F
x
0, FN 2 cos30 FN1 0


FN 1 3.46W
FN 2 4W
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
dAx g dAx gAxdx dx Ax
A0:桥墩顶端截面的面积
x
dx
1000 103 N A0 1m 2 6 110 N / m2
g Ax A0 exp x
F
gl Al A0 exp
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q
C
A 0.4m
钢拉杆 8.5m
解:① 整体平衡求支反力
B 0.4m
② 局部平衡求轴力
q=4.2kN/m C
③ 由强度条件求直径
A 0.4m
4.25m
为了经济起见,选用钢拉杆的直径为14mm。其值略小于计算 结果,但是其工作正应力超过许用应力不到5%。
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
材料力学第二章习题课
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
图示石柱桥墩,压力F=1000kN,石料重度ρg=25kN/m3,许用
应力[σ]=1MPa。试比较下列三种情况下所需石料面积(1)等截 面石柱;(2)三段等长度的阶梯石柱;(3)等强度石柱(柱的 每个截面的应力都等于许用应力[σ])
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
图示三角形托架,AC为刚性杆,BD为斜撑杆,荷载F可沿水平梁移 动。为使斜撑杆重量为最轻,问斜撑杆与梁之间夹角应取何值? 不考虑BD杆的稳定。 设F的作用线到A点的距离为x 取ABC杆为研究对象
BD杆: x
FNBD
例阶梯形杆如图所示。AB、BC和CD段的横截面面积分别为 A1=1500mm2、 A2=625mm2、 A3=900mm2。杆的材料为Q235 钢,[σ]=170MPa。试校核该杆的强度。
1.2m ①

由拉(压)杆的强度条件计算各杆的许用轴力
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
(3) 求许用荷载W
1.2m ①
② 由AB杆强度条件计算许用荷载:
由BC杆强度条件计算许用荷载:
所以结构的许用起重量是
课堂练习 1. 已知:q=40kN/m, [s]=160MPa
试选择等边角钢的型号。 解: (1)计算拉杆的轴力
(2)选择等边角钢型号
查型钢表
=3.54cm2
取A=3.791cm2,即等边角钢型号为40mm×5mm 也可以取A=3.486cm2,即等边角钢型号为45mm×4mm 如果取面积比计算的面积小,则必须满足5%的要求。
解(:1)绘出立柱的轴力图 (压力)
(2)求立柱的横截面面积 由立柱的强度条件
得 :
例:高为l的等直混凝土柱如图所示,材料的密度为ρ,弹性模量为 E,许用压应力为[σ],在顶端受一集中力F。在考虑自重的情况 下,试求该立柱所需的横截面面积和顶端B截面的位移。
解:(3)求B截面的位移 (压)
所以:
解:(1)作轴力图
(2)校核强度
由轴力图和各段杆的横 截面面积可知,危险截 面可能在BC段或CD段 。 BC段:



(压应力)
CD段:
(拉应力)



结果表明,杆的最大正应力发生在CD段
相对误差: 故该杆满足强度条件。
例已知三铰屋架如图,承受竖向均布载荷,载荷的分布集度为: q =4.2kN/m,屋架中的钢拉杆材料为Q235钢,[σ]=170MPa,试 选择钢拉杆的直径。(不计钢拉杆的自重)
2. 图示杆系中BC、AC杆的直径分别为
B
d1=12mm,d2=18mm,两杆材料均为Q235钢 ,许用应力[s] = 170MPa,试按强度条件确定
1
容许F值。 解: 取C节点为研究对象
C
2
F
A
C F
例2-13:一高为l的等直混凝土柱如图所示,材料的密度为ρ,弹性 模量为E,许用压应力为[σ],在顶端受一集中力F。在考虑自重 的情况下,试求该立柱所需的横截面面积和顶端B截面的位移。
F
F
F
15m 5m 5m 5m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
采用等截面石柱
F
15m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
F
采用三段等长度阶梯石柱
5m 5m 5m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
采用等强度石柱
F
A0:桥墩顶端截面的面积
这种设计使得各截面的正应 力均达到许用应力,使材料 得到充分利用。
1.2m ①
② 解得
=

W
解:(1) 分别取滑轮和B结点为研究对象,求出两杆的轴力 。
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许C杆的横截面 面积分别为:
相关文档
最新文档