滤波器设计matlab相关函数

合集下载

matlabfir滤波器设计

matlabfir滤波器设计

matlabfir滤波器设计MATLAB是一个高级编程语言和交互式环境,被广泛应用于各种科学和工程问题的数值分析、数据可视化和编程开发等领域。

FIR滤波器是数字信号处理中经常使用的一种滤波器,它是基于有限长冲激响应的滤波器。

在MATLAB平台上,我们可以使用fir1函数来设计FIR滤波器。

一、FIR滤波器设计基础1.1 什么是FIR滤波器FIR滤波器是有限长冲激响应滤波器,由于其具有线性相位特性和可控阶数等优点,在数字信号处理中得到了广泛的应用。

一般来说,FIR滤波器的频率响应特性由滤波器的系数函数确定。

FIR滤波器的设计一般采用窗函数法、最小二乘法、频率抽取法等方法。

窗函数法是最常见的一种方法,大部分情况下选择的是矩形窗、汉宁窗、布莱克曼窗等。

1.3 fir1函数介绍fir1函数是MATLAB中用于FIR滤波器设计的函数,用法为:h = fir1(N, Wn, type)N为滤波器的阶数,Wn是用于指定滤波器截止频率的参数,type指定滤波器类型,可以是低通、高通、带通、带阻等。

二、使用fir1函数设计FIR滤波器2.1 设计要求采样率为300Hz;滤波器阶数为50;截止频率为50Hz。

2.2 实现步骤(1)计算规范化截止频率规范化截止频率是指在数字滤波器设计中使用的无单位量,通常范围为0到1。

在本例中,我们需要将50Hz的截止频率转化为规范化截止频率。

Wn = 2*50/300 = 1/3根据计算出的规范化截止频率和滤波器阶数,我们可以使用fir1函数来进行滤波器设计。

此处滤波器的阶数为50,规范化截止频率为1/3,类型为低通。

(3)绘制滤波器的幅频响应图为了验证设计的低通FIR滤波器是否符合要求,我们需要绘制其幅频响应图。

freqz(h,1,1024,300)经过上述步骤后,我们就得到了一张低通FIR滤波器的幅频响应图,如下图所示:图1.低通FIR滤波器的幅频响应图三、总结通过上述例子,我们可以看出在MATLAB中与fir1函数可以非常方便的进行FIR滤波器的设计。

使用MATLAB设计FIR滤波器

使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。

语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。

如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。

⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。

matlab滤波函数详解

matlab滤波函数详解

matlab滤波函数详解Matlab作为一种广泛应用于数值计算和数据处理的软件,提供了许多用于信号处理和图像处理的函数。

其中,滤波函数是其中非常重要的一部分,它们在许多应用中都起着关键的作用。

本文将详细介绍Matlab中常见的滤波函数,包括它们的用途、参数设置、使用方法和示例。

一、滤波函数概述滤波函数主要用于对信号进行滤波处理,以消除噪声、突出信号特征或实现其他特定的处理目标。

在Matlab中,常见的滤波函数包括低通、高通、带通、带阻等类型,它们可以根据不同的应用需求选择。

滤波器通常由一组数学函数组成,用于对输入信号进行加权和叠加,以达到滤波的目的。

二、低通滤波函数低通滤波函数用于消除高频噪声,保持低频信号的完整性。

在Matlab中,常用的低通滤波函数包括lfilter和filter等。

lfilter函数适用于线性滤波器,而filter函数适用于任意滤波器设计。

低通滤波函数的参数包括滤波器系数、输入信号和采样率等。

通过调整滤波器系数,可以实现不同的滤波效果。

三、高通滤波函数高通滤波函数用于消除低频噪声,突出高频信号特征。

在Matlab 中,常用的高通滤波函数包括hilbert和highpass等。

hilbert函数适用于频谱分析和高频信号提取,而highpass函数则适用于消除低频噪声。

高通滤波函数的参数包括滤波器系数、采样率和信号类型等。

通过调整滤波器系数,可以实现不同的高通效果。

四、带通滤波函数带通滤波函数用于选择特定频率范围内的信号进行过滤。

在Matlab中,常用的带通滤波函数包括bandpass和butter等。

bandpass函数适用于设计带通滤波器,而butter函数则适用于连续时间滤波器设计。

带通滤波函数的参数包括带外抑制值、带宽和采样率等。

通过调整带宽参数,可以实现不同的带通效果。

五、其他滤波函数除了以上三种常见的滤波函数外,Matlab还提供了其他一些滤波函数,如带阻、限幅、防混叠等类型。

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍引言滤波器是数字信号处理中常用的工具,它可以去除噪声、改善信号质量以及实现其他信号处理功能。

在Matlab中,有许多不同的滤波器设计方法可供选择。

本文将介绍一些常见的滤波器设计方法,并详细说明它们的原理和应用场景。

一、FIR滤波器设计1.1 理想低通滤波器设计理想低通滤波器是一种理论上的滤波器,它可以完全去除截止频率之上的频率分量。

在Matlab中,可以使用函数fir1来设计理想低通滤波器。

该函数需要指定滤波器阶数及截止频率,并返回滤波器的系数。

但是,由于理想低通滤波器是非因果、无限长的,因此在实际应用中很少使用。

1.2 窗函数法设计为了解决理想滤波器的限制,窗函数法设计了一种有限长、因果的线性相位FIR滤波器。

该方法利用窗函数对理想滤波器的频率响应进行加权,从而得到实际可用的滤波器。

在Matlab中,可以使用函数fir1来实现窗函数法设计。

1.3 Parks-McClellan算法设计Parks-McClellan算法是一种优化设计方法,它可以根据指定的频率响应要求,自动选择最优的滤波器系数。

在Matlab中,可以使用函数firpm来实现Parks-McClellan算法。

二、IIR滤波器设计2.1 Butterworth滤波器设计Butterworth滤波器是一种常用的IIR滤波器,它具有平坦的幅频响应,并且在通带和阻带之间有宽的过渡带。

在Matlab中,可以使用函数butter来设计Butterworth滤波器。

2.2 Chebyshev滤波器设计Chebyshev滤波器是一种具有较陡的滚降率的IIR滤波器,它在通带和阻带之间有一个相对较小的过渡带。

在Matlab中,可以使用函数cheby1和cheby2来设计Chebyshev滤波器。

2.3 Elliptic滤波器设计Elliptic滤波器是一种在通带和阻带上均具有较陡的滚降率的IIR滤波器,它相较于Chebyshev滤波器在通带和阻带上都具有更好的过渡特性。

滤波器设计MATLAB

滤波器设计MATLAB

滤波器设计MATLAB滤波器的设计在信号处理中具有重要的作用,可以用于去除噪声、增强信号等。

MATLAB是一种强大的工具,可以用于滤波器设计和分析。

本文将介绍如何使用MATLAB进行滤波器设计,并通过示例展示具体的过程。

在MATLAB中,可以使用信号处理工具箱提供的函数来设计滤波器。

常用的函数有:- `fir1`:设计FIR滤波器。

- `butter`:设计巴特沃斯滤波器。

- `cheby1`:设计切比雪夫I型滤波器。

- `cheby2`:设计切比雪夫II型滤波器。

- `ellip`:设计椭圆滤波器。

这些函数的输入参数包括滤波器类型、阶数、截止频率等。

根据具体的需求选择不同的函数来设计滤波器。

下面以设计一个低通滤波器为例,演示如何使用MATLAB进行滤波器设计。

首先,创建一个信号作为输入。

可以使用`sin`函数生成一个正弦信号作为示例。

代码如下:```matlabfs = 1000; % 采样率t = 0:1/fs:1; % 时间向量f=50;%信号频率x = sin(2*pi*f*t); % 输入信号```接下来,使用`fir1`函数设计一个低通滤波器。

该函数的输入参数`n`表示滤波器的阶数,`Wn`表示归一化的截止频率。

代码如下:```matlabn=50;%滤波器阶数Wn=0.2;%截止频率b = fir1(n, Wn);```然后,使用`filter`函数对输入信号进行滤波。

该函数的输入参数是滤波器的系数和输入信号。

代码如下:```matlaby = filter(b, 1, x);```最后,绘制原始信号和滤波后的信号的时域和频域波形。

代码如下:```matlab%时域波形subplot(2, 1, 1)plot(t, x)hold onplot(t, y)legend('原始信号', '滤波后信号') xlabel('时间 (s)')ylabel('幅值')title('时域波形')%频域波形subplot(2, 1, 2)f = linspace(-fs/2, fs/2, length(x)); X = abs(fftshift(fft(x)));Y = abs(fftshift(fft(y)));plot(f, X)hold onplot(f, Y, 'r')legend('原始信号', '滤波后信号') xlabel('频率 (Hz)')ylabel('幅值')title('频域波形')```运行以上代码,可以得到原始信号和滤波后信号的时域和频域波形图。

matlab中filter函数的用法与作用

matlab中filter函数的用法与作用

1. 简介MATLAB中的filter函数是一种用于信号处理和滤波的重要工具,可以对数字信号进行滤波处理,包括低通滤波、高通滤波、带通滤波等多种滤波方式。

在实际工程和科学研究中,filter函数被广泛应用于音频处理、图像处理、通信系统等领域。

本文将重点介绍MATLAB中filter函数的用法与作用。

2. 基本语法MATLAB中filter函数的基本语法如下:```MatlabY = filter(B, A, X)```其中,B和A分别是所需滤波器的分子系数和分母系数,X是待滤波的输入信号序列,Y是滤波后的输出信号序列。

3. 滤波器设计与参数在使用filter函数进行滤波前,需要设计出所需的滤波器。

通常可以使用MATLAB中的fir1、fir2、butter、cheby1等函数进行滤波器的设计,得到分子系数B和分母系数A。

滤波器的参数包括截止频率、通带幅度、阻带幅度等,这些参数将直接影响滤波效果。

4. 低通滤波低通滤波是一种常见的信号处理方式,可以剔除高频噪声、平滑信号曲线。

在MATLAB中,可以通过设计滤波器并利用filter函数实现低通滤波,有效提取出信号的低频成分。

5. 高通滤波高通滤波的作用与低通滤波相反,可以剔除低频信号,突出高频细节。

利用MATLAB中的filter函数,可以很方便地实现高通滤波处理,适用于频率分析、边缘检测等应用场景。

6. 带通滤波除了低通滤波和高通滤波外,MATLAB中的filter函数还支持带通滤波,即只保留指定频率范围内的信号成分,其他频率成分则被滤除。

带通滤波经常用于通信系统中的频率选择性传输。

7. 实际应用在实际工程和科学研究中,filter函数被广泛应用于音频处理、图像处理、信号处理等领域。

在音频处理中,可以利用低通滤波器剔除底噪;在图像处理中,可以利用高通滤波器增强图像细节;在通信系统中,可以利用带通滤波器进行频率选择性传输。

8. 总结在MATLAB中,filter函数是一种非常强大的信号处理工具,可以满足各种滤波需求。

数字滤波器的设计及其MATLAB实现

数字滤波器的设计及其MATLAB实现

设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。

Matlab技术滤波器设计方法

Matlab技术滤波器设计方法

Matlab技术滤波器设计方法引言:滤波器在信号处理中起到了至关重要的作用,广泛应用于音频处理、图像处理、通信系统等领域。

Matlab是一款功能强大的数学软件,为我们提供了丰富的工具和函数来进行滤波器设计和分析。

本文将介绍几种常用的Matlab技术滤波器设计方法,并探讨它们的优缺点及适用范围。

一、FIR滤波器设计FIR(Finite Impulse Response)滤波器是一种常见且重要的数字滤波器。

它的设计基于一组有限长度的冲激响应。

Matlab提供了多种设计FIR滤波器的函数,例如fir1、fir2和firpm等。

其中,fir1函数采用窗函数的方法设计低通、高通、带通和带阻滤波器。

在使用fir1函数时,我们需要指定滤波器的阶数和截止频率。

阶数的选择直接影响了滤波器的性能,阶数越高,滤波器的频率响应越陡峭。

截止频率用于控制滤波器的通带或阻带频率范围。

FIR滤波器的优点是相对简单易用,具有线性相位特性,不会引入相位失真。

然而,FIR滤波器的计算复杂度较高,对阶数的选择也需要一定的经验和调试。

二、IIR滤波器设计IIR(Infinite Impulse Response)滤波器是另一种常见的数字滤波器。

与FIR滤波器不同,IIR滤波器的冲激响应为无限长,可以实现更复杂的频率响应。

Matlab提供了多种设计IIR滤波器的函数,例如butter、cheby1和ellip等。

这些函数基于不同的设计方法,如巴特沃斯(Butterworth)设计、切比雪夫(Chebyshev)设计和椭圆(Elliptic)设计。

使用这些函数时,我们需要指定滤波器的类型、阶数和截止频率等参数。

与FIR滤波器类似,阶数的选择影响滤波器的性能,而截止频率用于控制通带或阻带的频率范围。

相比于FIR滤波器,IIR滤波器具有更低的计算复杂度,尤其在高阶滤波器的设计中表现出更好的性能。

然而,IIR滤波器的非线性相位特性可能引入相位失真,并且不易以线性常态方式实现。

matlab滤波函数详解 -回复

matlab滤波函数详解 -回复

matlab滤波函数详解-回复Matlab滤波函数详解滤波是信号处理中的重要任务之一,它可以用来去除噪声、强调信号的特定频率成分、或者改变信号的频谱分布。

Matlab作为一款强大的数学计算软件,提供了丰富的滤波函数以供使用。

本文将主要介绍Matlab中常用的滤波函数,并逐步回答关于这些函数的一系列问题。

一、fir1函数fir1函数用于设计FIR滤波器的零点增益。

它采用了窗函数法,通过选择合适的窗函数和截止频率,可以得到所需的滤波器。

1. 如何使用fir1函数设计一个低通滤波器?使用fir1函数设计一个低通滤波器的示例代码如下:matlabfs = 1000; 采样频率fc = 100; 截止频率N = 100; 滤波器的阶数b = fir1(N, fc/(fs/2));以上代码中,fs表示采样频率,fc表示截止频率,N表示滤波器的阶数。

fir1函数会返回滤波器的系数b。

2. fir1函数有哪些可选参数?如何选择窗函数?fir1函数还可以接受其他参数,用于指定窗函数的类型和参数。

常用的窗函数有'hamming'、'hanning'、'blackman'等。

可以使用help fir1查看fir1函数的帮助文档,其中有关于可选参数的详细说明。

二、butter函数butter函数用于设计IIR(无限脉冲响应)滤波器。

它基于巴特沃斯滤波器的设计方法,可以用来设计各种类型的滤波器。

1. 如何使用butter函数设计一个带通滤波器?使用butter函数设计一个带通滤波器的示例代码如下:matlabfs = 1000; 采样频率f1 = 100; 通带1的下限频率f2 = 200; 通带2的上限频率Wn = [f1, f2]/(fs/2);[N, Wn] = buttord(Wn(1), Wn(2), 1, 40);[b, a] = butter(N, Wn);以上代码中,fs表示采样频率,f1和f2分别表示通带的下限和上限频率,Wn表示归一化的通带频率范围,N表示滤波器的阶数,b和a分别表示滤波器的分子和分母系数。

(完整word版)用MATLAB设计滤波器

(完整word版)用MATLAB设计滤波器

用MATLAB 设计滤波器1 IIR 滤波器的设计freqz功能:数字滤波器的频率响应。

格式:[h ,w ]=freqz (b ,a,n )[h ,f]=freqz(b ,a ,n ,Fs)[h ,w ]=freqz(b ,a,n ,’whole')[h ,f ]=freqz(b,a ,n ,'whole ’,Fs )h=freqz (b ,a ,w)h=freqz (b,a ,f ,Fs)freqz(b ,a)说明:freqz 用于计算由矢量"和b 构成的数字滤波器H (z)=A(z)B(z)= n-1--n -1 l)z a(n ....a(2)z l l)z b(n .... b(2)z b(l)++++++++ 的复频响应H (j ω).[h ,w]=freqz (b,a ,n )可得到数字滤波器的n 点的幅频响应,这n 个点均匀地分布在上半单位圆(即0~π),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。

至于n值的选择没有太多的限制,只要n 〉0的整数,但最好能选取2的幂次方,这样就可采用FFT 算法进行快速计算。

如果缺省,则n=512。

[h ,f ]二freqz(b,a,n ,Fs)允许指定采样终止频率Fs (以Hz 为单位),也即在0~Fs/2频率范围内选取n 个频率点(记录在f 中),并计算相应的频率响应h 。

[h,w]=freqz(b,a,n,’whole’)表示在0~2π之间均匀选取n个点计算频率响应.[h,f]=freqz(b,a,n,'whole',Fs)则在O~Fs之间均匀选取n个点计算频率响应.h=freqz(b,a,w)计算在矢量w中指定的频率处的频率响应,但必须注意,指定的频率必须介于0和2π之间.h=freqz(b,a,f,Fs)计算在矢量f中指定的频率处的频率响应,但指定频率必须介于0和Fs之间。

butter功能:Butterworth(比特沃思)模拟和数字滤波器设计。

matlab的滤波器函数

matlab的滤波器函数

matlab的滤波器函数MATLAB是一种非常强大的数学软件,它提供了许多滤波器函数,可以用于信号处理、图像处理、音频处理等领域。

在本文中,我们将介绍一些常用的MATLAB滤波器函数及其应用。

1. fir1函数fir1函数是MATLAB中最常用的滤波器函数之一,它可以用于设计FIR滤波器。

FIR滤波器是一种线性相位滤波器,它的特点是具有无限长的冲激响应,因此可以实现任意的频率响应。

fir1函数的语法如下:h = fir1(n, Wn, type)其中,n是滤波器的阶数,Wn是归一化的截止频率,type是滤波器类型,可以是“low”(低通滤波器)、“high”(高通滤波器)、“bandpass”(带通滤波器)或“stop”(带阻滤波器)。

fir1函数返回一个长度为n+1的滤波器系数向量h,可以用于滤波操作。

2. filter函数filter函数是MATLAB中用于滤波操作的函数,它可以对输入信号进行滤波处理。

filter函数的语法如下:y = filter(b, a, x)其中,b和a分别是滤波器的分子和分母系数向量,x是输入信号向量。

filter函数返回一个长度为N的输出信号向量y,其中N是输入信号的长度。

3. fft函数fft函数是MATLAB中用于快速傅里叶变换的函数,它可以将时域信号转换为频域信号。

在滤波器设计中,通常需要将频域信号进行滤波操作,然后再将其转换回时域信号。

fft函数的语法如下:Y = fft(X)其中,X是输入信号向量,Y是输出频域信号向量。

可以使用ifft 函数将Y转换回时域信号。

4. fdesign函数fdesign函数是MATLAB中用于设计滤波器的函数,它可以根据用户指定的滤波器类型、截止频率、通带和阻带衰减等参数,自动计算出滤波器的系数。

fdesign函数的语法如下:d = fdesign.lowpass('Fp,Fst,Ap,Ast', Fp, Fst, Ap, Ast)其中,'lowpass'表示滤波器类型为低通滤波器,Fp和Fst分别表示通带和阻带的截止频率,Ap和Ast分别表示通带和阻带的最大衰减。

Matlab中的滤波器设计和滤波器分析方法

Matlab中的滤波器设计和滤波器分析方法

Matlab中的滤波器设计和滤波器分析方法滤波器是数字信号处理中非常重要的工具,用于对信号进行去噪、频率调整等操作。

Matlab作为一种强大的数值计算软件,提供了多种滤波器设计和分析的方法,使得滤波器的应用变得相对简单而高效。

本文将介绍Matlab中的滤波器设计和滤波器分析方法,并进行深入的讨论。

1. 滤波器设计方法滤波器设计的目标是根据信号的特性和需求,选择合适的滤波器类型,并确定滤波器的参数。

Matlab中提供了多种滤波器设计方法,包括FIR和IIR滤波器设计。

FIR滤波器设计是指有限脉冲响应滤波器的设计。

FIR滤波器具有线性相位和稳定性的特点,适用于需要高阶滤波器的场合。

Matlab中常用的FIR滤波器设计函数有fir1和fir2,它们可以根据设计参数生成滤波器的系数。

IIR滤波器设计是指无限脉冲响应滤波器的设计。

IIR滤波器具有低阶滤波器实现高阶滤波器的能力,但其相位响应不是线性的,设计较为复杂。

Matlab中常用的IIR滤波器设计函数有butter、cheby1、cheby2和ellip,它们可以根据设计参数生成滤波器的系数。

2. 滤波器分析方法滤波器设计完成后,需要对滤波器的性能进行分析,以验证其是否符合预期要求。

Matlab提供了多种滤波器分析方法,包括时域分析、频域分析和频率响应分析。

时域分析是指对滤波器的输入输出信号进行时域波形和功率谱的分析。

Matlab中的时域分析函数有filter和conv,它们可以对滤波器的输入信号进行卷积运算,得到输出信号的时域波形。

频域分析是指对滤波器的输入输出信号进行频谱分析,以研究信号的频率特性。

Matlab中的频域分析函数有fft和ifft,它们可以分别对信号进行快速傅里叶变换和傅里叶逆变换,得到信号的频谱。

频率响应分析是指对滤波器的幅频特性和相频特性进行分析。

Matlab中的频率响应分析函数有freqz和grpdelay,它们可以分别计算滤波器的幅度响应和相位响应,并可可视化显示。

matlab滤波器设计命令

matlab滤波器设计命令

matlab滤波器设计命令Matlab滤波器设计命令滤波器是数字信号处理中常用的工具,用于去除信号中的噪声、频率干扰或其他不需要的成分。

Matlab提供了一系列有用的滤波器设计命令,使用户能够轻松设计并应用各种类型的滤波器。

在本文中,我们将详细介绍Matlab中常用的滤波器设计命令,包括滤波器设计函数、滤波器类型和设计过程。

I. Matlab中常用的滤波器设计函数在Matlab中,有几种函数可用于设计滤波器,其中最常用的函数是`designfilt`函数和`fir1`函数。

1. designfilt函数`designfilt`函数是Matlab中最灵活和功能强大的滤波器设计函数之一,可用于设计各种类型的IIR和FIR滤波器。

它的基本语法如下:`filt = designfilt(FilterType, 'PropertyName', PropertyValue, ...)`其中,`FilterType`代表滤波器类型,包括低通滤波器(Lowpass)、高通滤波器(Highpass)、带通滤波器(Bandpass)、带阻滤波器(Bandstop)等。

`PropertyName`和`PropertyValue`是可选的参数,用于设置滤波器的各种属性,如阶数(Order)、截止频率(CutoffFrequency)、通带和阻带的最大衰减(MaximumAttenuation)等。

下面是一个使用`designfilt`函数设计低通滤波器的例子:Fs = 1000; 采样频率Fpass = 20; 通带截止频率Fstop = 30; 阻带截止频率designfilt('lowpassiir', 'FilterOrder', 4, 'PassbandFrequency', Fpass, 'StopbandFrequency', Fstop, 'SampleRate', Fs)该命令将设计一个4阶的低通IIR滤波器,其通带截止频率为20Hz,阻带截止频率为30Hz,采样频率为1000Hz。

matlab中关于数字滤波器的函数介绍

matlab中关于数字滤波器的函数介绍

MATLAB下的数字信号处理实现示例一信号、系统和系统响应1、理想采样信号序列(1)首先产生信号x(n),0<=n<=50n=0:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率w0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);(2)绘制信号x(n)的幅度谱和相位谱k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)(3)改变参数为:1,0734.2,4.0,10==Ω==TAαn=0:50; %定义序列的长度是50A=1; %设置信号有关的参数a=0.4;T=1; %采样率w0=2.0734;x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)2、单位脉冲序列在MatLab中,这一函数可以用zeros函数实现:n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(ang X) ; title (‘单位冲击信号的相位谱’)3、矩形序列n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/25)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱su bplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)4、特定冲击串:)3()2(5.2)1(5.2)()(−+−+−+=nnnnnxδδδδn=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;x(2)=2.5;x(3)=2.5;x(4)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)5、卷积计算:Σ+∞−∞=−=∗=mmnhmxnhnxny)()()()()(在MATLAB中。

matlab滤波器设计代码

matlab滤波器设计代码

在 MATLAB 中,设计滤波器通常可以使用designfilt函数或者相关的设计工具箱函数。

下面是一个简单的示例,演示如何使用designfilt函数设计一个低通滤波器:
在这个示例中,我们使用designfilt函数创建了一个低通滤波器对象,并指定了滤波器的设计参数,如滤波器类型、截止频率、设计方法和阶数。

然后,通过freqz函数绘制了滤波器的频率响应。

你可以根据需要调整滤波器的设计参数,比如滤波器类型、截止频率、设计方法和阶数等。

MATLAB 中还有其他设计工具箱函数,如fir1、butter、cheby1等,用于设计不同类型的滤波器。

请注意,滤波器设计的具体参数取决于你的应用场景和信号特性。

在选择滤波器参数时,通常需要考虑滤波器的类型、频率响应、阶数等因素。

matlab 滤波函数

matlab 滤波函数

matlab 滤波函数
Matlab中提供了多种滤波函数,可以用于信号处理、图像处理、控制系统等方面的应用。

常用的滤波函数包括:
1. fir1函数:用于设计FIR滤波器,可以选择不同的窗函数进行滤波器设计,比如矩形窗、汉宁窗、哈密顿窗等。

2. butter函数:用于设计Butterworth滤波器,可以指定滤波器阶数和截止频率。

3. cheby1和cheby2函数:用于设计Chebyshev Type I和Type II滤波器,可以指定滤波器阶数、截止频率和波纹系数。

4. ellip函数:用于设计elliptic滤波器,可以指定滤波器阶数、截止频率和最大逼近波纹。

5. filter函数:用于对输入信号进行滤波处理,可以使用以上设计的滤波器进行滤波,也可以自定义滤波器系数进行滤波。

除了以上常用的滤波函数外,Matlab还提供了许多其他滤波函数,如高斯滤波、中值滤波、小波变换、卷积等,可以根据具体应用场景选择合适的滤波函数进行处理。

滤波函数在信号处理、图像处理、控制系统等领域中有着广泛的应用,可以有效地去除噪声、滤波信号、平滑曲线等,是数字信号处理中不可或缺的重要工具。

- 1 -。

Matlab中的滤波器设计方法详解

Matlab中的滤波器设计方法详解

Matlab中的滤波器设计方法详解滤波器在信号处理中起着至关重要的作用,能够对信号进行去噪、去除干扰、增强所需频谱等操作。

Matlab作为一种强大的数学计算工具,提供了丰富的滤波器设计方法。

本文将详细介绍Matlab中常用的滤波器设计方法,包括FIR和IIR滤波器的设计原理和实现步骤。

一、FIR滤波器的设计方法FIR滤波器全称为有限脉冲响应滤波器,其特点是具有线性相位和稳定性。

在Matlab中,常用的FIR滤波器设计方法有窗函数法、最小二乘法和频率抽取法。

1. 窗函数法窗函数法是最简单直观的FIR滤波器设计方法。

它的基本思想是,在频域上用一个窗函数乘以理想滤波器的频率响应,再进行频域到时域的转换,得到滤波器的冲激响应。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

Matlab中,我们可以使用fir1函数进行窗函数法滤波器设计。

该函数的输入参数包括滤波器阶数、归一化截止频率和窗函数类型。

通过设计不同阶数和不同窗函数的滤波器,可以得到不同性能的滤波器。

2. 最小二乘法最小二乘法是一种优化方法,通过最小化滤波器的输出与目标响应之间的均方误差来设计滤波器。

在Matlab中,我们可以使用fir2函数进行最小二乘法滤波器设计。

该函数的输入参数包括滤波器阶数、频率向量和响应向量。

通过调整频率向量和响应向量,可以实现对滤波器的精确控制。

3. 频率抽取法频率抽取法是一种有效的FIR滤波器设计方法,能够实现对特定频带的信号进行滤波。

在Matlab中,我们可以使用firpm函数进行频率抽取法滤波器设计。

该函数的输入参数包括滤波器阶数、频率向量、增益向量和权重向量。

通过调整频率向量、增益向量和权重向量,可以实现对滤波器的灵活控制。

二、IIR滤波器的设计方法IIR滤波器全称为无限脉冲响应滤波器,其特点是具有非线性相位和多项式系数。

在Matlab中,常用的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。

1. 巴特沃斯滤波器巴特沃斯滤波器是一种最常用的IIR滤波器,其特点是具有最平滑的通带和最陡峭的阻带。

matlab中fir数字滤波器常用函数

matlab中fir数字滤波器常用函数

一、 fir数字滤波器概述fir数字滤波器是一种常用的数字信号处理工具,用于滤除特定频率成分或增强特定频率成分。

在信号处理领域,fir数字滤波器具有重要的应用价值,能够有效地对信号进行去噪、平滑或频率变换等处理。

在matlab中,有许多常用的fir数字滤波器函数,下面将对这些常用函数进行介绍。

二、 fir1函数fir1函数是matlab中用于设计一维fir滤波器的函数,它可以根据指定的滤波器类型、滤波器阶数和截止频率来生成fir数字滤波器。

该函数的调用格式为:h = fir1(n, wn, type)其中,n表示滤波器的阶数,wn为一个标量或长度为2的向量,用于指定截止频率,type为滤波器类型,可以是‘high’、‘low’、‘stop’或‘bandpass’。

三、 fir2函数fir2函数是matlab中用于设计二维fir滤波器的函数,它可以根据指定的滤波器类型、滤波器尺寸和频率响应来生成fir数字滤波器。

该函数的调用格式为:h = fir2(n, f, m, w)其中,n表示滤波器的尺寸,f表示频率响应,m表示频率响应对应的标量,w为设定的窗函数。

四、 fircls函数fircls函数是matlab中用于设计带通fir滤波器的函数,它可以根据指定的滤波器类型、通带和阻带的频率范围来生成fir数字滤波器。

该函数的调用格式为:h = fircls(n, f, a, dev)其中,n表示滤波器的阶数,f表示通带和阻带的频率范围,a表示通带和阻带的幅度响应值,dev表示通带和阻带的允许偏差。

五、 firpm函数firpm函数是matlab中用于设计带通fir滤波器的函数,它可以根据指定的滤波器类型、通带和阻带的频率范围以及频率响应来生成fir数字滤波器。

该函数的调用格式为:h = firpm(n, f, a, w)其中,n表示滤波器的阶数,f表示通带和阻带的频率范围,a表示通带和阻带的幅度响应值,w为设定的窗函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滤波器设计matlab相 关函数
与IIRDF相关的matlab函数(一)
以设计一个高通的巴特沃斯滤波器H(z)为例,
其步骤包括从 到 的频率转换,模拟低通
原型G(s)的设计,G(s)到模拟高通H(s)的转换, H(s)到数字高通滤波器H(z)的转换。 Buttord:用来确定数字低通或模拟低通滤波 器的阶数,其调用格式为:
Design Method(设计方法)选项,包括IIR滤波器 的Butterwotth(巴特沃思)法、Chebyshev Type I(切比雪夫I型)法、Chebyshev Type II(切比雪夫II 型)法、Elliptic(椭圆滤波器)法和FIR滤波器的 Equiripple法、Least-Squares(最小乘方)法、 Window(窗函数)法。
B=fir2(N,F,M);F是频率向量,其值在0-1之 间;M是和F相对应的所希望的幅频响应, 默认时自动选择哈明窗。
FDATool的介绍
FDATool(Filter Design&Analysis Tool)是 MATLAB信号处理工具箱里专用的滤波器 设计分析工具 。
FDATool可以设计几乎所有的常规滤波器, 包括FIR和IIR的各种设计方法。它操作简单, 方便灵活。
fir1,调用方式: B=fir1(N,Wn); B=fir1(N,Wn,’high’); B=fir1(N,Wn,’stop’); N为滤波器的阶数,因此滤波器的长度为N+1,
Wn为通带截止频率,其值在0-1之间,1对应采样 频率的一半;b是设计好的滤波器的系数h(n)。
与FIRDF相关的matlab函数(三)
数向量;Bz和Az分别是H(z)的分子和分母 多项式系数向量;Fs是采样频率。
与IIRDF相关的matlab函数(五)
Butter:直接涉及巴特沃斯滤波器,实际上它包含buttap、 lp2lp和bilinear等函数,使设计过程更简捷,其调用格式 是:
[B,A]=butter(N,Wn) [B,A]=butter(N,Wn,’hign’) [B,A]=butter(N,Wn,’stop’) [B,A]=butter(N,Wn,’s’) 前三个用来设计数字滤波器,B,A分别是H(z)的分子和分母
多项式的系数向量;Wn是通带截止频率,范围在0-1之间, 1对应采样频率的一半。第四个用来设计模拟滤波器。
IIRDF设计实例
设计一个LPDF,数字采样频率为1000Hz,给定技术指标 通带截止频率fp=100Hz,阻带截止频率fs=300Hz,通带最 大衰减为3db,阻带最小衰减为20db。
Wp=0.2*pi; Ws=0.4*pi; fs=1000; rp=3;rs=20; [n,Wn]=buttord(Wp/pi,Ws/pi,rp,rs);%确定滤波器阶数 [bz,az]=butter(n,Wp/pi);%利用butter函数设计滤波器 [h,w]=freqz(bz,az,128,fs);%计算幅频响应 Plot(w,abs(h)); grid
[N,Wn]=buttord(Wp,Ws,Rp,Rs) [N,Wn]=buttord(Wp,Ws,Rp,Rs,’s’)
与IIRDF相关的matlab函数(二)
Buttap:用来设计模拟低通原型滤波器G(s), 其调用格式是[z,p,k]=buttap(N),N是要求 设计的低通原型滤波器的阶次,z,p,k分别 是设计出的G(s)的极点、零点及增益。
向量;B,A分别是转换后的H(s)的分子和分母多项式的系 数向量。
与IIห้องสมุดไป่ตู้DF相关的matlab函数(四)
Bilinear:实现双线性变换,并由模拟滤波 器H(s)得到数字滤波器H(z)。调用格式:
[Bz,Az]=bilinear(B,A,Fs) B和A分别是H(s)的分子和分母多项式的系
FDATool界面
特性区 ,在界面的上半部分,用来显示滤 波器的各种特性。
Design Filter ,在界面的下半部,用来设置 滤波器的设计参数;
Design Filter部分
主要分为:Filter Type(滤波器类型)选项,包括 Lowpass(低通)、Highpass(高通)、Bandpass(带 通)、Bandstop(带阻)和特殊的FIR滤波器。
Design Filter部分
Filter Order(滤波器阶数)选项,定义滤波器 的阶数,包括Specify Order(指定阶数)和 Minimum Order(最小阶数)。在Specify Order中填入所要设计的滤波器的阶数(N阶 滤波器,Specify Order=N-1)。如果选择 Minimum Order,则MATLAB根据所选择的 滤波器类型自动使用最小阶数。
与FIRDF相关的matlab函数(一)
以窗口法设计FIRDF为例,相关的matlab函 数分为两类:一类用于产生窗函数,另一 类用于FIRDF设计。
常用产生窗函数的m函数: boxcar、hamming、hanning、kaiser。 W=boxcar(N);%N为窗函数的长度
与FIRDF相关的matlab函数(二)
与IIRDF相关的matlab函数(三)
lp2lp,lp2hp,lp2bp,lp2bp,lp2bs:具有实现频率转换的功能, 它们分别将模拟低通原型滤波器G(s)转换为实际的低通、 高通、带通和带阻滤波器,调用格式:
[B,A]= lp2lp(b,a,W0);W0为低通滤波器的截止频率 [B,A]= lp2hp(b,a,W0); W0为高通滤波器的截止频率 [B,A]= lp2bp(b,a,W0,Bw) ;W0是带通或带阻的中心频率 [B,A]= lp2bs(b,a,W0,Bw);Bw是带宽 b,a分别是模拟原型低通滤波器G(s)的分子和分母的系数
Design Filter部分
相关文档
最新文档