新编基础物理学14单元课后答案

合集下载

《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

《大学物理》第14单元课后答案 高等教育出版社

《大学物理》第14单元课后答案 高等教育出版社

M
N
题 21.图
N
作业登记号
学号
姓名
单元十四
单元十四(二) 自感、互感、磁场能量
一、选择题 1. 自感为 0.25H 的线圈中,当电流在(1/16)秒内由 2A 均匀减小到零时,线圈中自感电动势的大小 为: (A) 7.8 10 V
3
【 C (B) 2.0V (C) 8.0V (D) 3.1 10 V
2 1 0
w.
磁场应是:
C 】
(A) ⊙且随时间增加;(B) 且随时间减小;(C) 且随时间增加。
6.圆柱形空间内,磁感应强度 B 正以 dB/dt = C >0 的变化率增加,金属 导线 abc 如图所示放置,则 a,b,c 三点电势之间关系是: (A) U a =U b =U c B 】
w.
的电动势为: dE i ( v B ) dl
Iv dE i 0 dx , E i 2x


0 Iv dx 2x 0 Iv L0 L ln ,方向为逆时针。 2 L0
ww
线框中感应电动势的大小: E i
20. 无限长直导线通有稳定电流I, 长L的金属棒绕其一端O在平面内顺时针匀速转动,角速度 ,

(A)
2 1 0
(B)
2 1 (C) 2 1
da
【 【 (C) U a >U b >U c
Page80
率dB/dt变化.有一长度为l 0 的金属棒先后放在磁场的两个不同位置 1(ab)和 2(a ' b ' ) ,则金属棒在这两个位置时棒内的感应电动势的大小关系为 【 B 】
课后答案网,用心为你服务!

新编物理学基础课后习题答案

新编物理学基础课后习题答案

i AB CD
0 I vl 1 1 ( ) 2 a vt a b vt
I
aA b D l
方向为顺时针方向。 (2) 选面积元dS = ldr a b 0 I 0 l I a b Φ a l dr ln 2 r 2 a
r v
B
C
dr
I aA b D l B C
v
解:(1) 任意时刻 t,AB、CD边到导线的距离分别 为 a +v t 和 a +b + v t 0 I 0 I BAB BCD 2 (a vt ) 2 (a b vt )
AB l vBAB (A B)
CD l vBCD (D C)
0 0 0
3-7 如图所示,长直导线AB中的电流 I沿导线向上, 并以 dI/dt=2A/s的变化率均匀增长。导线附近放一个 与之共面的直角三角形线框,其一边与导线平行,位 置及线框尺寸如图(设a =10cm, b=20cm, c = 5.0cm) 所示。求此线框中产生的感应电动势的大小和方向。 A Y 0 I 解: dx 处 的B 2 x I 0.15 0 I Φ s B dS 0.05 y dx b 2 x y 0.15 x y y 2(0.15 x ) O x dx X 0.1 0.2 a B c

k
R rk 2eR (2k 1) 2 rk2 1 12 1 k 50.5 50 (条) 4 R 2 0.5 10 400 2
2
4-15 波长范围在450~650nm之间的复色平行光垂直 照射在每厘米有5000条刻线的光栅上,屏幕放在透镜 的焦平面处,屏上第二级光谱各色光在屏上所占范围 的宽度为35.1cm,求透镜的焦距f 。 1 cm 解: a b (a b)sin k 2 5000 21 2 450 0 sin 1 0.45 26.74 1 a b 2 103

新编基础物理学14单元课后答案

新编基础物理学14单元课后答案

第十四章14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件. 分析:一次折射,一次反射;利用端面折射角与内侧面入射角互余及全反射条件即可求解。

解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有'sin 'cos sin sin 222θθγθn n n n -===光线在界面上发生全反射的条件为1'sin ≥θn∴发生全反射时,n 必须满足θ2sin 1+≥n14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r 4=.求像的位置.分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===.解:cm cm r n n f 12)415.15.1(1'11=⨯-=-=cm cm f n f 8)5.112('111-=-=-= cm f p p p f p f 12'',,1''1111111==∞==+ 或用-∞====-=-1111111111,1,5.1','''p n n n r n n p n p ncm p p 12',415.11'5.111=-=∞--对玻璃球前表面所成的像,对后表面而言是物,所以cm cm r p p 4)812(2'212=-=+=cm cm r n f 8)]4(5.111[11'22=-⨯-=-=cm cm nf f 12)85.1('22-=⨯-=-=cm cm f p f p p p f p f 2)12484('',1''222222222=+⨯=-==+ 或用1',5.1,'''222222222===-=-n n n r n n p n p n题图14-1cm p p 2',45.1145.1'122=--=-像在球的右侧,离球的右边2cm 处.14-3.如题图14-3所示的一凹球面镜,曲率半径为40cm ,一小物体放在离镜面顶点10cm 处.试作图表示像的位置、虚实和正倒,并计算出像的位置和垂轴放大率.分析:利用凹面镜的半径可确定焦距,以知物距,由球面镜的物像公式和横向放大率公式可求解。

新编基础物理学(王少杰、顾牡)版本)答案

新编基础物理学(王少杰、顾牡)版本)答案

1.已知质点的运动方程为; a = 4i j -+。

2.说明质点做何种运动时; 变速率曲线运动;变速率直线运动 3.一质点运动方程为26x t t =-; 8m;10m 4.飞轮作加速转动时; 26m s ; 24m s ;5.一个力F 作用在质量为kg 0.1的质点上;16N S ; 176J ;6.如图为一圆锥摆; 0 ;2m g πω ;2m gπω;7.一质量为m 的物体;0m v ;竖直向下; 8.一质量为m 小球;竖直向上;mgt;9.一颗子弹在枪筒里前进时; 0.003s; 0.6N*S; 2g ; 10.一质点在几个力同时作用下; 38J ; 11.一人把质量为10kg 的物体; 196 ; 216; 12.二质点的质量各为; 1211()G m m ab--;13.狭义相对论是建立在; 伽利略 ; 14.一光子以速度c 运动; c; 15.在测量物体长度中; 最长 ; 最短 ; 16.一观察者测量得沿尺长;32c ;17.静止时边长为a 的立方体;3221a u c -;18.一点电荷q 位于一立方体中心;6Oq ε; 0 ;24Oq ε;19.描述静电场性质的两个物理量是;E ;u ;F E q=;0u Pu E dl ==⎰;20.如图,真空中两个点电荷;O Q ε;0;201094QR πε;21.如图示,两个平行的无限大;2Oσε;32O σε;2Oσε; 方向向右; 方向向右; 方向向左;22.图中曲线表示一种球对称性静电场;均匀带电实心球; 23.真空中有一半径为R 的半圆细环;4O Q Rπε;4O qQ Rπε-;24.如图示,在带电量为q 的点电荷;11()4O abqq r r πε-;25.如图所示,负电荷Q 的电场中有b a ,两点;b; a ; 增加; 26.在点电荷q 的电场中;7210C --⨯;27一带电量为Q 的导体环;Q - ; Q ;28.一孤立金属球带电量Q +;径向方向向外;0;电荷均匀分布于金属球的外表面;29.在带电量为Q +的金属球外面;24Q rπ; Q ;204r Q rπεε;0rQεε;30.一平行板电容器,充电后与电源保持连接;r ε; 1; r ε; 31.半径为0.5cm 的无限长的直圆柱形导体上; 0 ;32.在安培环路定理;_环路所包围的所有稳恒电流的代数和;环路上的磁感应强度;环路内外全部电流所产生的磁场的叠加;33.在均匀磁场中放置两个面积相等;相等;34.一平面实验线圈的磁矩大小为;0.5T ;沿y 轴正向;35.如右图,无限长直导线中流有的电流分别为;不相等;0123()I I I μ--;01()I μ-;36.无限长直圆筒入在相对磁导率为;2Irπ;02r Irμμπ;37.三根无限长载流直导线;5I; 38.一自感线圈中;0.4H;39.产生动生电动势的非静电场力;洛伦兹 ; 涡旋电场;。

2020年人教版九年级物理第十四章内能的利用单元习题(含答案)

2020年人教版九年级物理第十四章内能的利用单元习题(含答案)

物理第十四章内能的利用单元习题一、填空题1、内燃机在交通、国防等领域有着广泛的应用。

从能量转化的角度来看,内燃机是把内能转化为_________能的机器。

2、如图表示的是汽油机的____ _冲程;在压缩冲程中,是通过____ 方式增加气体内能的。

3、我国北方房屋中的“暖气”用水作为介质,是因为水的大;火箭用液态氢作燃料,是因为液态氢的大。

4、按如图所示装置进行实验,把试管中的水加热至沸腾,试管上方的小叶轮会转动起来,此过程中能量的转化与热机工作中的______ 冲程能量的转化相同.5、汽车现枉已经进入普通家庭;汽油机是汽车的常用动力设备。

从能量的转化角度看,在四冲程汽油机的每个工作循环中,将内能转化为机械能的冲程是__________冲程。

6、小明用燃气灶把质量为12kg初温为20℃的水加热到100℃,燃烧掉0.42m3的天然气,则燃烧的天然气放出的热量是J,燃气灶的热效率是.(天然气的热值是3.2×107J/m3)7、据估算,一个成年人参加一次长跑,身体消耗的热量为6.6×106J,这些能量相当于完全燃烧0.55kg的干木柴放出的热量,则干木柴的热值为______________J/kg。

8、10克某种燃料,放出的热量是3.4X105焦,这种燃料的热值是_ ;如果这些热量全部被质量为2千克的某种液体吸收,使该液体的温度升高40℃,这种液体的比热是9.一台单缸四冲程内燃机正常工作时的转速为2400r/min,该内燃机每秒共经历了________个冲程,对外做功________次。

10、用燃气灶烧水时,把2.2kg 初温为20℃的水加热到100℃,共燃烧了45g 天然气(假设天然气完全燃烧)。

已知天然气的热值为4.4X107 J/ kg,水的比热容为4.2X103 J/( kg×℃)。

(1)天然气属于(选填“可再生”或“不可再生”)能源。

在烧水过程中,大量向外散失的能量不会自动再汇集回来,这说明能量的转化和转移是有的。

大学物理14章答案

大学物理14章答案

第14章 稳恒电流的磁场14.1 充满εr = 2.1电介质的平行板电容器,由于电介质漏电,在3min 内漏失一半电量,求电介质的电阻率.[解答]设电容器的面积为S ,两板间的距离为l ,则电介质的电阻为l R S ρ=.设t 时刻电容器带电量为q ,则电荷面密度为 ζ = q/S , 两板间的场强为 E = ζ/ε =q/εr ε0S , 电势差为 U = El =ql/εr ε0S , 介质中的电流强度为0d 1d r q U q t R εερ-==,负号表示电容器上的电荷减少.微分方程可变为0d 1d r q t q εερ=-, 积分得0ln r tq Cεερ=-+,设t = 0时,q = q m ,则得C = ln q m ,因此电介质的电阻率的公式为0ln(/)r m tq q ρεε=.当t = 180s 时,q = q m /2,电阻率为121808.84210 2.1ln 2ρ-=⨯⨯⨯ =1.4×1013(Ω·m).14.2 有一导线电阻R = 6Ω,其中通有电流,在下列两种情况下,通过总电量都是30C ,求导线所产生的热量.(1)在24s 内有稳恒电流通过导线; (2)在24s 内电流均匀地减少到零. [解答](1)稳恒电流为 I = q/t = 1.25(A), 导线产生的热量为Q = I 2Rt = 225(J).(2)电流变化的方程为12.5(1)24i t =-, 由于在相等的时间内通过的电量是相等的,在i-t 图中,在0~24秒内,变化电流和稳恒电流直线下的面积是相等的. 在d t 时间内导线产生的热量元为d Q = i 2R d t ,在24s 内导线产生的热量为2424221d [2.5(1)]d 24Q i R t t R t ==-⎰⎰2423112.5624(1)324t =-⨯⨯⨯⨯-=300(J).14.3 已知铜的相对原子质量A = 63.75,质量密度ρ = 8.9×103kg·m -3. (1)技术上为了安全,铜线内电流密度不能超过6A·mm -2,求此时铜线内电子的漂移速度为多少?(2)求T = 300K 时,铜内电子热运动平均速度,它是漂移速度的多少倍? [解答](1)原子质量单位为u = 1.66×10-27(kg),一个铜原子的质量为m = Au = 1.058×10-25(kg),铜的原子数密度为 n = ρ/m = 8.41×1028(个·m -3),如果一个铜原子有一个自由电子,n 也是自由电子数密度,因此自由电子的电荷密度为ρe = ne = 1.34×1010(C·m -3). 铜线内电流密度为δ = 6×106(A·m -2),根据公式δ = ρe v ,得电子的漂移速度为 v = ρe /δ = 4.46×10-4(m·s -1).(2)将导体中的电子当气体分子,称为“电子气”,电子做热运动的平均速度为v =其中k 为玻尔兹曼常数k = 1.38×10-23J·K -1,m e 是电子的质量m e = 9.11×10-31kg ,可得v = 1.076×105(m·s -1), 对漂移速度的倍数为v /v = 2.437×108,可见:电子的漂移速率远小于热运动的速度,其定向运动可认为是附加在热运动基础上的运动.14.4通有电流的导线形状如图所示,图中ACDO 是边长为b 的正方O 处的磁感应强度B = ?[解答]电O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律: 002d d 4I r μπ⨯=l r B ,圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I l B a μπ=,由于 d l = a d φ, 积分得11d LB B =⎰3/200d 4I a πμϕπ=⎰38Ia μ=.OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于 l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ, 可得 02s i n d d 4I B b μθθπ=,积分得3/402/2d sin d 4L I B B b ππμθθπ==⎰⎰3/400/2(cos )48IIbb ππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为00123384I IB B B B a b μπ=++=+.[讨论](1)假设圆弧张角为φ,电流在半径为a 的圆心处产生的磁感应强度为04IB a μϕπ=.(2)有限长直导线产生的磁感应大小为012(cos cos )4IB b μθθπ=-.对于AC 段,θ1 = π/2、θ2 = 3π/4;对于CD 段,θ1 = π/4、θ2 = π/2,都可得0238IB B b π==.上述公式可以直接引用.14.5 如图所示的载流导线,图中半圆的的半径为R ,直线部分伸向无限远处.求圆心O 处的磁感应强度B = ?[解答]在直线磁场公式012(cos cos )4IB R μθθπ=-中,令θ1 = 0、θ2 = π/2,或者θ1 = π/2、θ2 = π,就得半无限长导线在端点半径为R 的圆周上产生的磁感应强度04IB R μπ=.两无限长半直线在O 点产生的磁场方向都向着-Z 方向,大小为B z = μ0I /2πR . 半圆在O 处产生的磁场方向沿着-X 方向,大小为B x = μ0I /4R . O 点的磁感应强度为0042x z IIB B RR μμπ=--=--B i k i k .场强大小为B ==与X 轴的夹角为2arctan arctan z x B B θπ==.14.6 如图所示的正方形线圈ABCD ,每边长为a ,通有电流I .求正方形中心O 处的磁感应强度B = ?[解答]正方形每一边到O 点的距离都是a /2,在O 点产生的磁场大小相等、方向相同.以AD 边为例,利用直线电流的磁场公式:012(cos cos )4IB R μθθπ=-,令θ1 = π/4、θ2 =3π/4、R = a /2,AD 在O 产生的场强为02AD IB a π=,O 点的磁感应强度为4AD B B ==方向垂直纸面向里.14.7 两个共轴圆线圈,每个线圈中的电流强度都是I ,半径为R ,两个圆心间距离O 1O 2 = R ,试证:O 1、O 2中点O 处附近为均匀磁场. [证明]方法一:用二阶导数.一个半径为R 的环电流在离圆心为x 的轴线上产生的磁感应强度大小为:20223/22()IR B R x μ=+.设两线圈相距为2a ,以O 点为原点建立坐标,两线圈在x 点产生的场强分别为201223/22[()]IR B R a x μ=++,202223/22[()]IR B R a x μ=+-.方向相同,总场强为B = B 1 + B 2.一个线圈产生的磁场的曲线是凸状,两边各有一个拐点.两个线圈的磁场叠加之后,如果它们相距太近,其曲线就是更高的凸状;如果它们相距太远,其曲线的中间部分就会下凹,与两边的峰之间各有一个拐点.当它图14.7们由远而近到最适当的位置时,两个拐点就会在中间重合,这时的磁场最均匀,而拐点处的二阶导数为零.设k = μ0IR 2/2,则223/2223/211{}[()][()]B k R a x R a x =++++-B 对x 求一阶导数得225/2d 3{d [()]B a x k x R a x +=-++,225/2}[()]a xR a x --+-求二阶导数得2222227/2d 4()3{d [()]B R a x k x R a x -+=-++22227/24()}[()]R a x R a x --++-,在x = 0处d 2B /d x 2 = 0,得R 2 = 4a 2,所以2a = R .x = 0处的场强为223/22[(/2)]B kR R =+k==方法二:用二项式展开.将B 1展开得2012223/22[2]IR B R a ax x μ=+++20223/22223/22()[1(2)/()]IR R a ax x R a μ=++++.设20223/22()IR k R a μ=+,则23/21222(1)ax x B k R a -+=++.同理,23/22222(1)ax x B k R a --+=++.当x 很小时,二项式展开公式为2(1)(1)1...12n n n x nx x -+=+++⋅.将B 1和B 2按二项式展开,保留二次项,总场强为22232[12ax x B k R a -+=+⋅++22221352()...]1222ax x R a --++⋅⋅+⋅+ 22232[12ax x k R a --+++⋅++22221352()...]1222ax x R a ---++⋅⋅+⋅+22232[12x k R a -=+⋅++ 22222354...]24()a x R a --+⋅⋅++ 222222342[1...]2()R a k x R a --=+⋅++令R 2 - 4a 2 = 0,即a = R /2,得200223/22()25IR IB k R a R μ===+,可知:O 点附近为均强磁场.14.8 将半径为R 的无限长导体圆柱面,沿轴向割去一宽为h (h <<R )的无限长缝后,沿轴向均匀地通有电流,面密度为i ,求轴线上的磁感应强度B = ?[解答]方法一:补缺法.导体圆柱面可看作由很多无限长直导线组成,如果补上长缝,由于对称的缘故,电流在轴线上产生的磁感应强度为零.割去长缝,等效于同时加上两个大小相等,方向相反的电流,其中,与i 相同的电流补上了长缝,与i 相反的电流大小为I = ih .在轴线上产生的磁感应强度为 0022I ihB R R μμππ==.方法二:积分法.在导体的截面上建立坐标,x 坐标轴平分角α,α = h/R . 电流垂直纸面向外,在圆弧上取一线元d s = R d θ,无限长直线电流为 d I = i d s = iR d θ, 在轴线产生的磁感应强度大小为图14.8`00d d d 22I iB R μμθππ==,两个分量分别为0d d sin sin d 2x iB B μθθθπ==, 0d d cos cos d 2y iB B μθθθπ=-=-.积分得2/22/200/2/2sin d cos 22x i iB παπαααμμθθθππ--==-⎰0[cos(2/2)cos(/2)]02iμπααπ=---=;2/22/200/2/2cos d sin 22y i i B παπαααμμθθθππ--=-=-⎰0[sin(2/2)sin(/2)]2iμπααπ=---0002sin 2222i iih R μμμααπππ=≈=.B y 的方向沿着y 方向.B y 的大小和方向正是无限长直线电流ih 产生的磁感应强度.14.9 在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?[解答]取导体面的横截面,电流方向垂直纸面向外.半圆的周长为C = πR , 电流线密度为 i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为I d φ/π, d I = i d l = 在轴线上产生的磁感应强度为002d d d 22I I B R R μμϕππ==,方向与径向垂直.d B 的两个分量为d B x = d B cos φ,d B y = d B sin φ. 积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,020sin d 2y IB R πμϕϕπ=⎰00220(cos )2II RR πμμϕππ=-=.由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.10 宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布.求在薄板所在平面内距板的边缘为x 的P 点处的磁感应强度(如图所示). [解答]电流分布在薄板的表面上,单位长度上电流密度,即面电流的线密度为δ = I/a , 以板的下边缘为原点,在薄板上取一宽度为d l 的通电导线,电流强度为d I = δd l ,在P 点产生磁感应强度为00d d d 22()I lB r x a l μμδππ==+-,磁场方向垂直纸面向外.由于每根电流产生的磁场方向相同,总磁场为00d 2()alB x a l μδπ=+-⎰00ln()2al x a l μδπ==-+-0ln(1)2I aa x μπ=+.[讨论]当a 趋于零时,薄板就变成直线,因此00ln(1/)2/2I Ia x B x a x x μμππ+=→,这就是直线电流产生的磁场强度的公式.14.11 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝图14.10图14.11数为N ,求球心O 处的磁感应强度B = ?[解答]四分之一圆的弧长为 C = πR /2, 单位弧长上线圈匝数为n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ, 线圈匝数为d N = n d l = nR d θ, 环电流大小为 d I = I d N = nIR dθ. 环电流的半径为 y = R sin θ, 离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为22003d d sin d 22y I nI B R μμθθ==20sin d NIR μθθπ=,方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NI R R πμμθθπ=-=⎰.14.12 两个共面的平面带电圆环,其内外半径分别为R 1、R 2和R 3、R 4(R 1 < R 2 < R 3 < R 4)转的转速顺时针转动,里面圆环以每称n 1转逆时针转动,若两圆环电荷面密度均为ζ,求n 1和n 2的比值多大时,圆心处的磁感应强度为零. [解答]半径为r 的圆电流在圆心处产生的磁感应强度为 B = μ0I /2r .在半径为R 1和R 2的环上取一半径为r 、宽度为d r 的薄环,其面积为d S = 2πr d r ,所带的电量为 d q = ζd S = 2πζr d r , 圆环转动的周期为 T 1 = 1/n 1, 形成的电流元为 d I = d q/T 1 = 2πn 1ζr d r .薄环电流可以当作圆电流,在圆心产生的磁感应强度为d B 1 = μ0d I /2r = πμ0n 1ζd r ,圆环在圆心产生磁感应强度为B 1 = πμ0n 1ζ(R 2-R 1).同理,半径为R 3和R 4的圆环在圆心处产生的磁感应强度为B 2 = πμ0n 2ζ(R 4-R 3).由于两环的转动方向相反,在圆心产生的磁感应强度也相反,当它们大小相同时,圆心处的磁感应强度为零,即:πμ0n 1ζ(R 2-R 1) = πμ0n 2ζ(R 4-R 3),解得比值为431221 = R R n n R R --.15.13 半径为R 的无限长直圆柱导体,通以电流I ,电流在截面上分布不均匀,电流密度δ = kr ,求:导体内磁感应强度?[解答]在圆柱体内取一半径为r 、宽度为d r 的薄圆环,其面积为 d S = 2πr d r ,电流元为 d I = δd S = 2πk r 2d r ,从0到r 积分得薄环包围的电流强度为2πkr 3/3;I r = 从0到R 积分得全部电流强度I = 2πkR 3/3,因此I r /I = r 3/R 3.根据安培环路定理可得导体内的磁感应强度200322r I I B r r R μμππ==.15.14 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B = ? [解答]圆盘面积为 S = πa 2, 面电荷密度为ζ = Q/S = Q/πa 2.在圆盘上取一半径为r 、宽度为d r 的薄环,其面积为d S = 2πr d r ,所带的电量为d q = ζd S = 2πζr d r .薄圆环转动的周期为 T = 2π/ω,形成的电流元为 d I = d q/T = ωζr d r .薄环电流可以当作圆电流,在圆心产生的磁感应强度为d B = μ0d I /2r = μ0ωζd r /2,从o 到a 积分得圆盘在圆心产生磁感应强度为B = μ0ωζa /2 = μ0ωQ /2πa .如果圆盘带正电,则磁场方向向上.14.15 二条长直载流导线与一长方形线圈共面,如图所示.已知a = b = c = 10cm ,l = 10m ,I 1 = I 2 = 100A ,求通过线圈的磁通量.[解答]电流I 1和I 2在线圈中产生的磁场方向都是垂直纸面向里的,在坐标系中的x 点,它们共同产生的磁感应强度大小为 图15.1301022(/2)2(/2)I I B a b x c b x μμππ=++++-.在矩形中取一面积元d S = l d x ,通过面积元的磁通量为d Φ = B d S = Bl d x ,通过线圈的磁通量为/2012/2()d 2/2/2b b l I I x a b x c b x μΦπ-=++++-⎰011(ln ln )2l a b c I I a c b μπ+=-+=2×10-7×10×100×2ln2=2.77×10-4(Wb).14.16 一电子在垂直于均匀磁场的方向做半径为R = 1.2cm 的圆周运动,电子速度v = 104m·s -1.求圆轨道内所包围的磁通量是多少? [解答]电子所带的电量为e = 1.6×10-19库仑,质量为m =9.1×10-31千克.电子在磁场所受的洛伦兹力成为电子做圆周运动的向心力,即:f = evB = mv 2/R ,所以 B = mv/eR .电子轨道所包围的面积为 S = πR 2,磁通量为Φ = BS = πmvR/e =2.14×10-9(Wb).14.17 同轴电缆由导体圆柱和一同轴导体薄圆筒构成,电流I 从一导体流入,从另一导体流出,且导体上电流均匀分布在其横截面积上,设圆柱半径为R 1,圆筒半径为R 2,如图所示.求:(1)磁感应强度B 的分布; (2)在圆柱和圆筒之间单位长度截面的磁通量为多少?[解答](1)导体圆柱的面积为 S = πR 12,面电流密度为 δ = I/S = I/πR 12. 在圆柱以半径r 作一圆形环路,其面积为 S r = πr 2,包围的电流是 I r = δS r = Ir 2/R 12. 根据安培环路定理 rL I I 00d μμ∑⎰==⋅l B ,由于B 与环路方向相同,积分得2πrB = μ0I r ,所以磁感应强度为B = μ0Ir /2πR 12,(0 < r < R 1).在两导体之间作一半径为r 的圆形环中,所包围的电流为I ,根据安培环中图14.16 图14.17定理可得B = μ0I /2πr ,(R 1 < r < R 2).在圆筒之外作一半径为r 的圆形环中,由于圆柱和圆筒通过的电流相反,所包围的电流为零,根据安培环中定理可得B = 0,(r > R 2).(2)在圆柱和圆筒之间离轴线r 处作一径向的长为l = 1、宽为d r 的矩形,其面积为 d S = l d r = d r ,方向与磁力线的方向一致,通过矩形的磁通量为 d Φ = B d S = B d r , 总磁通量为2100211d ln 22R R I I R r r R μμΦππ==⎰.14.18一长直载流导体,具有半径为R 的圆形横截面,在其内部有与导体相切,半径为a 的圆柱形长孔,其轴与导体轴平行,相距b = R – a ,导体截有均匀分布的电流I .(1)证明空孔内的磁场为均匀场并求出磁感应强度B 的值;(2)若要获得与载流为I ,单位长度匝数n 的长螺线管内部磁场相等的均匀磁场,a 应满足什么条件?(1)[证明]导体中的电流垂直纸面向外,电流密度为22()IR a δπ=-.长孔中没有电流,可以当作通有相反电流的导体,两个电流密度的大小都为δ,这样,长孔中磁场是两个均匀分布的圆形电流产生的. 如果在圆形截面中过任意点P 取一个半径为r 的同心圆,其面积为S = πr 2, 包围的电流为 ΣI = δS = πr 2δ, 根据安培环路定理可得方程 = μ0ΣI , 2πrB r磁感应强度为0022r I B r r μμδπ∑==,方向与矢径r 垂直.同理,密度为-δ的电流在P 点产生的磁感应强度为0``2r B r μδ=,方向与矢径r`垂直.设两个磁感应强度之间的夹角为θ,则合场强的平方为222``2cos r r r r B B B B B θ=++22220()(`2`cos )2B r r rr μδθ=++.根据余弦定理,如图可知:222`2`cos b r r rr ϕ=+-,由于φ = π - θ,所以02B b μδ=,由于b 和δ都是常量,可见:长孔中是均匀磁场.将δ和b 代入公式得磁感应强度大小为02()IB R a μπ=+,可以证明磁场的方向向上.(2)[解答]长螺线管内部的场为B =μ0nI ,与上式联立得12a R n π=-,这就是a 所满足的条件.[注意]此题中的长孔中的磁场与习题13.10.中空腔中的电场情况非常类似.14.19 在XOY 平面内有一载流线圈abcda ,通有电流I = 20A ,ºbc半径R = 20cm ,电流方向如图所示.线圈处于磁感应强度B = 8.0×10-2T 的均强磁场中,B 沿着X轴正方向.求:直线段ab 和cd 以及圆弧段ºbc和ºda 在外磁场中所受安培力的大小和方向.手螺旋法则,ºbc 弧和cd 边受力方向垂直[解答]根据右纸面向外,ºda 弧和ab 边受力方向垂直纸面向里.由于对cd 边所受安培力的大小是相同的,ºbc 弧称的关系,ab 边和和ºda弧所受安培力的大小也是相同的. ab 边与磁场方向的夹角是α = 45°,长度为l = R /sin α,所受安培力为F ab = |I l ×B | = IlB sin α= IRB = 0.32(N) = F cd .在圆弧上取一电流元I d l ,其矢径R 与X 轴方向的夹角为θ,所受力的大小为d F bc = |I d l ×B | = I d lB sin θ,由于线元为 d l = R d θ,所以 d F bc = IRB sin θd θ,因此安培力为/20/20sin d (cos )bc F IRB IRB ππθθθ==-⎰= IRB = 0.32(N) = F da .14.20载有电流I 1的无限长直导线旁有一正三角形线圈,边长为a ,载有电流I 2,一边与直导线平等且与直导线相距为b ,直导线与线圈共面,如图所示,求I 1作用在这三角形线圈上的力.[解答]电流I 1在右边产生磁场方向垂直纸面向里,在AB 边处产生的磁感应强度大小为B = μ0I 1/2πb , 作用力大小为 μ0I 1I 2a /2πb , F AB = I 2aB = 方向向左. 三角形的三个内角 α = 60°,在AC 边上的电流元I 2d l 所受磁场力为d F = I 2d lB ,两个分量分别为 d F x = d F cos α和 d F y = d F sin α,与BC 边相比,两个x 分量大小相等,方向相同;两个y 分量大小相等,方向相反.由于 d l = d r /sin α,所以 d F x = I 2d rB cot α,积分得sin 012cot 1d 2b a x b I I F r r αμαπ+=⎰012cot sin ln 2I I b a b μααπ+==.作用在三角形线圈上的力的大小为F = F AB – 2F x012(2I I a b μπ=,方向向左.14.21 载有电流I 1的无限长直导线,在它上面放置一个半径为R 电流为I 2的圆形电流线圈,长直导线沿其直径方图14.21向,且相互绝缘,如图所示.求I 2在电流I 1的磁场中所受到的力.[解答]电流I 1在右边产生磁场方向垂直纸面向里,右上1/4弧受力向右上方,右下1/4弧受力向右下方;电流I 1在左边产生磁场方向垂直纸面向外,左上1/4弧受力向右下方,左下1/4弧受力向右上方.因此,合力方向向右,大小是右上1/4弧所受的向右的力的四倍.电流元所受的力的大小为d F = I 2d lB ,其中 d l = R d θ,B = μ0I 1/2πr ,而 r = R cos θ,所以向右的分别为d F x = d F cos θ = μ0I 1I 2d θ/2π,积分得/2012012d d 24x I I I I F πμμθπ==⎰, 电流I 2所受的合力大小为F = 4F x = μ0I 1I 2,方向向右.14.22如图所示,斜面上放有一木制圆柱,质量m = 0.5kg ,半径为R ,长为 l = 0.10m ,圆柱上绕有10匝导线,圆柱体的轴线位导线回路平面内.斜面倾角为θ,处于均匀磁场B = 0.5T 中,B 的方向竖直向上.如果线圈平面与斜面平行,求通过回路的电流I 至少要多大时,圆柱才不致沿斜面向下滚动?[解答]线圈面积为 S = 2Rl ,磁矩大小为p m = NIS ,方向与B 成θ角,所以磁力矩大小为p m B sin θ =NI 2RlB sin θ, M m = |p m ×B | =方向垂直纸面向外.重力大小为 G = mg ,力臂为 L = R sin θ,重力矩为 M g = GL = mgR sin θ,方向垂直纸面向里.圆柱不滚动时,两力矩平衡,即NI 2RlB sin θ = mgR sin θ,解得电流强度为I = mg /2NlB = 5(A).14.23 均匀带电细直线AB ,电荷线密度为λ,可绕垂直于直线的轴O 以ω角速度均速转动,设直线长为b ,其A 端距转轴O 距离为a ,求:(1)O 点的磁感应强度B ; (2)磁矩p m ; (3)若a >>b ,求B 0与p m . [解答](1)直线转动的周期为T = 2π/ω, 在直线上距O 为r 处取一径向线元d r ,所带的电量为图14.23d q = λd r ,形成的圆电流元为 d I = d q/T = ωλd r /2π,在圆心O 点产生的磁感应强度为d B = μ0d I /2r = μ0ωλd r /4πr ,整个直线在O 点产生磁感应强度为001d ln 44a b a a b B r r a μωλμωλππ++==⎰,如果λ > 0,B 的方向垂直纸面向外.(2)圆电流元包含的面积为S = πr 2,形成的磁矩为 d p m = S d I = ωλr 2d r /2,积分得233d [()]26a bm a p r r a b a ωλωλ+==+-⎰.如果λ > 0,p m 的方向垂直纸面向外.(3)当a >>b 时,因为00ln(1)(...)44b b B a a μωλμωλππ=+=+,所以04b B a μωλπ≈. 33[(1)1]6m a b p a ωλ=+-3223[33()()]62a b b b a b a a a ωλωλ=++≈.14.24一圆线圈直径为8cm ,共12匝,通有电流5A ,将此线圈置于磁感应强度为0.6T 的均强磁场中,求:(1)作用在线圈上的电大磁力矩为多少?(2)线圈平面在什么位置时磁力矩为最大磁力矩的一半.[解答](1)线圈半径为R = 0.04m ,面积为 S = πR 2,磁矩为 p m = NIS = πR 2NI ,磁力矩为 M = p m B sin θ.当θ = π/2时,磁力矩最大M m = p m B = πR 2NIB = 0.18(N·m).(2)由于M = M m sin θ,当M = M m /2时,可得sin θ = 0.5,θ = 30°或150°.14.25 在半径为R ,通以电流I 2的圆电流的圆周上,有一无限长通以电流I 1的直导线(I 1,I 2相互绝缘,且I 1与圆电流I 2所在平面垂直),如图所示,求I 2所受的力矩.若I 1置于圆电流圆心处(仍垂直),I 2所受力矩又如何?[解答]在x 轴上方的圆周上取一电流元I 2d l ,其大小为 I 2R d θ, I 2d l = 所受的安培力为 I 2d l ×B , d F = 其大小为d F = |I 2d l ×B | = I 2R d θB sin φ, 其中φ =θ/2,B 是电流I 1在电流元I 2d l 处产生的磁感应强度010124cos I I B r R μμππϕ==,因此安培力的大小可化为012d t a n d 42I I F μθθπ=,力的方向垂直纸面向里.如果在x 轴下方取一电流元,其受力方向垂直纸面向外,因此,圆周所受的安培力使其绕x 轴旋转.电流元所受的力矩为2012d d (sin )sin d 22I I R M F R μθθθπ==电流所受的力矩为201201(1cos )d 22I I R M πμθθπ=-⎰0122I I Rμ=. 如果电流I 1置于圆电流圆心处,那么I 2就与I 1产生的磁力线重合,所受的力为零,力矩也为零. 14.26 一个电子在B = 20×10-4T 的磁场中,沿半径R = 2cm 的螺旋线运动,螺距h = 5cm ,如图所示,求:(1)电子的速度为多少? (2)B 的方向如何?[解答]电子带负电,设速度v 的方向与磁力线的负方向成θ角,则沿着磁力线方向的速度为 v 1 = v cos θ,垂直速度为 v 2 = v sin θ.由 R = mv 2/eB , 得 v 2 = eBR/m .由 h = v 1T ,得v1 = h/T = heB/2πm,因此速度为v=== 7.75×106(m·s-1);由212t a nv Rv hπθ=== 2.51,得θ = 68.3° = 68°18′.14.27 一银质条带,z1 = 2cm,y1 = 1mm.银条置于Y方向的均匀磁场中 B = 1.5T,如图所示.设电流强度I = 200A,自由电子数n = 7.4×1028个·m-3,试求:(1)电子的漂移速度;(2)霍尔电压为多少?[解答](1)电流密度为δ = ρv,其中电荷的体密度为ρ = ne.电流通过的横截面为S = y1z1,电流强度为I =δS = neSv,得电子的漂移速度为281917.410 1.6100.0010.02IvneS-==⨯⨯⨯⨯⨯=8.45×10-4(m·s-1).(2)霍尔系数为2819117.410 1.610HRne-==⨯⨯⨯= 8.44×10-11(m3·C-1),霍尔电压为111200 1.58.44100.001H HIBU Ry-⨯==⨯= 2.53×10-5(V)。

新编物理基础学全册(王少杰版)课后习题答案及详解

新编物理基础学全册(王少杰版)课后习题答案及详解

新编物理基础学全册课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。

分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。

解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kxv v e -= 。

其中0v 是发动机关闭时的速度。

分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。

证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kxv v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。

写出质点的运动学方程)(t r表达式。

对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。

人教版九年级全一册物理 第十四章 内能的利用 单元测试(含答案)

人教版九年级全一册物理 第十四章 内能的利用 单元测试(含答案)

第十四章内能的利用单元测试一.选择题1.下列说法正确的是()A.冠状病毒的传播是扩散现象B.即使煤炭没有完全燃烧,其热值也不会改变C.一个物体的内能增加了,一定是它吸收了热量D.因为沙石的比热容比水小,所以吸收相同的热量,沙石比水升温快2.2020年6月23日,我国用长征三号乙运载火箭成功发射第55颗北斗导航卫星!收官之星,组网圆梦。

长征系列火箭使用液态氢作燃料,主要是由于该燃料()A.比热容大B.热值大C.所含热量多D.内能大3.下列对能量转化的描述不正确的是()A.蓄电池充电:电能﹣﹣化学能B.萤火虫发光:生物质能﹣﹣光能C.发电机工作:电能﹣﹣机械能D.内燃机工作:化学能﹣﹣内能﹣﹣机械能4.汽车已经成为现代生活中不可缺少的一部分,现代汽车多数采用四缸汽油发动机,每个气缸都进行四冲程循环。

如图所示是汽油机工作的四个冲程示意图,其中表示做功冲程的是()A.B.C.D.5.一台内燃机运行时各种能量损耗大致为:汽缸散热损失占25%,废气带走的能量占35%、摩擦等机械损耗占10%,则它的热机效率为()A.70% B.30% C.60% D.40%6.汽车发动机一般是汽油机,汽油的热值为4.6×107J/kg,阅读了某汽车发动机的说明书后,将内燃机的能量流向制成如图所示,下列回答错误的是()A.发动机压缩冲程把燃料燃烧产生的内能转化为机械能B.1kg的汽油完全燃烧能够释放4.6×107J 的能量C.为确保发动机正常工作,需用水对其冷却D.该内燃机的效率为30%7.甲、乙两台热机,甲的效率比乙的低,其含义是()A.甲热机消耗的燃料多B.甲热机比乙热机做功少C.做相同的有用功,甲损失的能量比乙损失的多D.甲热机的功率比乙热机的小8.一辆小轿车以某一速度在平直路面上匀速行驶100km,消耗汽油10L,若这些汽油完全燃烧放出的热量有30%用来驱动汽车做有用功,所用汽油的热值为4.6×107J/kg,密度为0.7×103kg/m3,则以下说法正确的是()①小轿车是将机械能转化为内能的机器②这些汽油完全燃烧放出的热量为3.22×108J③汽车消耗的有用热量即有用功为9.66×107J④这辆轿车以该速度匀速行驶时受到的阻力为966NA.①②③④均正确B.只有①②③正确C.只有②③④正确D.只有②④正确9.某个单缸四冲程汽油机的转速是3000转/分,那么每秒钟内燃气对活塞做功次数和活塞冲程数分别是(()A.25次,25个冲程B.100次,100个冲程C.25次,100个冲程D.100次,200个冲程10.能正确描述图中各物理量之间关系的是()A.B.C.D.二.填空题11.如图所示是汽油机的冲程,若汽油机的转速为3000r/min,则ls内汽油机对外做功次。

新编基础物理学上册12-13单元课后答案

新编基础物理学上册12-13单元课后答案

第十二章12-1 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B =μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线? 答:因为顺磁质r μ>1,抗磁质r μ<1,铁磁质r μ>>1, B =r μμ0H 。

所以a 代表 铁磁质 的B ~H 关系曲线.b 代表 顺磁质 的B ~H 关系曲线.c 代表 抗磁质 的B ~H 关系曲线.12-2 螺绕环中心周长10l cm =,环上线圈匝数N =200匝,线圈中通有电流100I mA =。

(1)求管内的磁感应强度0B 和磁场强度0H ;(2)若管内充满相对磁导率r 4200μ=的磁性物质,则管内的B 和H 是多少?(3)磁性物质内由导线中电流产生的0B 和由磁化电流产生的B '各是多少?分析:电流对称分布,可应用安培环路定理求解。

且B H μ= ,0B B B '=+。

解:(1)管内磁场强度3110220010010A m 200A m .1010NI H nI l ----⨯⨯====⨯ 磁感应强度 740004π10200 2.510T.B H μ--==⨯⨯=⨯ (2)管内充满r 4200μ=磁介质后10200A m ,H H -==4r 0r 04200 2.510T=1.05T.B H H B μμμμ-====⨯⨯(3)磁介质内由导线中电流产生的40 2.510T,B -=⨯则40(1.05 2.510)T 1.05T.B B B -'=-=-⨯≈12-3 一铁制的螺绕环,其平均圆周长为30cm ,截面积为1cm 2,在环上均匀绕以300匝导线,当线圈内的电流为0.032A 时,环内的磁通量为6210wb -⨯.试计算(1)环内的磁通量密度;(2)环圆截面中心的磁场强度;(3)磁化面电流;(4)环内材料的磁导率、相对磁导率及磁化率;(5)环芯内的磁化强度.分析:可应用介质中安培环路定理求磁场强度。

新编基础物理学王少杰第二版习题解答

新编基础物理学王少杰第二版习题解答

新编基础物理学王少杰第二版习题解答习题八8-1 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所做的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为3114.1810J kg K --)解由上述分析得水下落后升高的温度8-2 在等压过程中,0.28kg 氮气从温度为293K 膨胀到373K ,问对外做功和吸热多少?内能改变多少?解:等压过程气体对外做功为气体吸收的热量内能的增量为8-3 一摩尔的单原子理想气体,温度从300K 加热到350K 。

其过程分别为体积保持不变和压强保持不变。

在这两种过程中:(1) 气体各吸取了多少热量?(2) 气体内能增加了多少?(3) 气体对外界做了多少功?解:已知气体为1 摩尔单原子理想气体(1) 体积不变时,气体吸收的热量压强保持不变时,气体吸收的热量(2) 由于温度的改变量一样,气体内能增量是相同的(3) 体积不变时,气体对外界做功压强保持不变时,根据热力学第一定律,气体对外界做功为8-4 一气体系统如题图8-4所示,由状态A 沿ACB 过程到达B 状态,有336J 热量传入系统,而系统做功126J,试问:(1) 若系统经由ADB 过程到B 做功42J,则有多少热量传入系统?(2) 若已知168J D A E E -=,则过程AD 及DB 中,系统各吸收多少热量?(3)若系统由B 状态经曲线BEA 过程返回状态A ,外界对系统做功84J,则系统与外界交换多少热量?是吸热还是放热?解:已知ACB 过程中系统吸热336J Q =,系统对外做功126J W =,根据热力学第一定律求出B 态和A 态的内能增量(1) ADB 过程,42J W =, 故(2) 经AD 过程,系统做功与ADB 过程做功相同,即42J W =,故经DB 过程,系统不做功,吸收的热量即内能的增量所以,吸收的热量为(3)因为是外界对系统做功,所以BEA 过程210J BEA E E ?=-?=-,故系统放热.8-5 如题图8-5所示,压强随体积按线性变化,若已知某种单原子理想气体在A,B 两状态的压强和体积,题图8-4题图8-5问:(1)从状态A 到状态B 的过程中,气体做功多少?(2)内能增加多少?(3)传递的热量是多少?解:(1) 气体做功的大小为斜线AB 下的面积(2) 对于单原子理想气体气体内能的增量为由状态方程 m pV RT M=代入得 (3)气体传递的热量为8-6一气缸内储有10mol 的单原子理想气体,在压缩过程中,外力做功200J,气体温度升高o 1C ,试计算:(1) 气体内能的增量;(2) 气体所吸收的热量;(3) 气体在此过程中的摩尔热容量是多少?解:(1) 气体内能的增量(2) 气体吸收的热量(3) 1mol 物质温度升高(或降低) o 1C 所吸收的热量叫摩尔热容量,所以 8-7一定量的理想气体,从A 态出发,经题图8-7所示的过程经C 再经D 到达B 态,试求在该过程中,气体吸收的热量.解:由题图8-7可得A 状态: 5810A A p V =?B 状态: 5810B B p V =? 题图8-7因为A AB B p V p V =,根据理想气体状态方程可知所以气体内能的增量根据热力学第一定律得8-8 一定量的理想气体,由状态A 经B 到达C .如题图8-8所示,ABC 为一直线。

新编基础物理学(王少杰版)章末测验及答案汇总.

新编基础物理学(王少杰版)章末测验及答案汇总.

专业班级 学号 姓名机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x xt/s7x/m0.050.10 图1x 1xx 2to图32 1xt/s图4图5x 2x 1 xt图2(____________________)。

《新编基础物理学》第1章习题解答和分析

《新编基础物理学》第1章习题解答和分析

第1章 质点运动学1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3-6t (m ),试计算质点 (1) 在最初2s 内的平均速度,2s 末的瞬时速度;(2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ∆=∆v 和d d xt=v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t∆=∆v和d d a t =v 求得.解:(1) 在最初2s 内的平均速度为31(2)(0)(8262)026(m s )2x x x t t -∆-⨯-⨯-====⋅∆∆v2s 末质点的瞬时速度为212d 24690(m s )d xt t-==-=⋅v (2) 1s 末到3s 末的平均加速度为22(3)(1)(2436)(246)96(m s )2a t t -∆-⨯---====⋅∆∆v v v3s 末的瞬时加速度23d 48144(m s )d a t t-===⋅v1-2.一质点在xOy 平面内运动,运动方程为22(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线;(2)求=1 s =2 s t t 和时质点的位置、速度和加速度.分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r表达式.对运动学方程求一阶导、二阶导得()t v 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度.解:(1) 由2,x t = 得:,2xt =代入248y t =- 可得:28y x =-,即轨道方程. 画图略(2)质点的位置矢量可表示为22(48)r ti t j =+-则速度d 28d ri t j t==+v 加速度d 8d a j t==v当t =1s 时,有1224(m),28(m s ),8m s r i j i j a j --=-=+⋅=⋅v当t =2s 时,有1248(m),216(m s ),8m s r i j i j a j --=+=+⋅=⋅v1-3.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位. 求: (1)质点的轨迹方程;(2)在2s t =时质点的速度和加速度. 分析: 同1-2.解:(1)由题意可知:x ≥ 0,y ≥ 0,由2x t =,可得t =,代入2(1)y t =- 整理得:1=即轨迹方程(2)质点的运动方程可表示为22(1)r t i t j =+-则d 22(1)d rti t j t ==+-v d 22d a i j t==+v因此, 当2s t =时,有1242(m s ),22(m s )i j a i j --=+⋅=+⋅v1-4.一枚从地面发射的火箭以220m s -⋅的加速度竖直上升后,燃料用完,于是像一个自由质点一样运动. 略去空气阻力并设g 为常量,试求: (1)火箭达到的最大高度;(2)它从离开地面到再回到地面所经过的总时间.分析:分段求解:030s t ≤≤时,220m s a -=⋅,可求出11,x v ;t >30s 时,g a -=.可求出2()t v ,2()x t .当20=v 时,火箭达到的最大高度, 求出t 、x . 再根据0x =,求出总时间.解:(1)以地面为坐标原点,竖直向上为x 轴正方向建立一维坐标系,设火箭在坐标原点时,t =0s ,且=30s.则当0≤ t ≤30s,由d d xx a t=v ,得 3020d d xx t =⎰⎰v v , 解得 20x t =v当130s =v 时11600m s -=⋅v由d d x xt=v , 得 13020d d x t t x =⎰⎰,则19000m x =当火箭未落地, 且t >30s, 又有221309.8d d x tx t -=⎰⎰v v v解得28949.8x t =-v同理由d d x x t=v 得 130(8949.8)d d txx t t x -=⎰⎰解得24.989413410x t t =-+- … ①由20x =v ,得91.2s t =,代入①得max 27.4km x ≈(2)由①式可知,当0x =时,解得1166s t ≈216s<30s t ≈(舍去)1-5.质点沿直线运动,加速度24a t =-,式中a 的单位为2m s -⋅,t 的单位为s ,如果当t =3s时,x =9m ,12m s -=⋅v ,求质点的运动方程.分析 本题属于第二类运动学问题,可通过积分方法求解. 解 由分析可知0200d d (4)d tta t t t ==-⎰⎰⎰vv v 积分得30143t t =+-v v 由030001d d (4)d 3xt tx x t t t t ==+-⎰⎰⎰v v 得24001212x x t t t =+-+v 将t =3s 时,x =9m ,12m s -=⋅v 代入上两式中得101m s -=-⋅v ,x 0=0.75m所以质点的运动方程为2410.752(m)12x t t t =-+-1-6. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度大小平方成正比,即2d /d t k =-v v , 式中k 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度大小为 0kxe-=v v . 其中0v 是发动机关闭时的速度大小.分析:要证明~x v 关系,可通过积分变量替换将时间变量替换掉,即d d d d a t x==v vv ,积分即可证明. 证: 2d d d d d d d d k =⋅==-v v vv v x t x t x分离变量得d d k x =-vv两边积分001d d x k x =-⎰⎰vv v v , 0lnkx =-v v 证得0kxe -=v v1-7.一质点沿半径为R 做圆周运动,运动学方程为2012s t bt =+v ,其中v 0,b 都是大于零的常量.求:(1)t 时刻质点的加速度大小及方向; (2)在何时加速度大小等于;分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率d d st=v ,而切向加速度d d t a t=v ,法向加速度2n a ρ=v ,总加速度22n a a a +=τ,当a =时,即可求出t .解:(1)质点的运动速率0d d sbt t==+v v 切向加速度d d t a b t ==v 法向加速度220()n bt a Rρ+==v v 加速度大小a ==方向()211tantan ntbt a a bRθ--+==v(2)当a =时,可得22220()2bt b b R ⎡⎤++=⎢⎥⎣⎦v解出t b=v 1-8. 物体以初速度120m s -⋅被抛出,抛射仰角60°,略去空气阻力,问: (1)物体开始运动后的末,运动方向与水平方向的夹角是多少 末的夹角又是多少 (2)物体抛出后经过多少时间,运动方向才与水平成45°角这时物体的高度是多少 (3)在物体轨迹最高点处的曲率半径有多大 (4)在物体落地点处,轨迹的曲率半径有多大分析:(1)建立坐标系,写出初速度0v ,求出()t v 、θtan ,代入t 求解.(2)由(1)中的θtan 关系,求出时间t ;再根据y 方向的运动特征写出()t y ,代入t 求y . (3)根据物体在轨迹最高点处,0y =v ,且加速度2n a a g ρ===v ,可求出ρ.(4)由对称性,落地点与抛射点的曲率相同 2cos n a g θρ==v ,求出ρ.解:以水平向右为x 轴正向,竖直向上为y 轴正向建立二维坐标系 (1)初速度001020cos6020sin6010103(m s )i j i j -=+=+⋅v ,加速度29.8(m s ),a j -=-⋅则任一时刻10(1039.8)at i t j =+=+-v v ………………①与水平方向夹角有1039.8tan 10tθ-=……………………………②当t =时tan 0.262,1441'θθ==︒当t =时tan 0.718,3541'θθ=-=-︒(2)此时tan 1θ=, 由②得t =物体的高度22111030.759.80.7510.23(m)22yo y t gt =-=⨯-⨯⨯=v (3)在最高处2110m s ,n a g ρ-=⋅==v v得210.2m gρ==v (4)由对称性可知,落地点的曲率与抛射点的曲率相同. 由解图1-8得210cos cos 4.9(m s )20x n a a g gg θθ-=====⋅v v240082(m)4.9n a ρ===v1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为110m s -⋅,切向加速度的大小为20.2m s -⋅.求汽车的法向加速度和总加速度的大小和方向. 分析:由某一位置的ρ、v 求出法向加速度n a ,再根据已知切向加速度τa 求出总加速度a 的大小和方向.解:法向加速度的大小222100.25(m s ),400n a ρ-===⋅v 方向指向圆心 总加速度的大小222220.20.250.32(m s )n a a a τ-=+=+=⋅由解图1-9得tan 0.8,3840'na a ταα===︒ 则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度、法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空解图1-8解图1-9气阻力).已知法向加速度与轨迹曲率半径之间的关系为2n a ρ=v .分析:在运动过程中,质点的总加速度 a g =.由于无阻力作用,所以回落到抛出点高度时, 质点的速度大小0=v v ,其方向与水平线夹角也是α.可求出n a ,如解图1-10所示.再根据法向加速度与轨迹曲率半径之间的关系2n a ρ=v ,解出曲率半径.解:切向加速度t sin a g a =法向加速度a g a n cos =因为2n a ρ=v ,所以220cos n a g ρα==v v1-11.在生物物理实验中用来分离不同种类的分子的超级离心机的转速为313.1410rad s -⨯⋅.在这种离心机的转子内,离轴10cm 远的一个大分子的向心加速度是重力加速度的几倍分析 根据定义可得向心加速度的大小2n a r ω=.解 所求倍数2222425244(610)0.1=410609.8rn r g g ωππ⨯⨯==⨯⨯1-12. 一质点在半径为0.10m 的圆周上运动,其角位置变化关系为324(rad)t θ=+.试求:(1) 在t =2s 时,质点的法向加速度和切向加速度大小各为多少; (2) 当切向加速度大小恰等于总加速度大小的一半时,θ值为多少 (3) 在什么时刻,切向加速度和法向加速度恰好大小相等分析 本题为物体作圆周运动的角坐标表示下的第一类运动学问题,求导可得到角速度和角加速度,再由角量与线量的关系求得切向加速度t a 和法向加速度n a .解图1-10解 (1) 角速度和角加速度分别为2d 12d t t θω== d 24d t tωβ==法向加速度22222n 0.1(12) 2.3010(m s )a r t ω-==⨯=⨯⋅切向加速度2t d 2.4 4.8(m s )d a r t tβ-====⋅v (2) 由 t /2a a =,2222t n t 4a a a a =+= 得22t n3a a = 22243(24)(12)r t r t =33t = 332424 3.15(rad)t θ=+=+⨯= (3) 由 n t a a =,即22(12)24r t rt =,解得 0.55s t =1-13.离水面高度为h 的岸上有人用绳索拉船靠岸,人以恒定速率0v 拉绳子,求当船离岸的距离为s 时,船的速度和加速度的大小.分析:收绳子速度和船速是两个不同的概念.小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为0v .可以由0v 求出船速v 和垂直绳的分量1v .再根据21n a ρ=v 关系,以及n a 与a关系来求解a .解: 如解图1-13,小船速度沿绳的分量20=v v ,船速2sec θ=v v当船离岸的距离为s 时,船速22s h s+=v v 解图1-13船速垂直绳的分量012tan hsθ==v v v 则船的法向加速度2211n 2222cos a a as hs hθρ====++v解得2203h a s =v1-14. A 船以130km h -⋅的速度向东航行,B 船以145km h -⋅的速度向正北航行,求A 船上的人观察到的B 船的速度和航向.分析:关于相对运动,必须明确研究对象和参考系.同时要明确速度是相对哪个参照系而言.画出速度矢量关系图求解. 解:如解图1-14所示11A B 30km h ,45km h i j --=⋅=⋅v vB 船相对于A 船的速度1BA B A 4530(km h )j i -=-=-⋅v v v则速度大小221BA B A 54.1(km h )-=+=⋅v v v方向BAarctan56.3θ==︒v v ,既西偏北56.3︒1-15. 一个人骑车以118km h -⋅的速率自东向西行进时,看见雨滴垂直落下,当他的速率增加至136km h -⋅时,看见雨滴与他前进的方向成120°角下落,求雨滴对地的速度.解图1-14分析:这是一个相对运动的问题,雨对地的速度不变,画出速度矢量图,就可根据几何关系求解.解:如解图1-15所示,r v 为雨对地的速度, 12,p p v v 分别为第一次,第二次人对地的速度,12,rp rp v v 分别为第一次,第二次雨对人的速度,120θ=︒由三角形全等的知识,可知18012060αβ==︒-︒=︒三角形ABC 为正三角形,则2136km h r p -==⋅v v ,方向竖直向下偏西30︒.1-16如题图1-16所示,一汽车在雨中以速率1v 沿直线行驶,下落雨滴的速度方向偏于竖直方向向车后方θ角,速率为2v ,若车后有一长方形物体,问车速为多大时,此物体刚好不会被雨水淋湿分析:相对运动问题,画矢量关系图,由几何关系求解.解:如解图1-16(a ),车中物体与车蓬之间的夹角 arctan l h α=若θ>α,无论车速多大,物体均不会被雨水淋湿若θ<α,如解图1-16(b )则有||||||BC AC AB ==-v 车=sin sin cos tan sin αθθαθ-=-v v v v 雨雨雨雨对车又2=v v 雨则2cos (sin )l h θθ=-v v 车题图1-16 解图1-16 解图1-151-17 人能在静水中以11.10m s -⋅的速度划船前进.今欲横渡一宽为m 10.0013⨯、水流速度10.55m s -⋅的大河.他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向到达正对岸需多少时间分析 船到达对岸所需时间由船相对于岸的速度v 决定,而v 由水流速度u 和船在静水中划行速度'v 确定.画出矢量图由几何关系求解.解 根据解图1-17,有'v =u+v ,解得 0.551sin 1.102u α==='v 030α= 即应沿与正对岸方向向上游偏300方向划行.船到达正对岸所需时间为 31.0510s cos d d t α===⨯'v v 1-18.一升降机以2g 的加速度从静止开始上升,在末时有一小钉从顶板下落,若升降机顶板到底板的距离h=2.0m ,求钉子从顶板落到底板的时间t , 它与参考系的选取有关吗分析:选地面为参考系,分别列出螺钉与底板的运动方程,当螺丝落到地板上时,两物件的位置坐标相同,由此可求解.解:如解图1-18建立坐标系,y 轴的原点取在钉子开始脱落时升降机的底板处,此时,升降机、钉子速度为0v ,钉子脱落后对地的运动方程为21012y h t gt =+-v 升降机底板对地的运动方程为220122y t gt =+⨯v 且钉子落到底板时,有12=y y ,即2012h t gt +-=v 20t gt +v αuv 'v 解图1-17解图1-18解出t0.37s t与参考系的选取无关.。

新编物理学基础课后习题答案

新编物理学基础课后习题答案
02
简答题:简述热力学第一定律和第二定律的内容,并指出它们在物理学中的意义。
热力学基础习题答案
简答题
简述分子动理论的基本内容,并说明气体分子平均自由程与哪些因素有关。
答案
分子动理论的基本内容包括分子在永不停息地做无规则运动,分子之间存在着引力和斥力,分子之间存在着空隙。气体分子平均自由程与气体压强、温度和分子的平均碰撞频率有关。
总结词
能够运用动量和角动量的知识解决实际问题。
总结词
理解动量守恒和角动量守恒的条件和意义。
动量与角动量习题答案
动量与角动量习题答案
01
02
03
详细描述
动量是描述物体运动状态的物理量,计算公式为 $p = mv$,其中 $m$ 是物体的质量,$v$ 是物体的速度。
角动量是描述物体旋转运动的物理量,计算公式为 $L = mr^2omega$,其中 $m$ 是物体的质量,$r$ 是物体到旋转轴的距离,$omega$ 是物体的角速度。
法拉第电磁感应定律描述了当磁场发生变化时会在导体中产生感应电动势的现象。楞次定律指出感应电流的方向总是阻碍引起感应电流的磁通量的变化。
磁场
安培环路定律
法拉第电磁感应定律
磁场与电磁感应习题答案
光学部分习题答案
04
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
康普顿散射证明了光的粒子性,并为量子力学的发展奠定了基础。
光的量子性习题答案
量子力学部分习题答案
05
不确定性原理
由海森堡提出,指在量子力学中无法同时精确测量某些物理量,如位置和动量。
测量
在量子力学中,测量是一个重要的概念,它会影响到量子态的塌缩和结果的不确定性。

新编基础物理学第14章习题解答与分析

新编基础物理学第14章习题解答与分析

第14章 波动光学14-1.在双缝干涉实验中,两缝的间距为0.6mm,照亮狭缝S 的光源是汞弧灯加上绿色滤光片.在2.5m 远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为2.27mm .试计算入射光的波长,如果所用仪器只能测量5mm x ∆≥的距离,则对此双缝的间距d 有何要求?分析:由杨氏双缝干涉明纹位置公式求解。

解:在屏幕上取坐标轴Ox ,坐标原点位于关于双缝的对称中心。

屏幕上第k 级明纹中心的距坐标原点距离:λdD kx ±= 可知dD d D k d D k x x x k k λλλ=-+=-=∆+)1(1 代入已知数据,得545nm xd Dλ∆== 对于所用仪器只能测量5mm x ∆≥的距离时0.27mm D d x λ≤=∆14-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm .在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(91nm=10m -)分析:由双缝干涉屏上明纹位置公式,求k 取整数时对应的可见光的波长。

解:已知:d =0.2mm ,D =1m ,x =20mm 依公式λk d D x =∴ 4000n mdxk Dλ== 故k =10 λ1=400nmk =9 λ2=444.4nm k =8 λ3=500nm k =7 λ4=571.4nm k =6 λ5=666.7nm这五种波长的光在所给的观察点最大限度地加强.14-3.如题图14-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度Imax 的比值.分析:已知光程差,求出相位差.利用频率相同、振动方向相同的两列波叠加的合振幅公式求出P 点合振幅。

杨氏双缝干涉最大合振幅为2A 。

解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝ , 因为λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后题图14-3()3π23π2π212=⋅=-=∆λλλϕr r P 点合振动振幅的平方为:22223π2cos2A A A A =++ 因为2I A ∝ 所以22m a x 1==44IA I A14-4. 在双缝干涉实验中,波长550nm λ=的单色平行光, 垂直入射到缝间距4210m d -=⨯的双缝上,屏到双缝的距离2m D =.求:(1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为66.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?分析:(1)双缝干涉相邻两条纹的间距为 ∆x =D λ / d ,中央明纹两侧的两条第10级明纹中心的间距为20∆x .(2)不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,中央明纹对于O 点的光程差0δ=,其余条纹相对O 点对称分布.插入介质片后,两相干光在两介质薄片中的几何路程相等,但光程不等。

《新编基础物理学》第14章习题解答和

《新编基础物理学》第14章习题解答和

第 14 章颠簸光学第 14 章颠簸光学14-1.在双缝干预实验中,两缝的间距为0.6mm,照亮狭缝S的光源是汞弧灯加上绿色滤光片.在 2.5m 远处的屏幕上出现干预条纹,测得相邻两明条纹中心的距离为 2.27mm .试计算入射光的波长,假如所用仪器只好丈量x 5mm 的距离,则对此双缝的间距 d 有何要求?剖析:由杨氏双缝干预明纹地点公式求解。

解:在屏幕上取坐标轴 Ox ,坐标原点位于对于双缝的对称中心。

屏幕上第 k 级明纹中心的距坐标原点距离:x kDd可知x x k 1 x k ( k 1) DkDD d d d代入已知数据,得xd 545nmD对于所用仪器只好丈量x5mm 的距离时Dd0.27mmx14-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm.在距双缝1m 远的屏上察看干预条纹,若入射光是波长为400nm 至 760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地增强?( 1nm=109m )剖析:由双缝干预屏上明纹地点公式,求k 取整数时对应的可见光的波长。

解:已知: d=0.2mm, D =1m, x= 20mm依公式xDk d∴故k dx 4 0 0 0 n mDk= 10 λ1= 400nmk= 9 λ2= 444.4nmk= 8 λ3= 500nmk= 7 λ4= 571.4nmk= 6 λ5= 666.7nm这五种波长的光在所给的察看点最大限度地增强.14-3.如题图 14-3 所示,在杨氏双缝干预实验中,若S2 P S1 P r2 r1/ 3 ,求P点的强度I 与干预增强时最大强度I max的比值.剖析:已知光程差,求出相位差.利用频次同样、振动方向同样的两列波叠加的合振幅公式求出 P 点合振幅。

杨氏双缝干预最大合振幅为2A。

解:设 S1、S2分别在 P 点惹起振动的振幅为 A,干预增强时,合振幅为2A,所以Imax 4A2 , 因为1r2 r1题图 14-33第 14 章 颠簸光学2 π 2 π 2πr 2r 133P 点合振动振幅的平方为:2πA 2A 2 2A 2 cos A 2A 2 所以3 因为 I2I=A 2=1I m a x 4 A 414-4. 在双缝干预实验中,波长550nm 的单色平行光 , 垂直入射到缝间距 d 2 10 4 m 的双缝上,屏到双缝的距离 D 2m .求:(1) 中央明纹双侧的两条第 10 级明纹中心的间距;(2) 用一厚度为 e 6.6 10 6 m 、折射率为 n 1.58的玻璃片覆盖一缝后, 零级明纹将移到本来的第几级明纹处?剖析: (1)双缝干预相邻两条纹的间距为x = D / d ,中央明纹双侧的两条第10 级明纹中心的间距为 20 x.( 2)不加介质片以前,两相关光均在空气中流传,它们抵达屏上任一点P 的光程差由其几何行程差决定,中央明纹对于O 点的光程差0 ,其他条纹相对 O 点对称散布.插入介质片后,两相关光在两介质薄片中的几何行程相等,但光程不等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新编基础物理学14单
元课后答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第十四章
14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件. 分析:一次折射,一次反射;利用端面折射角与内侧面入
射角互余及全反射条件即可求解。

解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有'
sin 'cos sin sin 222θθγθn n n n -===
光线在界面上发生全反射的条件为1
'sin ≥θn
∴发生全反射时,n 必须满足θ2
sin 1+≥n
14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r
4=.求像的位置.
分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===.
解:
cm cm r n n f 12)415.15.1(1'11=⨯-=-=
cm cm f n f 8)5.112('111-=-=-=
cm f p p p f p f 12'',,1''1111
111==∞==+ 或用
-∞====-=-1111
1
11111,1,5.1','''p n n n r n n p n p n
cm p p 12',4
15.11'5.111=-=∞--
对玻璃球前表面所成的像,对后表面而言是物,所以
cm cm r p p 4)812(2'212=-=+=
题图14-1
cm cm r n f 8)]4(5
.111
[11'22=-⨯-=-=
cm cm nf f 12)85.1('22-=⨯-=-=
cm cm f p f p p p f p f 2)12
484('',1''222222222=+⨯=-==+ 或用
1',5.1,'''222
2
22222===-=-n n n r n n p n p n
cm p p 2',4
5.1145.1'122=--=-
像在球的右侧,离球的右边2cm 处.
14-3.如题图14-3所示的一凹球面镜,曲率半径为40cm ,一小物体放在离镜面顶点10cm 处.试作图表示像的位置、虚实和正倒,并计算出像的位置和垂轴放大率.
分析:利用凹面镜的半径可确定焦距,以知物距,由球面镜的物像公式和横向放大率公式可求解。

解:像的位置如图所示,为正立、放大的虚像.
2
)1(10120''20'1'11202
1
=-⨯-⨯====+-==
pn n p cm
p f p p cm R f β
14-4.高为0h 的物体,在焦距0'>f 的薄透镜左侧,置于f p <<0的位置。

试用作图法表示像的位置,实、虚,放大还是缩小,正立还是倒立.并用文字指明.
分析:0'>f ,利用过凸透镜光心的光线方向不变,平行主光轴的入射光线折射后过像方焦点画图。

解:成像光线如题14-4解图所示,所成之像是:放大、正立的虚像.
14-5.高为0h 的物体,在焦距0'<f 的薄透镜左侧,放置在f p >的位置,试用作图法表示像的位置,实、虚,放大还是缩小,正立还是倒立。

并用文字指明.
分析:0'<f ,利用过凹透镜光心的光线方向不
变,平行主光轴的入射光线折射后的反向延长线过像方焦点。

解:成像光线如题14-5解图所示.所成之像是:缩小、正立的虚像.
14-6.一竖立玻璃板的折射率为1.5,厚度为10cm ,观察者在玻璃板后10cm 处,沿板的法线方向观察置于同一法线上10cm 处的一个小物体时,它距离观察者有多远?
分析:两次平面折射。

解:由平面折射公式,利用逐步成像法,即可求得物体的像.
根据cm
p n n cm p cm p n n cm p p n
n p 67.16'.50.1,1',25)1510(.
15',1,50.1',10,'
'22221111-=∴==-=--=-=∴==-==
距观察者距离 cm cm L 67.26)67.1610(=+=
14-7.为下列情况选择光焦度合适的眼镜. (1)一位远视者的近点为80.0cm; (2 ) 一位近视者的远点为60.0cm .
(1)分析:远视眼应配凸透镜眼镜,配上眼镜后,相当于物体在离明视距离(cm p 25-=)处,而所成虚像在近点处(cm p 80'-=).
解:由透镜成像公式 '
11'1f p
p =-
可得 '
1251801f =---
解得镜片焦距cm f 36.36'=,其光焦度为
D f 75.2m
3636.01'1===
φ 应配眼镜度数为27510075.2=⨯度.
(2)分析:近视者应配凹透镜眼镜,配上眼镜后,从无穷远处()-∞=p 物体发出的光看似从远点处发出,即虚像成在远点处(cm p 60'-=). 解:由透镜成像公式 '
11'
1f p
p =-
可得 '
11601f =∞---
解得镜片焦距cm f 60'-=,其光焦度为
D f 67.1m
60.01
'1-=-==
φ 应配眼镜度数为16710067.1=⨯度.
14-8.一双凸薄透镜的两表面半径均为50mm ,透镜材料折射率n =1.5,求该透镜位于空气中的焦距为多少?
分析:将已知条件代入薄透镜在空气中的焦距公式。

解 位于空气中时,
)1
1)(1(12
1r r n f --=' 50
1
)501501)(
15.1(=
---= 即 )
mm (50=-='f f
14-9.一玻璃棒(n=1.5),长
50cm ,两端面为半球面,半径分别为5cm 和10cm ,一小物高0.1厘米,垂直位于左端球面顶点之前20厘米处的轴线上.
求:(1)小物经玻璃棒成像在何处
(2)整个玻璃棒的横向放大率为多少
分析:光线经过凸球面折射,再经过凹球面折射,利用球面折射成像公式逐次成像求像的位置。

整个横向放大率为每次横向放大率的乘积。

注意每次成像的顶点位置不同。

解:小物经第一个球面折射成像。

由球面折射成像公式
r
n
n p n p n -=
-''' 有5
15.120
1'
5.11-=--p
得 cm p 30'1=
横向放大率:1)
20(5.1301''1111-=-⨯⨯==
p n p n β
题14-14解图
再经第二个球面折射成像
由 cm d p p 205030'12-=-=-= 有 10
5.1120
5.1'
12--=--p
得 cm p 40'2-= 即小物经玻璃棒成像于距第二个球面顶点处水平向左
40cm 处
横向放大率:3)
20(1)
40(5.1''22222=-⨯-⨯==
p n p n β (2)整个玻璃棒的横向放大率 321-==βββ。

相关文档
最新文档