工程材料-表面热处理
工程材料及热加工—钢的热处理工艺
2.2.4钢的淬透性 • 定义:淬透性是指钢在淬火时获得马氏体的能力。它是 钢的固有属性,也是选材和制订热处理工艺的重要依据 之一。
• 影响因素:钢的临界冷却速度; 过冷奥氏体的稳定性。 • 评定方法:用钢在一定条件下淬火所获得的淬透层深 度或临界淬透直径(Dk)来表示。 ⑴淬透层的深度定义为由表面至半马氏体区的深度。 半马氏体区的组织是由50%马氏体和50%分解产物所组 成。 ⑵指圆柱状钢试样在规定的淬火介质中能全部淬透的 最大直径。当冷却介质一定时,Dk愈大,淬透性愈好。 • 测定方法:最常用的方法是末端淬火法,简称为端淬 法。
•
三、钢的回火
• • 定义:是将淬火后的钢加热到Ac1以下某一温度,保 温一定时间,然后冷却至室温的一种热处理工艺。 目的: 减小或消除淬火应力; 提高钢的塑性和韧性,获得良好的综合力学性能; 稳定组织和工件尺寸。 分类及应用: ⑴低温回火(150~250℃) 组织为回火马氏体。 ( 58~64HRC ) 部分降低钢中残余应力和脆性,而保持钢在淬 后所得到的高强度、硬度和耐磨性。 广泛应用于工具、量具、滚动轴承、渗碳工件 以及表面淬火工件等。
2.2.2淬火冷却介质 最常用的是水、盐水、油、熔盐。 水:形状简单、截面尺寸较大的碳钢。(高温慢,低温快) 盐水:高温快,低温快。 油:合金钢或小尺寸碳钢件。 (高温太慢,低温慢) 熔盐(盐浴):形状复杂、变形要求严格的件。最接近理 想冷却介质。
2.2.3淬火方法 • 单液淬火:在一种介质中连续冷却获得马氏体。 操作简单,易于自动化,易于产生缺陷,适 用于形状简单的小件。 • 双液淬火:先后在两种介质中冷却。 操作复杂,难以控制。 • 分级淬火:淬入稍高于Ms的介质中,待内外温差一致后 取出,缓冷得到马氏体。 减少应力和变形,适用于小件。 • 等温淬火:淬入稍高于Ms的介质中,等温转变为下B。 强度高,塑性、韧性好,应力小,变形小, 多用于形状复杂、要求高的工件。
金属表面处理及热处理加工与表面处理的区别
金属表面处理及热处理加工与表面处理的区别一、金属表面处理的概念及作用1. 金属表面处理是指对金属材料表面进行加工、修饰,以改善其表面性能、保护和美化的一种工艺。
它是金属加工中不可缺少的环节之一,能够提高金属零件的使用寿命、使用性能和外观质量。
2. 金属表面处理的作用主要包括防腐、防锈、提高表面硬度、改善耐磨性、改善电化学性能等。
通过表面处理,可以使金属零件在使用过程中具有更好的耐磨、耐蚀和耐高温性能,从而延长其使用寿命。
二、热处理加工的概念及作用1. 热处理加工是指通过对金属材料进行加热、保温和冷却等工艺过程,以改变其组织结构和性能的一种加工方法。
热处理加工能够提高金属材料的硬度、强度、韧性和耐磨性,从而提高材料的使用性能。
2. 热处理加工的作用主要包括改善金属材料的力学性能、提高耐热性和耐磨性、消除材料内部应力和变形等。
通过热处理,可以实现对金属材料的精密控制,使其具有更加优质的力学性能和使用寿命。
三、金属表面处理与热处理加工的区别1. 目的不同:金属表面处理主要是为了改善表面性能,如耐腐蚀、耐磨等;而热处理加工旨在改善整体材料的力学性能,如硬度、强度等。
2. 方法不同:金属表面处理多采用化学处理、机械加工等方式,以在表面形成一层保护膜或改变表面状态;而热处理加工则通过加热、保温和冷却等工艺过程改变材料的组织结构和性能。
3. 范围不同:金属表面处理更偏向于表面的零部件加工和改良;热处理加工则涉及到整体材料的加工和性能提升。
四、个人观点及总结在金属加工领域,金属表面处理和热处理加工都扮演着十分重要的角色。
金属表面处理能够改善金属零件的表面性能,从而提高其使用寿命和稳定性;而热处理加工则能够提升整体材料的力学性能,使其在各种特殊条件下都能够保持优质的性能特性。
两者相辅相成,为金属加工领域的高质量发展提供了重要支撑。
在以后的工程实践中,我会更加注重金属材料的综合加工处理,同时加强对金属表面处理和热处理加工的深入学习和实践应用,以提高自己在金属加工领域的专业技能和水平。
工程材料及热处理pdf
工程材料及热处理一、引言工程材料是现代工业和科技领域中不可或缺的一部分,广泛应用于建筑、机械、电子、航空航天、交通运输等领域。
热处理是工程材料加工过程中的重要环节,通过改变材料的内部结构,提高其力学性能、物理性能和化学性能。
本文将详细介绍工程材料的分类、性能与特点、热处理原理、常见热处理工艺、材料选用原则、材料检测与评估、热处理设备与工艺优化以及工程材料应用领域。
二、工程材料分类工程材料可分为金属材料和非金属材料两大类。
金属材料包括钢铁材料、有色金属材料和合金等;非金属材料包括塑料、橡胶、陶瓷、玻璃等。
这些材料在性能上各有特点,适用于不同的工程领域。
三、材料性能与特点1.金属材料:具有较高的强度、塑性和韧性,具有良好的导电性和导热性。
不同的金属材料在耐磨性、耐腐蚀性等方面也表现出不同的特点。
2.非金属材料:具有轻质、高强、耐腐蚀等特点,且具有良好的绝缘性能。
非金属材料在加工过程中具有较好的可塑性和可加工性。
四、热处理原理热处理是通过加热、保温和冷却等工艺手段,改变材料的内部结构,从而提高其力学性能和物理性能。
热处理过程中,材料的内部原子或离子重新排列,形成新的晶体结构,从而改变材料的性质。
五、常见热处理工艺1.退火:将材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
退火可以消除材料的内应力,改善其组织和性能。
2.淬火:将材料加热到一定温度后迅速冷却,使材料表面硬化而内部保持韧性。
淬火可以提高材料的硬度和耐磨性。
3.回火:将淬火后的材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
回火可以消除材料的内应力,改善其组织和性能。
4.表面处理:通过化学或电化学方法对材料表面进行处理,提高其耐磨性、耐腐蚀性和抗氧化性等性能。
六、材料选用原则1.根据工程要求选择合适的材料类型和牌号;2.考虑材料的性能参数,如强度、硬度、韧性等;3.考虑材料的耐腐蚀性、耐磨性等特殊要求;4.考虑材料的加工工艺和经济性等因素。
工程材料及热处理
目 录
• 工程材料概述 • 金属材料 • 非金属材料 • 材料的选择与加工工艺 • 材料性能的检测与评价
工程材料概述
01
定义与分类
定义
工程材料是指在工业生产和工程建设 中使用的各种金属、非金属和复合材 料。
分类
根据材料的组成、结构和性能特点, 工程材料可分为金属材料、非金属材 料和复合材料等。
材料的物理与机械性能
物理性能
包括密度、热膨胀系数、热导率、电导 率等,这些性能决定了材料在不同环境 下的表现。
VS
机械性能
包括硬度、强度、韧性、耐磨性等,这些 性能决定了材料在受力或受冲击时的表现 。
材料的应用领域
航空航天
需要高强度、轻质、耐 高温的材料,如钛合金
和铝合金。
汽车制造
需要高强度、耐腐蚀、 轻质的材料,如高强度
国家标准
行业标准
根据国家制定的相关标准,对材料的性能 进行评估和比较。
根据行业制定的相关标准,对材料的性能 进行评估和比较。
企业标准
客户要求
根据企业制定的相关标准,对材料的性能 进行评估和比较。
根据客户提出的具体要求,对材料的性能 进行评估和比较。
材料性能的优化与改进
材料成分优化
通过调整材料的化学成分,改善其性能, 如提高强度、韧性、耐腐蚀性等。
钢和铝合金。
建筑领域
需要耐久性、防火性能 好的材料,如混凝土和
钢材。
电子产品
需要导电、导热性能好 的材料,如铜和铝。
金属材料
02
钢铁材料
碳钢
碳钢是一种以铁为主要元素,碳 含量一般在2.0%以下的铁碳合金。
根据碳含量的不同,碳钢的性能 和用途也有所不同。
机械工程中的热处理和表面处理规范要求
机械工程中的热处理和表面处理规范要求机械工程是应用物理学、材料科学、机械设计与制造工艺等多学科知识的综合学科,热处理和表面处理作为其中重要的工艺环节,在确保机械零件性能和使用寿命方面起着至关重要的作用。
本文将介绍机械工程中的热处理和表面处理规范要求,以确保产品质量和工程安全。
一、热处理规范要求热处理是通过改变材料的组织结构和性能来满足特定需求的工艺过程。
机械工程中的热处理规范要求包括以下几个方面:1. 温度控制要求:热处理过程中需要严格控制加热和冷却温度。
对于不同的材料和零件,根据其热处理规范要求,在加热和冷却过程中需要准确控制温度的升降速度、保温时间等参数。
2. 等温规范要求:在进行淬火和回火等热处理过程中,需要根据材料的特性和工程要求,制定合适的等温保持时间和温度范围,以确保材料的显微组织达到预期的效果。
3. 淬透性规范要求:淬透性是指材料在淬火过程中的硬化能力。
根据材料的成分和淬火性能要求,制定适当的淬火介质、冷却速度和冷却介质温度等规范,以确保材料的淬透性满足工程要求。
4. 工艺检测要求:热处理过程中需要进行工艺检测,以验证热处理的效果和质量。
常用的工艺检测方法包括金相显微镜观察、硬度测试、冲击试验等,需要根据热处理规范要求进行定期检测和记录。
二、表面处理规范要求表面处理是通过改变材料表面的化学成分和物理性质来提高其耐腐蚀性、耐磨性和美观性等工程要求。
机械工程中的表面处理规范要求主要包括以下几个方面:1. 表面清洁要求:在进行表面处理之前,需要对材料表面进行彻底的清洁,清除表面的油污、氧化皮、锈蚀等杂质,以确保处理后的质量和效果。
2. 处理方法规范要求:根据不同的工程要求和材料特性,选择合适的表面处理方法。
常见的表面处理方法包括电镀、喷涂、阳极氧化、热喷涂等,需要根据规范要求选择材料、工艺参数和处理时间等。
3. 厚度控制要求:表面处理后的涂层或镀层的厚度要符合规范要求。
需要使用合适的测量方法和仪器,对处理后的材料进行厚度测量和检测,以确保涂层或镀层的质量和性能。
机械工程中的热处理与表面处理规范要求
机械工程中的热处理与表面处理规范要求热处理和表面处理是机械工程领域中非常重要的工艺,它们能够改善材料的力学性能、抗腐蚀性能和使用寿命。
为了确保热处理和表面处理的效果,提高产品质量,机械工程中有一些规范要求需要遵守。
本文将详细介绍机械工程中热处理与表面处理的规范要求。
一、热处理规范要求1. 温度控制要求:在进行热处理过程中,温度是一个非常重要的参数。
温度控制的要求通常由产品的材料和热处理方法决定。
例如,对于低碳钢,常见的淬火温度要求为800-900℃;对于高碳钢,淬火温度要求一般在780-850℃之间。
同时,温度控制的精度也是需要考虑的因素,一般要求精度在±5℃以内。
2. 保温时间要求:保温时间是保证材料充分相变的重要因素。
不同材料和要求有不同的保温时间要求。
一般情况下,保温时间要求在30分钟至2小时之间。
需要注意的是,过长的保温时间会造成能量浪费和产生不必要的成本。
3. 冷却速度要求:冷却速度也是热处理中需要关注的因素之一。
根据材料和要求的不同,冷却速度要求也会有所差异。
例如,对于一些高碳钢的淬火工艺来说,需要快速冷却以获得较好的硬度和强度。
4. 热处理设备要求:进行热处理时,需要使用专门的热处理设备,如炉子、加热元件等。
这些设备需要符合相关的安全和环保要求,保证操作人员的安全和产品质量的稳定。
二、表面处理规范要求1. 表面粗糙度要求:表面粗糙度对于很多机械零件的功能性能和外观质量都有很大影响。
根据不同的应用场景和产品要求,表面粗糙度要求也有所不同。
一般来说,机械工程中表面粗糙度一般要求在Ra 0.4-6.3µm之间。
2. 表面清洁度要求:在进行表面处理之前,必须确保材料表面的清洁度。
表面清洁度的要求通常由应用和处理方法决定。
例如,在电镀过程中,需要清除材料表面的油污、氧化物等杂质,以保证镀层的附着力和光洁度。
3. 表面处理方法要求:不同的表面处理方法对于产品的性能和外观有不同的影响。
工程材料-普通热处理与表面热处理)
螺杆表面的 淬火裂纹
一、回火的目的
1、减少或消除淬火内 应力, 防止变形或开裂。
2、获得所需要的力学性能。淬火钢一般硬度高,脆 性大,回火可调整硬度、韧性。
3、稳定尺寸。淬火M和A’都是非平衡组织,有自发 向平衡组织转变的倾向。回火可使M与A’转变为平 衡或接近平衡的组织,防止使用时变形。
熔盐作为淬火介质称盐浴,冷却能力在水和油之间, 用于形状复杂件的分级淬火和等温淬火。
聚乙烯醇、硝盐水溶液等也是工业常用的淬火介质.
三、淬火方法
1、单液淬火法 加热工件在一种介质
中连续冷却到室温的 淬火方法。 操作简单,易实现自 动化。 采用不同的淬火方法 可弥补介质的不足。
1—单液淬火法 2—双液淬火法 3—分级淬火法 4—等温淬火法
淬成半马氏体的最大直径,用D0表示。 D0与介质有关,如45钢D0水=16mm,D0油=8mm。 只有冷却条件相同时,才能进行不同材料淬透性比
较,如45钢D0油=8mm,40Cr D0油=20mm。
马氏体
马氏体 索氏体
五、淬透性的应用
1、利用淬透性曲线及圆棒冷速与端淬距离的关系 曲线可以预测零件淬火后的硬度分布。下图为预 测50mm直径40MnB钢轴淬火后断面的硬度分布.
2、利用淬透性曲线进行选材。如要求厚60mm汽 车转向节淬火后表面硬度超过HRC50,3/4半径处 为HRC45。可按下图箭头所示程序进行选材分析.
3、利用淬透性可控制淬硬 层深度。
– 对于截面承载均匀的重要件, 要全部淬透。如螺栓、连杆、 模具等。对于承受弯曲、扭转 的零件可不必淬透(淬硬层深 度一般为半径的1/2~1/3),如 轴类、齿轮等。
火焰加热 感
应 加 热
表面淬火目的: ① 使表面具有高的硬度、耐磨性和疲劳极限; ② 心部在保持一定的强度、硬度的条件下,具有
工程材料及热处理试题
工程材料及热处理期末模拟一、填空题(20×1%=20%)1、常见的金属晶格类型有体心立方晶格、面心立方晶格和密排六方晶格三种。
2、常见的表面热处理可分为表面淬火和表面化学热处理。
3、铸铁是含碳量在大于2.11% 铁碳合金,单铸铁中的碳大部分不再以渗碳体的形式存在,而是以游离的石墨状态存在。
4、铸铁根据石墨形态不同可分为灰口铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁四大类。
它们在石墨的形态分别为_片状、棉絮状、球状和蠕虫状。
5、常用的常规热处理方法有回火、正火和淬火、退火。
6、合金常见的相图有匀晶相图、共晶相图、包晶相图和具有稳定化合物的二元相图。
7、实际金属中存在有点缺陷、线缺陷和面缺陷三类晶体缺陷。
8、过冷度是指理论结晶温度与实际结晶温度之差;其表示符号△T 。
9、钢的热处理工艺由加热、保温、冷却三个阶段所组成。
10、零件失效的形式有:变形失效、断裂失效及表面损伤失效。
12、根据晶胞的几何形状或自身的对称性,可把晶体结构分为七大晶系、十四种空间点阵。
13、热滞是由于过热和过冷现象的影响,加热时相变温度偏向高温,冷却时相变温度偏向低温的现象。
14、细化铸态金属晶粒主要采用下面两种方法为:增大金属的过冷度、变质处理。
15、合金钢按用途可分合金结构钢、合金工具钢、和特殊性能钢。
二、选择题(10×2%=20%)1、化学热处理与其他热处理的主要区别是( C )A 组织变化B 加热温度C 改变表面化学成分D 添加剂不同2、调质处理就是( A )的热处理。
A 淬火+高温火B 淬火+中温回火C 淬火+低温回火 D 淬火+低温退火3、零件渗碳后,一般需经过( A )才能达到表面硬度高而且耐磨的目的。
A 淬火+低温回火B 正火C 调质D 淬火+高温回火4、过共析钢的正常淬火加热温度是( C )。
A.Acm以上(30—50℃) B.Ac3以上(30—50℃)C.Ac1以上(30—50℃) D.Ac1以下(30—50℃)5、属于体心立方晶格的金属有。
常用材料热处理表面处理
常用材料热处理表面处理1. 引言1.1 热处理的概念热处理是指通过对金属材料进行加热和冷却过程,以改变其结构和性能的方法。
热处理是金属材料加工中非常重要的一环,可以显著提高材料的硬度、强度、韧性和耐磨性等性能,同时也可以改善材料的加工性能和使用寿命。
热处理的原理是通过控制材料的组织结构来控制材料的性能,通过调整材料的晶粒大小、分布和相变来实现这一目的。
在实际生产中,热处理通常包括退火、正火、淬火和回火等工艺,每种工艺都有不同的加热温度、保温时间和冷却速度要求,以实现不同的材料性能要求。
热处理过程中需要严格控制各个参数,以确保获得理想的材料性能。
热处理不仅可以提高材料的整体性能,还可以为表面处理提供基础。
表面处理是指通过改变材料表面的化学、物理性质来增强其表面硬度、耐磨性、耐腐蚀性等性能的方法。
热处理和表面处理往往结合应用,共同提升材料的整体性能。
在工程领域中,热处理和表面处理被广泛应用于各种金属制品的生产和加工过程中。
1.2 表面处理的重要性表面处理作为热处理的重要环节之一,在材料加工领域扮演着至关重要的角色。
通过表面处理,可以改善材料的表面性能,增强其耐磨、耐腐蚀、耐疲劳等性能,延长材料的使用寿命。
表面处理还可以提高材料的工艺加工性能,使其更易加工、更具韧性。
表面处理还可以美化材料的外观,提升产品的市场竞争力。
在今天日益激烈的市场竞争中,产品质量和性能要求越来越高,而表面处理正是满足这些要求的关键技术之一。
通过合理选择表面处理方法,可以使产品具有更好的耐用性和功能性,从而提高产品的附加值和市场竞争力。
表面处理不仅是材料加工领域中的一个重要环节,更是现代制造业中不可或缺的一部分。
通过对表面处理的深入研究和应用,可以进一步推动材料加工技术的发展,推动产品质量的提升,推动整个行业的进步和发展。
2. 正文2.1 热处理常用材料热处理常用材料包括钢、铝、铜、镍等金属材料以及塑料、陶瓷等非金属材料。
钢是最常见的热处理材料之一,通过控制加热和冷却过程可以改变钢的组织和性能,使其具有不同的硬度、强度和耐腐蚀性。
热处理的操作方法
热处理的操作方法热处理是金属材料工程领域中非常重要的工艺过程之一,通过对材料进行加热和冷却的控制,可以改变材料的晶体结构和性能,从而满足不同的工程要求。
热处理通常包括退火、正火、淬火和回火等工艺,下面将详细介绍这些工艺的操作方法。
1. 退火退火是一种常用的热处理工艺,主要目的是通过加热和适当的冷却来消除材料内部的应力和晶界缺陷,从而改善材料的塑性和韧性。
退火工艺的操作方法如下:(1) 预热:将待处理的材料放入炉中,进行适当的预热,以提高材料表面和内部温度的均匀性。
(2) 加热:根据材料的性质和要求,将材料加热到一定的温度范围内,保持一段时间,使其达到均匀的高温状态。
(3) 保温:将加热后的材料保持在一定的温度范围内一段时间,以保证材料内部晶体结构的改变。
(4) 冷却:缓慢冷却或空冷,使材料内部晶体结构重新排列,缓解应力和改善材料的性能。
2. 正火正火是通过将材料加热到一定温度区间内进行保温处理,然后进行缓慢冷却的热处理工艺,主要目的是对材料进行改变纹理,提高材料的硬度和强度。
正火工艺的操作方法如下:(1) 预热:将待处理的材料放入炉中进行预热,提高材料表面和内部温度的均匀性。
(2) 加热:根据材料的性质和要求,将材料加热到一定的温度范围内,保持一段时间,使其达到均匀的高温状态。
(3) 保温:将加热后的材料保持在一定的温度范围内一段时间,以保证材料内部晶体结构的改变。
(4) 冷却:将保温后的材料迅速放入缓慢冷却的介质中,以控制材料的组织结构和性能。
3. 淬火淬火是通过将材料迅速冷却到介质中,使材料快速冷却,从而尽可能地提高材料的硬度和强度的热处理工艺。
淬火工艺的操作方法如下:(1) 预热:将待处理的材料放入炉中进行预热,提高材料表面和内部温度的均匀性。
(2) 加热:根据材料的性质和要求,将材料加热到一定的温度范围内,保持一段时间,使其达到均匀的高温状态。
(3) 保温:将加热后的材料保持在一定的温度范围内一段时间,以保证材料内部晶体结构的改变。
工程材料热处理
1、热处理的定义:主要有三点要注意,一是热处理是在固态范围内进行的,二是有三个过程(加热、保温和冷却),三是热处理是通过改变钢的组织结构来改善其性能的;2、热处理的实质3、热处理的目的:不改变材料的形状的尺寸,改善其性能,包括使用性能和工艺性能,可以充分发挥材料的潜力,提高零件的内在质量;4、热处理的应用:十分广泛;5、热处理的分类:普通热处理,表面热处理,化学热处理6、热处理的三要素:加热温度、保温时间、冷却速度;第一节钢在加热时的转变目的是使原始组织转变为奥氏体,所以也称奥氏体化过程。
然后以奥氏体为母相进行转变。
一、钢的奥氏体化过程2、要使原始组织变为奥氏体,应将钢加热到A1(727℃)温度以上;具体的,亚共析钢应加热到Ac3线以上;共析钢加热到Ac1线以上;过共析钢如果进行完全奥氏体化应加热到Accm线以上。
3、转变过程:1)奥氏体的形核和长大;2)残余渗碳体的溶解;3)奥氏体成分的均匀化;二、奥氏体晶粒度及其控制1、奥氏体晶粒大小对热处理的影响细小的组织力学性能高(塑性变形和再结晶一章中已学过);另外,如果奥氏体的晶粒细小,那么由其转变的产物也就细小;否则转变产物就比较粗大,或出现缺陷组织,还容易引起变形和开裂,所以要对奥氏体的晶粒大小进行控制。
2、奥氏体晶粒大小的表示方法1)用晶粒的直径d表示;2)用单位面积内的晶粒数目n表示;3、奥氏体晶粒度的控制1)正确制订和执行加热规范;2)选用长大倾向小的钢种,如用Al脱氧的钢,以及含Nb、TI、V等元素的钢;第二节钢在冷却时的转变冷却是热处理的最后一个工序,也是最关键的工序,它决定了钢热处理后的组织和性能。
同一种钢,加热温度和保温时间相同,冷却方法不同,热处理后的性能截然不同。
这是因为过冷奥氏体在冷却过程中转变成了不同的产物。
那么奥氏体在冷却时转变成什么产物?有什么规律呢?这就是本次课的主要内容。
碳钢热处理时的冷却速度一般较大,大多都偏离了平衡状态(除退火外),所以热处理后的组织为非平衡组织。
工程材料热处理名词解释
工程材料热处理名词解释热处理(Heat Treatment)是指通过加热和冷却的方式对工程材料进行物理或化学变化,以改变其结构和性能的一种工艺。
在工程中,热处理常被用于提高材料的硬度、强度、耐磨性、韧性等性能,以适应不同的应用要求。
下面将对热处理过程中涉及的一些关键名词进行解释。
一、回火(Tempering)回火是热处理中的一种常见操作,通过在固溶体形成的基体中加热一段时间后再快速冷却,以减轻冷加工或淬火造成的内部应力,提高材料的韧性和塑性。
这一过程实际上是通过退火来改善冷加工或淬火后的材料性能。
二、淬火(Quenching)淬火是指将材料加热至临界温度以上,然后迅速冷却,使材料内部达到亚稳状态,并实现马氏体的转变。
这一过程将提高材料的硬度和强度,但在同时也会引入较大的内部应力。
三、正火(Normalizing)正火是对低碳钢进行的一种热处理方法。
它将材料加热至适当温度,使其达到均匀奥氏体的状态,并通过空冷或风冷的方式使其冷却。
正火能够提高材料的强度和硬度,同时还能改善材料的韧性和塑性。
四、时效硬化(Aging)时效硬化是一种重要的热处理方法,适用于某些合金材料,例如铝合金或镍基合金。
材料会被加热至较高温度保持一段时间,然后在适当条件下冷却。
这一过程能够改变材料的组织结构,提高其强度和硬度。
五、固溶处理(Solution Treatment)固溶处理是针对某些固溶体型合金或不锈钢的一种热处理方法。
通过加热到高温,使溶质原子完全溶解在基体中,然后迅速冷却以固定成分。
这一过程能够消除材料中的析出物和相分离,提高强度和耐蚀性。
六、表面处理(Surface Treatment)表面处理是指对材料表面进行一系列工艺措施的过程,以改善其耐腐蚀性、耐磨性和装饰性。
常见的表面处理方法包括镀层、涂装、氮化和氧化等。
这些方法通过改变材料表面的化学特性和结构,增加其使用寿命和性能。
七、自由冷却(Air Cooling)自由冷却是一种常见的冷却方式,即将加热后的材料在室温下自然散热至环境温度。
工程材料及热处理
工程材料及热处理工程材料及热处理是现代工程领域中极其重要的一部分。
随着工程发展的日益迅速,对材料的要求也日益提高。
在此背景下,工程材料及热处理的研究变得尤为关键。
本篇文档将探讨工程材料及热处理的定义、分类、特性、热处理方法以及其在实际应用中的重要性和限制。
1. 工程材料的定义与分类工程材料是指设计、制造和使用机器、结构、设备和其他物品所必需的材料。
包括金属、塑料、丝绸、琉璃、橡胶、陶瓷等一系列材料。
而从材料的特性来看,工程材料基本上可归为六大类:① 金属材料:如钢、铁、铝、铜等;② 非金属无机材料:如玻璃、陶瓷、水泥等;③ 硅酸盐纤维及纺织品:如玻璃纤维、石棉、铬绿石等;④ 聚合物材料:如塑料、橡胶、纤维素等;⑤ 复合材料:如碳纤维复合材料、铝基复合材料、玻璃钢等;⑥ 其他材料:如木材、纸张等。
2. 工程材料特性工程材料的特性包括机械特性、物理特性、化学特性、热特性、电特性及防腐蚀特性等。
其中,机械特性是指材料的强度、韧性、硬度、弹性模量、屈服点等方面的特性。
而物理特性则是指材料的密度、热膨胀系数、热导率、热容等方面的特性。
化学特性是指材料的化学成分组成、耐腐蚀性、易溶性等方面的特性。
热特性是指材料的热膨胀系数、热导率、热容等方面的特性。
电特性则是指材料的电阻率、导电率等方面的特性。
防腐蚀特性是材料的长期使用时所表现出的耐腐蚀性能。
3. 热处理方法热处理是通过控制工程材料的加热、冷却、温度保持等过程来改善或调整其力学性能和硬度等特性的方法。
常见的热处理方法包括:① 硬化:将工程材料加热到高温,再通过淬火、油淬、水淬等方式进行快速冷却,使工程材料获得更高的硬度和强度;② 回火:对硬化处理过的工程材料进行低温加热处理,通过缓慢冷却来降低材料的硬度,增加其韧性;③ 退火:将工程材料加热至一定温度并保持一定时间,然后缓慢冷却,从而降低材料的硬度和强度,并达到改善材料塑性和加工性能的目的;④ 淬火:将工程材料加热至一定温度,并在保持一定时间后迅速冷却,以增加材料的硬度和强度;⑤ 等温淬火:将工程材料加热到一定温度,然后在该温度下保持一定时间,再通过快速冷却获得更为均匀的组织结构和高强度。
常用材料介绍热处理及表面处理
3.1.1 低碳鋼 含碳量<0.25% 其特點是強度較低,塑性,韌性及焊接性能很好,切削性一般。這種鋼可以用各種冷加工或焊接的方法來制造各種受力不大,韌性要求較高且不加熱處理的機械零件或設備,不適宜退火處理。
3.1.2 中碳鋼 含碳量0.3~0.5% 其特點是強度較高而韌性稍低,一般經過淬火,回火或正火后使用。它們屬于調質鋼類,淬火溫度決定于含碳量,回火溫度取決于零件所要求的強度和韌性。這類鋼主要用來制造承受負荷較大的機器零件如直軸,曲軸等,很少用來做焊接構件。
一 常用金屬材料選型介紹
二 . 有色金屬 除了黑色金屬以外的金屬都叫有色金屬。有色純金屬分為重有色金屬 指密度大于4.5g/cm3的常見有色金屬,如銅,鎳,鈷,鉛,鋅,錫,銻,汞,鎘,鉍等 ,輕有色金屬 指密度小于4.5g/cm3的有色金屬,如鋁,鎂,鈉,鈣,鉀,鍶,鋇等 ,貴金屬 包括金,銀和鉑族元素 ,半金屬 指硅,硒,銻,砷,,鈹,鎢,鉬,釩,錸等 ;有色合金按合金系統分類,如銅合金,錫合金,鋁合金,鎂合金,鈦合金等,按用途分類,如變形合金 壓力加工用 ,鑄造合金,軸承合金,印刷合金,硬質合金等。下面介紹常用的有色金屬及其合金: 1. 有色金屬及: 碳素結構鋼可以不經過Q195~Q235A比較常用,其中Q235A強度和塑性
工程材料热处理名词解释
强度:材料在外力作用下抵抗变形和断裂的能力。
硬度:反映材料软硬程度的一种性能指标,它表示材料表面局部内抵抗变形或破裂的能力。
塑性:材料在外力作用下产生塑性变形而不断裂的能力。
冲击韧性:在一定温度下,材料在冲击载荷作用下抵抗破坏的能力。
断裂韧性:材料抵抗裂纹失稳扩展断裂的能力。
腐蚀作用:金属材料的化学性质相对活泼,容易受到环境介质的腐蚀作用。
分为化学腐蚀(直接发生化学反应,不产生电流)�电化腐蚀(金属与电解质接触发生电化学反应)�物理腐蚀(由于单纯的物理溶解而产生的腐蚀)。
磨损:零件在摩擦过程中其表面发生尺寸变化和物质损耗的现象。
老化:高分子材料在加工�储存和使用过程中,由于受各种坏境因素的作用导致性能逐渐变坏,以致丧失使用价值的现象。
比刚度:材料的弹性模量E与其密度ρ的比值(E�ρ)称为比刚度。
比强度:材料的强度指标与其密度的比值称为比强度。
晶体:内部的原子在三维空间呈周期性规则排列的物质称为晶体。
晶体结构,晶体中原子规则排列的具体方式称为晶体结构。
金属晶体包括三种晶格:体心立方�面心立方�密排六方。
组元:组成合金的独立的�最基本的单元。
相:在合金中具有一定化学成分且晶体结构相同,具有相同的物理和化学性能,与其他部分有明显分界的均匀的组成部分。
相图:相图即是状态图或平衡图。
是用图解的方法表示不同温度�压力及成分下合金系中各相的平衡关系。
显微组织:是指用金相显微镜�电子显微镜所观察到得金属�合金及陶瓷内部有关晶体�晶粒或组元相的集合状态。
晶胞:组成晶格的、能反映晶格特征的最基本的几何单元称为晶胞。
晶格:描述原子在晶格中排列形成的空间格子,通常称为晶格。
共析反应:在一定温度下由一种固相转变成完全不同的两种固相的反应称为共析反应,生成的产物为共析组织。
共晶反应:匀晶反应:粉末冶金:是指有几种金属粉末或金属与非金属粉末经混合(并常加一定成形剂等添加剂),在钢模内压制成形,并经烧结而获得的材料。
塑性变形:金属在外力作用下产生了变形,当外力除去后不能恢复的变形。
1工程材料、热处理及表面处理
3、氧化处理的工艺流程:抛光、脱脂去污、清洗、酸洗、氧化、清洗、皂化、清洗、浸油、包装ห้องสมุดไป่ตู้
4、镀锌的工艺流程:表面抛光、脱脂去油、清洗、酸洗、清洗、电镀、清洗、出光、清洗、钝化、清洗、晾干。
6、制造切削刀具常用的热处理工艺是淬火后低温回火。
7、对中碳钢或中碳合金钢的齿轮齿面进行强化,宜采用的热处理工艺方法:高频感应加热淬火和低温回火
8、调质处理:淬火及高温回火的复合热处理。各种重要零件如连杆、螺栓、齿轮及轴类等常进行调质处理。
常用表面热处理技术
1、零件表面热处理技术的特点:(1)可提高零件使用性能,延长其使用寿命;(2)可降低成本,提高经济效益;(3)可获得较好的装饰表面。
热处理
1、热处理是将钢在固态下,通过加热、保温、冷却的方式,使钢的组织结构发生变化,从而获得所需性能的工艺方法。
2、热处理工艺方法:退火、正火、淬火、回火。
3、钢的表面热处理方法:表面淬火热处理、表面化学热处理。
4、正火后钢的强度、硬度比退火后高。
5、淬火能提高零件硬度,便于切削加工。
5.淬火的目的是提高钢的硬度和耐磨性。 高温回火的目的是消除内应力,防止开裂,调整硬度,提高韧性,从而获得强度,硬度,塑性和韧性配合适当的力学性能。
第一章 工程材料、热处理及表面处理
工程材料
1、锉刀、锯条的材料是T12A,钻头、铣刀是W18Cr4V,齿轮是45钢。
钢0.0218--2.11% 铁 2.11--6.6% 低碳钢<0.25% 中碳钢0.25--0.6%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6)渗碳后的组织:
表面
中心
零件
1%C P+Fe3CⅡ P P+F
0.2%C F + P少
建筑精选课件
17
7) 热处理后的组织
钢种 表层组织 心部组织
低碳钢 M回+Fe3C+A残 F+P 低碳 M回+Cm+A残 低碳M回+F 合金钢
建筑精选课件
18
优点:质量好,效率高;
缺点:渗层成分与深度不易控制。
建筑精选课件
气体渗碳 法示意图
15
钢的渗碳
1)定义: 向钢的表面渗入碳原子的过程。 2)目的: 获得具有表硬里韧性能的零件。 3)用钢: 低碳钢和低碳合金钢。 4)方法: 固体、气体、液体渗碳。
建筑精选课件
16
5)工艺: 加热温度为900~950℃; 渗碳时间一般为3~9小时;
足够的塑性和韧性。即表硬里韧。 适用于承受弯曲、扭转、摩擦和冲击的零件。
建筑精选课件
轴 的 感 淬应 火加 热 表 面
4
1、表面淬火用钢:
选用中碳或中碳低合金钢。40、45、 40Cr、40MnB等。
提示: 含碳量过低,则表面硬度、耐磨性下降; 含碳量过高,心部韧性下降。
建筑精选课件
5
2、常用加热方法
钢的表面热处理工艺
建筑精选课件
1
钢的表面热处理工艺
表面淬火 化学热处理
机床导轨
建筑精选课件
表面淬火齿轮
2
一、 钢的表面淬火
表面淬火是指在不改变钢的化学成分及心部组织情 况下,利用快速加热将表层奥氏体化后进行淬火以 强化零件表面的热处理方法。
火焰加热 感
热应 加
建筑精选课件
3
表面淬火目的: ① 使表面具有高的硬度、耐磨性和疲劳极限; ② 心部在保持一定的强度、硬度的条件下,具有
⑴ 感应加热: 利用交变 电流在工件表面感应巨 大涡流,使工件表面迅 速加热的方法。
建筑精选课件
感应加热 表面淬火 示意图
6
感应加热分为:
① 高频感应加热
频 率 为 250-300KHz , 淬硬层深度0.5-2mm
淬传 火动 感轴 应连 器续
感应加热表面淬火齿轮的截面图
建筑精选课件
7
② 中频感应加热 频 率 为 25008000Hz , 淬 硬 层 深度2-10mm。
中频感应加热表面淬火的机车凸轮轴
建筑精选课件
各种感应器
8
③ 工频感应加热 频率为50Hz,淬硬 层深度10-15 mm
感应穿透加热
建各筑种精选感课应件 器
9
⑵ 火焰加热: 利用乙炔火焰直 接加热工件表面的方法。成本 低,但质量不易控制。
⑶ 激光热处理: 利用高能量密 度的激光对工件表面进行加热 的方法。效率高,质量好。
火焰加热表面淬火
激光表面热处理 建筑精选课件
火焰加热表面淬火示意图
10
3、预备热处理 ⑴工艺: 对于结构钢为调质或正火。 ⑵目的: ①为表面淬火作组织准备; ② 获得最终心部组织。
建筑精选课件
回火索氏体
索氏体
11
4、表面淬火后的回火 采用低温回火,温度不高于200℃。 回火目的为降低内应力,保留淬火高硬度、耐磨性。 5、表面淬火+低温回火后的组织 表层组织为M回;心部组织为S回(调质)或F+S(正火)。
感应加热表面淬火 感应淬火机床
建筑精选课件ຫໍສະໝຸດ 12建筑精选课件13
二、钢的化学热处理
与表面淬火相比,化学热处理不仅改变钢的 表层组织,还改变其化学成分。
化学热处理也是获得表硬里韧性能的方法之 一。
根据渗入的元素不同,化学热处理可分为渗碳、 氮化、多元共渗、渗其他元素等。
建筑精选课件
14
气体渗碳法 将工件放入密封炉内, 在高温渗碳气氛中渗 碳。